$\left[\begin{array}{cc}\mathrm{I} & \mathrm{L} \\ \mathrm{A} & \mathrm{S}\end{array}\right]$
 $\left[\begin{array}{cc}\mathrm{I} & \mathrm{L} \\ \mathrm{A} & \mathrm{S}\end{array}\right]$

The Bulletin of the International Linear Algebra Society
 Serving the International Linear Algebra Community

Issue Number 19, Summer/Fall 1997: pp. 1-32.

Editor-in-Chief. George P. H. STYAN
Department of Mathematics and Statistics McGill University, Burnside Hall 805 ouest, rue Sherbrooke Street West Montréal, Québec, Canada H3A 2K6
Editorial Assistant: Julian DI GIOVANNI
tel. (1-514) 398-3333
FAX (1-514) 398-3899
styaneMath.McGill.CA
> Edited by: Robert C. THOMPSON (1988-1989); Steven J. LEON \& Robert C. THOMPSON (1989-1993); Steven J. LEON (1993-1994); Steven J. LEON \& George P. H. STYAN (1994-1997)
Senior Associate Editors: Chi-Kwong LI, Simo PUNTANEN, Hans Joachim WERNER
Associate Editors: S. W. DRURY, Stephen J. KIRKLAND, Peter ŠEMRL, Fuzhen ZHANG.

John Stanley Maybee: 1928-1997 (Charles R. Johnson \& Thomas J. Lundy) 9
ILAS President/Vice-President's Annual Report: October 1997 (R. A. Brualdi \& D. Hershkowitz). 2
ILAS Treasurer's Report: March 1, 1996-February 28, 1997 (James R. Weaver) 4
Why Do I Want to be a Linear Algebraist? (Henry Wolkowicz \& Pei Yuan Wu) 3
International Calendar of Events in Linear Algebra \& Related Topics 18
SIAM Linear Algebra Prize: 1997 21
A Quotation About Linear Algebra 21
Image Publication Schedule: 1998 21
Linear Algebra Events
June 6-9, 1997: Winnipeg, Manitoba, Canada (P. N. Shivakumar 13
August 16-17, 1997: Istanbul, Turkey (Hans Joachim Werner) 14
June 3-6, 1998: Madison, Wisconsin, USA 18
July 30-31, 1998: Victoria, British Columbia, Canada 19
August 8-13, 1998: Zhangjiagye, Hunan Province, China 21
Image Problem Corner
18-1: 5×5 Complex Hadamard Matrices 25
18-2: 7x7 Complex Hadamard Matrices 25
18-3: A Further Matrix Version of the Cauchy-Schwarz Inequality 25
18-4: Bounds for a Ratio of Matrix Traces 27
18-5: Eigenvalues and Eigenvectors of a Patterned Matrix 28
18-6: Two Imaginary Sisters of the Vector Cross-product. 30
19-1: Eigenvalues 32
19-2: Non-negative Definite Matrices 32
19-3: Characterizations Associated with a Sum and Product 32
19-4: Eigenvalues of Non-negative Definite Matrices 32
19-5: Symmetrized Product Definiteness? 32

ILAS President/Vice-President's Annual Report: October 1997

1. The following persons have been elected to ILAS offices with terms that began on March 1, 1997: Board of Directors: VOLKER MEHRMANN and JANE DAY (three-year terms ending February 29, 2000).
The following persons continue in their offices to which they were previously elected:
President: RICHARD A. BRUALDI (term ends February 28, 1999).
Vice-President: DANIEL HERSHKOWITZ (term ends February 28, 1998).
Secretary/Treasurer: JAMES R. WEAVER (term ends February 29, 2000).
Board of Directors: JOSE DIAS DA SILVA and PETER LANCASTER (terms end February 28, 1998);
RAJENDRA BHATIA and LUDWIG ELSNER (terms end February 28, 1999).
Jose Dias da Silva was appointed to fill the vacancy created by the death of Robert C. Thompson.
2. The Nominating Committee for 1997 consists of: Chi-Kwong Li (chair, appointed by the president), Angelika BunseGerstner and Michael Neumann (appointed by the Board of Directors), and Russell Merris and Graciano de Oliveira (appointed by the president's Advisory Committee).
3. This coming year there are elections for two positions on the Board that become vacant on March 1, 1998. The candidates chosen by the Nominating Committee are: Pauline van Den Driessche (Canada), Nicholas J. Higham (UK), Roger A. Horn (USA), and Jose Dias da Silva (Portugal). Following an election, Roger A. Horn and Jose Dias da Silva were declared as elected to the Board for the three-year term ending February 28, 2001. There is also an election for the position of Vice President that becomes vacant on March 1, 1998. Daniel Hershkowitz has held that position for one three-year term. According to ILAS by-laws, a Vice President may serve two consecutive terms and if the Vice President is renominated there may be only one nominee for that position. The Nominating Committee has chosen Daniel Hershkowitz as the nominee for the office of Vice President for the three-year term ending February 28, 2001.
4. ILAS owes a great debt of gratitude to Steven J. Leon for his important service in editing and producing Image for eight years. The first two issues of Image, published in January 1988 and January 1989, were edited by the late Robert C. Thompson. With Issue No. 3 (July 1989) and continuing through Issue No. 10 (January 1993), Image was jointly edited by Steven J. Leon and Robert C. Thompson. Steve was the sole Editor of Image for Issues No. 11 (July 1993) and No. 12 (January 1994). Issues No. 13 (July 1994) through No. 18 (Winter/Spring 1997) were jointly edited by Steven J. Leon and George P. H. Styan. Beginning with this Issue No. 19 (Summer/Fall 1997), George assumes the position of sole Editor of Image. His term of office ends with Issue No. 24 (Winter/Spring 2000). George is now ably assisted by S. W. Drury, Stephen J. Kirkland, Chi-Kwong Li, Simo Puntanen, PeterŠemrl, Hans Joachim Wemer, and Fuzhen Zhang. On behalf of ILAS we thank Steve Leon for his work for our society, and we look forward to working with George in our capacity as President and VicePresident, respectively, of ILAS.
5. Thanks to the hard work of the Corporate Sponsors Committee (Carolyn Eschenbach, chair), ILAS currently has six sponsors: Addison-Wesley, Birkhäuser, International Publishers Distributor, MathWorks, SIAM, and Walter de Gruyter.
6. On August 14-17, 1996 the 6th ILAS Conference was held in Chemnitz, Germany at the Technical University ChemnitzZwickau with 189 participants from 32 countries. There were 18 invited plenary lectures and 14 presentations in 4 minisymposia. In addition, there were 101 contributed talks on a wide range of topics. Highlights of the meeting included: the presentation of the Hans Schneider prize lecture by Michael Boyle (who shared the prize with David Handelman), the Olga Taussky-Todd lecture given by Robert Guralnick on "Traces and generations of matrix algebras," and a banquet talk by Bertram Huppert. The organizing committee consisted of: Bart De Moor, Graciano De Oliveira, Ludwig Elsner, Thomas J. Laffey, Volker Mehrmann (chair), Gerhard Michler, Michael Neumann, and Frank Uhlig. The local arrangements committee consisted of: D. Happel, F. Lowke, C. Rost, and B. Silbermann.
7. The ILAS Symposium on Fast Algorithms for Control, Signals, and Image Processing was held on June 6-9, 1997 at University of Manitoba, Institute of Industrial Mathematical Sciences, Winnipeg, Canada. The symposium was held in conjunction with the summer meeting of the Canadian Mathematical Society (CMS). In addition to the symposium there were linear algebra sessions at the CMS meeting. The organizing committee consisted of Pauline van den Driessche, Thomas Kailath, Peter Lancaster, Dianne P. O'Leary, Robert J. Plemmons, Hans Schneider, P. N. Shivakumar (chair). The program
committee consisted of: Moody Chu, Biswa Datta, Brent Ellerbroek, Georg Heinig, Franklin Luk, Dianne O'Leary (cochair), Haesun Park, Robert J. Plemmons (co-chair), Ali Sayed, Hans Schneider, P. N. Shivakumar, and Paul Van Dooren.
8. The following ILAS conferences are planned for the near future:
a. The 7th ILAS Conference will be held at the University of Wisconsin, Madison, Wisconsin, USA, on June 3-6, 1998. The conference is being dedicated to Hans Schneider in recognition of his enormous contributions to linear algebra and the linear algebra community. A flyer, including a tentative program, a call for papers, and registration procedures will be mailed in October 1997 to all ILAS members. The organizing committee consists of Richard A. Brualdi (chair), Bryan Cain, Biswa Datta, Jose Dias da Silva, Shmuel Friedland, Moshe Goldberg, Uriel Rothblum, Jeffrey Stuart, Daniel Szyld, and Richard S. Varga.
b. The 8th ILAS Conference will be held at the Universitat Politecnica de Catalunya, Barcelona, Spain on July 19-22, 1999. The program committee consists of R. Bru, L. de Alba, G. de Oliveira, I. García-Planas (co-chair for local arrangements), J. M. Gracia, V. Hemandez, N. J. Higham, R. A. Horn, T. J. Laffey (co-chair), F. Mateos, F. Puerta (chair), and P. Van Dooren.
c. The 9th ILAS Conference, Technion, Haifa, Israel, summer 2001.
d. The 10th ILAS Conference, Auburn University, Auburn, USA, summer 2002.
9. ELA-The Electronic Journal of Linear Algebra: As of September 1997, the second volume (1997 volume) has published 2 papers. ELA's primary site is at the Technion, Haifa (Israel). Mirror sites are located in Temple University, Philadelphia, in the University of Chemnitz (Germany) and in the University of Lisbon (Portugal).
10. ILAS-NET: As of October 26, 1997, we have circulated 677 ILAS-NET announcements. ILAS-NET currently has 533 subscribers.
11. ILAS INFORMATION CENTER (IIC) has a daily average of 250 information requests (not counting FTP operations). IIC's primary site is at the Technion, Haifa (Israel). Mirror sites are located in Temple University, Philadelphia, in the University of Chemnitz (Germany) and in the University of Lisbon (Portugal).

RICHARD A. BRUALDI, President
DANIEL HERSHKOWITZ, Vice-President
brualdiemath.wisc.edu
University of Wisconsin-Madison, USA
Technion-Haifa, Israel

Why do I want to be a Linear Algebraist?

In answer to this question, posed by Chi-Kwong Li in the last issue of Image [No. 18, Winter/Spring 1997, p. 23], we received the following answers:
(a) I like the linear algebra community very much; (b) Linear algebra touches a vast assortment of areas; (c) Linear algebra is very natural and intuitive; (d) One day I hope to have a licence plate with MATRIX on it.

HENRY WOLKOWICZ: henryeorion.math.uwaterloo.ca University of Waterloo, Waterloo, Ontario, Canada

As a mathematician, I have always been intrigued by the contrast and interplay between the finite and discrete versus the infinite and continuous. Linear algebra provides me with the vehicle to crack open the former, which in turn sheds light on the mystery of problems in a typical setup of the latter, operator theory.

PEIY UANWU: pywuecc.nctu.edu.tw

ILAS Treasurer's Report: March 1, 1996-February 28, 1997

 by James R. Weaver, University of West Florida, Pensacola```
Balance on hand March 1. }199
 Certificate of Deposits (CD) 19,000.00
 Vanguard 7,962.20
 Checking Account 16,904.80
 43,867.00

Checking Account Balance on March 1, 1996
 16,904.80
March 1996
 Income:
 Dues 180.00
 Interest (First Union) 22.05
 Interest (First Union) 13.38
 Expenses:
 Sec. of State 70.00
April 1996
 Income:
 Dues
 Dues
 Interest (First Union) 15.00
 Contributions
 ILAS- 6th Conf. 240.00
 Expenses:
 Production and Mail "IMAGE" 1193.78 1,193.78 (855.40)
May 1996
 Income:
 Dues
 100.00
 Interest on CD (HS) 75.38
 Interest on CD (OT/JT) 29.32
 Interest on CD (First Union) 68.42
 Interest (First Union) 14.31
 Contributions
 ILAS-6th Conf. 870.00
 Hans Schneider Prize }30.0
 Expenses:
 Postmaster (Stamps & Mailing) 54.66
 Benton's (3 HS Plaques) 128.40
 Lisa M. Weaver (Prep. of 95/96
 Ann. Trea. Rep.) 48.60 231.66 955.77
June 1996
 Income:
 Dues 00.00
 Interest (First Union) 14.22
 Contributions
 ILAS-6th Conf. 1320.00
 OT/JT Fund 310.14
 Expences: 00.00
July \frac{1996}{\mathrm{ Expence }}
July 1996
 Dues 180.00
 Interest (First Union) 17.49
 Interest on CD (FU) 23.62
 Interest on CD (GEN) 69.94
 Interest on CD (HS) 75.38
 Interest on CD (OT/JT) 29.32
 Contributions
 General 1.00
 General 1.00
 IL
 1,644.36
 00.00 1.644.36
```

```
 Expenses:
 Postmaster (Stamps) 78.08
 Postmaster (Stamps-Dues Not.) 137.30
 James C Weaver (Supplies &
 Preparing Dues Not.) 89.97
August 1996
 Income:
 Dues 00.00
 Interest (First Union) 15.44
 Expenses:
 M. Michael Boyle-
 Hans Schneider Prize 1100.00
 Robert Guralnick-
 OT/JT Lecture Fund 1300.00
 ILAS-6th Conf. 3000.00
 Refund-6th Conf. 140.00
September 1996
 Income:
 Dues 3025.22
 Interest on CD (GF) 69.95
 Interest on CD (GF) 69.95
 Interest (First Union) 15.36
 Contributions
 General 81.00
 Conference 50.00
 H. Schneider Prize 256.00
 F. Uhlig Fund 91.00
 OT/JT Lec. Fund 246.00
 ILAS-6th Conf. 980.00
 Expenses:
 Lisa M. Weaver(Recording &
 Updating Files) 102.00
 Office Depot-Supplies 33.85
 Postmaster (Stamps & Mailing) 241.89
 Mail Boxes ETC (400 Ballots) 34.24
 James C. Weaver(ILAS Files &
 Preparing/Mailing Ballots) 102.00
 Service Charge \underline{2.10}
October 1996
 Income:
 Dues 00.00
 Interest (First Union) 15.93
 Expenses:
 Producing & Mailing "IMAGE"
 George P.H. Styan 1333.11
November 1996
 Income:
 Dues 1120.00
 Interest (First Union) 14.78
 Interest on CD (GF) 69.94
 Interest on CD (OT/JT) 29.64
 Interest on CD (HS) 76.23
 Interest on CD (FU) 23.63
 Contributions
 General 120.00
 H. Schneider Prize 30.00
 OT/JT Lec. Fund 210.00
 Conference 10.00
 ILAS-6th Conf.
 545.00
 Addison Wesley Pub. 200.00
 SIAM 200.00
 Expenses:
 Office Depot (Supplies) 47.06
 Postmaster (Stamps)
 141.87
```



```
ILAS Treasurer's Report
Supplement from Sparkasse Chemnitz
March 1, 1996 - February 28, 1997
```

Report by Volker Mehrmann and James R. Weaver

$$
\mathrm{DM}=\text { Deutsche mark }
$$

DM DMBalance on hand March 1, 1996414.52**********
March 1996
Income:

Fees 45.00

            Fees
    
            Fees
    
                10.50
    
                                    10.50
    
                                    79.50
    Apri1 1996
Income:
Check
235.00
Fees
130.50
Fees 90.00
Fees
45.00
Expenses:
00.00
500.50
00.00
500.50
May 1996
Income: $\quad 90.00$
Fees
Check
60.00
Check
165.00
$\begin{array}{ll}\text { Fees } & 360.00\end{array}$
Fees 180.00
Fees
45.00
Check 100.00
Check $\quad 75.00$
Fees
57.40
Check 390.00
Fees 45.00
Fees
90.00
Fees
105.00
Check 240.00
Check $\quad 70.00$
Expenses:
00.00
2.072 .40
00.00
2.072 .40
June 1996
Income:
Check 165.00
Check $\quad 55.00$
Fees 90.00
Check $\quad 55.00$
Check 195.00
Fees $\quad 180.00$
Fees 75.00
Fees 45.00
Fees 45.00
Fees $\quad 75.00$
Fees 67.40
Fees 105.00
Check 120.00
Fees 45.00
Fees $\quad 45.00$
Check 100.00
Fees 105.00
Cash 15.00
Expenses:
Fees

July 1996

| Income: |  |
| :--- | ---: |
| Check | 430.00 |
| Fees | 150.00 |
| Check | 120.00 |
| Fees | 67.40 |
| Check | 150.00 |
| Check | 130.00 |
| Fees | 105.00 |
| Transfer | 90.00 |
| Expenses: |  |
| Transfer | 336.64 |
| Transfer | $\underline{313.38}$ |

### 1.242 .40 <br> 650.02 <br> 592.38

August 1996
Income:
Check
Check
Check
Check
Check
Cash
Check
Cash
Check
Check
Expenses:
Cash
Cash
Cash
Transfer
Transfer
Transfer
Transfer Transfer Transfer Transfer Transfer Fees Transfer Transfer

September 1996
Income:
Expenses: Fees Check Int.

October 1996
Income:
Interest
Interest
Expenses:
4.72
00.00

November 1996
Income:
Expenses:
Closing
Fees
. 0.00
727.44

Check
00.00
19.00
240.00
4.72
263.72
(263.72)
4.72
00.00
4.72
6.60
95. 00

Account Balance (ILAS Conference 1996/97) February 28, 1997000


Gamma R. YNeawh
Guns 17,1997

# Iofin Stanley Maybee: 1928-1997 

As a father of qualitative matrix theory, John Stanley Maybee was one of the earliest mathematicians to understand how deeply combinatorial thought can contribute insight into matrix structure.

After an undergraduate degree at the University of Maryland, John received his Ph.D. from the University of Minnesota in 1956 under Paul Rosenbloom. Always motivated by applications, he was a postdoc at the Courant Institute, and his thesis and initial work were in PDE's. His interests gradually drew him into matrix problems that lay at the heart of applications, and these matrix problems frequently involved a combina-torial/graph-theoretic aspect. In the mid-60's John was in the mathematics department at Purdue University; there in the economics department at the time was a remarkable collection of soon to be famous researchers, many of whom helped with the birth of modern mathematical economics. It was at this time that John developed an interest in qualitative matrix theory and, in papers with James Quirk and Lowell Bassett, developed the initial principles.

John moved to the University of Colorado in 1967, where he stayed until his retirement in 1993. Matrix and graph theory became the main emphasis of his research in Boulder, but he maintained his interest in modern applications as a consultant to the Department of Energy. John contributed to and in several cases began the study of several topics in matrix and graph theory, including sign stability, sign nonsingular and nearly-sign nonsingular matrices, tournament matrices, $L$-functions, competition graphs, bi-clique coverings of digraphs, inverse 0 -patterns,
 and other topics in qualitative matrix theory and in graph theory. Before his retirement, he helped start the Applied Mathematics Department in the University of Colorado at Boulder and became an initial member. John's career was honored with a special meeting on combinatorial matrix analysis at his retirement (which Charlie helped to organize, and at which both Charlie and Tom gave a talk) and a subsequent special issue of Linear Algebra and Its Applications (LAA). But, like all good researchers, John had a deep curiosity about his mathematics and continued active research after retirement, including regular research discussions with both of us until his sudden death from a heart attack on May 2, 1997.

John blessed the lives of many, and all of us who had the pleasure of knowing him will greatly miss him. Charlie learned of John's work on qualitative matrix theory while in college and this was an early inspiration for his long time interest in matrices. Later on, interaction with John was one of the great pleasures of working in matrix theory, and John spent his last sabbatical at William and Mary with us. John was not only Tom's Ph.D. thesis advisor but a continuing collaborator and friend.

John is survived by nearly 100 papers (a few more to come), three books (including an upcoming volume on the applications of qualitative matrix theory), seven Ph.D. students, Carol his wife since 1955) and six children. Besides being good at and displaying an infectious enjoyment for mathematics, John had a keen enjoyment of life. His enthusiasm and vast store of anecdotes brightened many professional gatherings. Those who had the opportunity to attend one of the lovely dinners hosted by John and Carol (and, perhaps, some of the kids) were certain to remember the experience. John was nearly as good and inspired in the kitchen as in mathematics.

# Infinite POssithities 

## NEW FOR 1997 <br> Linear Algebra And Its Applications, Second Edition <br> David C. Lay <br> University Of Maryland At College Park 0-201-82478.7

Now in an exciting new edition, Lay continues the first edition's success in building student confidence in the abstract concepts of linear algebra. The second edition also offers greater flexibility, over 200 technology exercises, and adds to the strong geometric emphasis of the text. Lay's unique column definition of matrix multiplication is unmatched.

## NEW FOR 1997

Linear Algebra With Applications, Second Edition Charles G. Cullen University Of Pittsburgh
0-673-99386-8
This clear, unintimidating introductory text is distinguished by its strong computational and applied approach. Suitable for a sophomore-level course in linear, matrix, or computational algebra, it prepares students for further study in mathematics, computer science, chemistry, or economics.

## Linear Algebra: An Interactive Laboratory Approach With Mathematica ${ }^{\text {® }}$ <br> John R. Wicks <br> North Park College <br> 0-201-46091-2

This text provides a concrete foundation for each concept in linear algebra through first-hand experimentation, observation and discussion. It is an interactive learning system with two components: a paperbound text and a computer disk containing Mathematica Notebooks and packages of pre-programmed commands. © 1996

## Linear Algebra, Third Edition

John B. Fraleigh and Raymond A. Beauregard, both of the University of Rhode Island 0-201-52675-1
This evenly paced book introduces students to key concepts early-before they are abstracted. This builds students' confidence slowly and gives them a foundation for mastering topics in both concrete and abstract settings.
© 1995

## New <br> LINEAR ALGEBRA

J.H. Kwak \& S. Hong, both Pohang University of Science and Technology, Korea


The primary aim of this book is to give a clear and rigorous presentation of the basic concepts of linear algebra as a coherent part of mathematics. At the same time, by emphasizing computational skills along with mathematical abstractions, the authors illustrate linear algebra's power and usefulness in its applications to such other disciplines as physics, computer science, and economics. The book contains many important examples, explanations, and problems with selected solutions.

Contents: Preface . Linear Equations and Matrices . Introduction. Gaussian elimination. Matrices. Product of matrices. Block matrices. Inverse matrices. Elementary matrices. LDU factorization. Application: linear models . Exercises. Determinants. The determinant of a matrix . Existence and uniqueness. Cofactor expansion. Application: Cramer's rule . Application:Volumes. Application:Interpolation . Exercises . Vector Spaces. Vector spaces. Subspaces . Linear independence and basis. Dimension of a vector space. Row and column spaces. Rank and nullity. Bases for subspaces. Invertibility . Application:The Wronskian . Exercises . Linear Transformations . Introduction . Invertible linear transformations. Application: Computer graphics. Matrices of linear transformations. Vector spaces of linear transformations. Change of bases. Similarity. Dual spaces. Exercises. Inner Product Spaces. Inner products. The lengths and angles of vectors . Matrix representations of inner products. Orthogonal projections -The Gram-Schmidt orthogonalization. Orthogonal matrices and transformations. Relations of fundamental subspaces. Least square approximations. Application:The least square solution . Orthogonal projection matrices. Exercises. Eigenvectors and Eigenvalues . Eigenvectors and eigenvalues. Diagonalization of matrices. Application: Difference equations. Application: Differential equations I . Application: Differential equations II . Exponential matrices . Application: Differential equations III . Diagonalization of linear transformations. Exercises. Complex Vector Spaces. Complex vector spaces. Hermitian and unitary matrices. Unitarily diagonalizable matrices. Normal matrices . The spectral theorem . Exercises . Quadratic Forms . Introduction. Diagonalization of a quadratic form. Congruence relation. Extrema of quadtratic forms. Application: Quadratic optimization. Definite forms. Bilinear forms. Exercises. Jordan canonical forms. Introduction. Generalized eigenvectors . Application: Computation of $\mathrm{e}^{\mathrm{A}}$. Cayley-Hamilton theorem. Exercises. Index
1997369 pp. Hardcover $\$ 36.50$ ISBN 0-8176-3999-3


Check Out These Two Linear Algebra Textbooks

## LINEAR ALGEBRA

Harold M. Edwards, New York University
"A well thought-out, sophisticated approach."

- The American Mathematical Monthly

Contents: Preface. Matrix Multiplication . Equivalence of Matrices - Reduction to Diagonal Form . Matrix Division . Determinants . Testing for Equivalence . Matrices with Rational Number Entries . The Method of Least Squares . Matrices with Polynomial Entries. Similarity of Matrices. The Spectral Theorem. Answers to Exercises

1995198 pp. Hardcover $\$ 39.50$ ISBN 0-8176-3731.1

## Forthcoming Winter 1998

LINEAR ALGEBRA
A Matlab Guide
Harold M. Edwards, New York University
See Matlab Guide at:
http://www.birkhauser.com/book/isbn/0-8176-3731-1

## TEXTBOOK ADOPTION POLICY

Many Birkhäuser books are intended or suitable as textbooks in graduate and undergraduate courses. To request an examination copy of any Birkhäuser book, please send your request on departmental letterhead to the address below and include the name of your course and current text, estimated class size, and the adoption decision date. Examination copies are shipped with an invoice payable in 30 days. Adopters may keep the copy free for desk use by returning the invoice with the bookstore and order size indicated. Others are required to remit payment or return the book.

## Send adoption examination requests to:

Birkhäuser, Marketing Dept., 675 Massachusetts Avenue, Cambridge. MA 02139

## TO ORDER:

CALL: I $800777-4643$ FAX: $201348-4505$
E-MAIL: orders@birkhauser.com
OrderVia Our On-Line Order Format: www.birkhauser.corm
Please mention reference \#Y32I when ordering.
Prices are valid in North America only and are subject to change without nocice. For price and ordering information outside North America, please contact Birkhäuser Veriag, AG, P.O. Box 133. Klosterberg 23, CH-4010, Basel, Switzerland. Phone ++4। 6120507 07: Fax ++41 61 2050792 or E-mail: sales@birkhauser.ch

# ssential Mathematics Titles from Gordon and Breach 

Now Announcing CD-ROM Archive... LINEAR AND MULTILINEAR ALGEBRA

Editor-in-Chief: William Watkins<br>Department of Mathematics, California State University, Northridge, Califormia, USA

Publishes research papers, research problems, expository or survey articles at the research level, and reviews of selected research-level books or software in linear and multilinear algebra and cognate areas. Contributions include spaces over fields or rings, tensor algebras or subalgebras, nonnegative matrices, inequalities in linear algebra, combinatorial linear algebra, matrix numerical analysis, plus other areas including representational theory, Lie theory, invariant theory, and functional analysis. Linear and Multilinear Algebra is addressed to mathematicians in both industrial and academic worlds.

4 issues per volume - ISSN 0308-1087 • Current Subscription: Volume 43-44 (1997) • Base List Rate* per volume: US\$407 (ECU339)

## *Special society rates of USS118 (ECU98) available for members of the International Algebra Society and

 the American Mathematical Society.New...
EXERCISES IN ALGEBRA:
A COLLECTION OF EXERCISES IN ALGEBRA, LINEAR ALGEBRA AND GEOMETRY

Volume 6, Algebra, Logic and Applications
Editor: Alexi I. Kostrikin
Department of Mathematics, Moscow State University, Russia
Contains more than two thousand exercises in algebra. Each of the three sections contains not only standard exercises, but also more difficult exercises which are listed at the end of sections. Gives results of calculations, a list of notations and basic definitions at the end of the book.

Contact the publisher to obtain a free 60-day textbook examination copy
1996-480pp
Cloth ISBN 2-88449-029-9 • US\$170/£102 / ECU37
Paperback ISBN 2-88449-030-2 - US\$48 / £29 / ECU37

## TO ORDER:

[^0] Shinjuku-ku, Tokyo 169, Japan

# International Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals and Image Processing 

Winnipeg, Manitoba, Canada: June 6-8, 1997

Report by P. N. Shivakumar

This International Linear Algebra Society (ILAS) Symposium was organized by the Institute of Industrial Mathematical Sciences (IIMS) at the University of Manitoba, Canada. The Symposium was a Participating Institutions Conference of the Institute for Mathematics and its Applications (IMA) and was co-sponsored by the Fields Institute, the Centre de Recherches Mathématiques (Montréal) and the Manitoba HVDC Research Center. The Principal Symposium Organizers were: P. N. Shivakumar (IIMS, Univ. of Manitoba), Dianne P. O'Leary (Univ. of Maryland), Hans Scbneider (Univ. of Wisconsin-Madison), and Robert J. Plemmons (Wake Forest University, Winston-Salem).

The three-day meeting brought together researchers from the areas of Control Theory, Signal and Image Processing, and Computational Linear Algebra to discuss recent advances, trends, and future directions for research on fast algorithms. This interdisciplinary gathering emphasized modern methods in scientific computing and relevant linear algebra. On the first day, three two-hour short courses were given. Stephen Boyd (Stanford) spoke on Convex Optimization in Control, Signals and Image Processing; Raymond Chan (Hong Kong) discussed Iterative Methods for Toeplitz Systems; Tom Kailath (Stanford) gave an introduction to Fast Algorithms for Structured Matrices. These talks are available on the authors' websites. Plenary talks were given by C. C. Paige (McGill), G. W. Stewart (Maryland), Haesun Park (Minnesota), L.Kaufman (Bell Labs), M. Hanke (Karlsruhe), E. Chu (Guelph), and S. Qiao (McMaster). In addition there were six minisymposia and three contributed paper sessions. In all, there were about 80 participants in the Symposium.

An important feature of the meeting was the overlap with the Canadian Mathematical Society (CMS) Summer meeting (June 6-9). A special Session on Linear Algebra at the CMS Meeting (June 9) was organized by IMS with main speakers Roger Horn (Utah) and Paul van Dooren (Louvain). This was a unique experience with the sessions of each meeting open to the other and having common coffee breaks, banquet and excursions. Several members of the Symposium also took part in a Graduate Student Seminar of CMS, organized by IMS. The speakers were Hans Schneider and Paul van Dooren. Social occasions included the banquet, a 'Dinner in the City', and a CMS/LLAS barbecue. After the meeting there were many letters of praise regarding the scientific content and the friendly atmosphere of the meetings. A special issue of Linear Algebra and Its Applications will be devoted to papers presented at this Symposium.

# Sixth International Workshop on "Matrix Methods for Statistics" <br> istanbul, Turkey: August 16-17, 1997 

## Report by Hans Joachim Werner

The Sixth International Workshop on "Matrix Methods for Statistics" was held on the top floor of The Marmara Hotel in İstanbul, Turkey, on Saturday-Sunday, August 16-17, 1997, the weekend immediately preceding the $51^{\text {st }}$ Session of the International Statistical Institute (ISI). This Workshop was co-sponsored by the Turkish Scientific and Technical Research Council (TÜBITAK), the Turkish Statistical Society, and the International Linear Algebra Society (LAS). The Local OrganizingCommittee comprised Fikri Akdeniz(University of Çukurova, Turkey; chair), Ömer L. Gebizlioglu (University of Ankara, Turkey), and Cemil Yapar (Karadeniz Technical University, Turkey). The International Programme Committee comprised R. William Farebrother (Victoria University of Manchester, England), Simo Puntanen (University of Tampere, Finland), George P. H. Styan (McGill University, Canada; vice-chair), and Hans Joachim Werner (University of Bonn, Germany; chair). This Workshop was the sixth in an ongoing series. The previous five Workshops were held as follows: (1) Tampere, Finland: August

1990, (2) Auckland, New Zealand: December 1992, (3) Tartu, Estonia: May 1994, (4) Montréal, Québec, Canada: July 1995, and (5) Shrewsbury, England: July 1996. The Seventh International Workshop on Matrices and Statistics, with Special Emphasis on Multivariate Analysis in Celebration of T. W. Anderson's 80th Birthday will be held in the Summer 1998; for further details contact George Styan at styanemath. mcGill. ca.

The purpose of this Workshop was to stimulate research and, in an informal setting, to foster the interaction of researchers in the interface between matrix theory and statistics. Participants came from Austria, Belgium, Bulgaria, Canada, Czech Republic, Estonia, Finland, Germany, Japan, The Netherlands, Portugal, Sweden, Switzerland, Turkey, United Kingdom, and the United States. Funding for some travel and local expenses was supported in part by the Turkish Scientific and Technical Research Council (TÜBITAK).

The Workshop began with a talk by the President of the Turkish Statistical Association: Ömer L. Gebizlioğlu, Ankara University, on: "The Turkish Statistical Association, Statistics in Turkey, and Statisticians in Turkey". This was followed by 35 papers presented in person in 8 plenary sessions; there were also 3 papers presented "by title". These 38 papers were

1. Abdul Sattar Rashid Salim AL-KHALİDi (Dokuz Eylul University, Izmir): Global Minimum Solutions of Nonparametric Estimation Problems for Truncated Distributions
2. T. W. ANDERSON (Stanford University): Asymptotic Distributions of Characteristic Roots and Vectors with Different Rates of Convergence
3. Tsuyoshi ANDO (Hokusei Gakuen University, Sapporo): Eigenvalue Inequalities for Hadamard Products
4. Olcay ARSLAN (Cukurova University, Adana) and Nedret BILLOR* (Çukurova University, Adana): Robust Liu Estimator for Regression Based on M-Estimator
5. Georgi N. BOSHNAKOV (University of London and Bulgarian Academy of Sciences, Sofia): Multi-companion matrices
6. N. Rao CHAGANTY* (Old Dominion University, Norfolk), John J. SWETITS (Old Dominion University, Norfolk) and Akhil K. VAISH (University of North Carolina, Charlotre): Spectral Value Type Decomposition of a Positive Definite Matrix
7. Miroslav FIEDLER (Academy of Sciences of the Czech Republic, Prague): Ultrametric Matrices and Cluster Analysis
8. Ömer L. GEBİZLíĞGU* (Ankara University) and Fazl A. ALİEV (Ankara University): On the Robust Estimation for Discrete Space Spatial Processes
9. Gene H. GOLUB (Stanford University): Efficient Algorithms for Least-squares Type Problems
10. Ulike GRÖMPING (University of Dortmund): One-sided Likelihood Ratio Tests for Linear Inequalities on the Parameters of Normal Linear Models
11. Patrick J. F GROENEN* (Leiden University), Willem J. HEISER (Leiden University) and Jacqueline J. MEULMAN (Leiden University): Iterative Majorization in Distance Smoothing for Multidimensional Scaling to Avoid Local Minima
12. Ali S. HADI* (Cornell University) and Hans NYQUIST (University of Umeå): Fréchet Distance as a Diagnostic Tool for Diagnosing Elliptically Symmetric Multivariate Data
13. Selahattin KAÇIRANLAR* (Çukurova University, Adana), Sadullah SAKALLLOĞLU (Çukurova University, Adana), Fikri AKDENIZ (Çukurova University, Adana) and George P. H. STYAN (McGill University, Montréal): A New Biased Estimator in Linear Regression and Comparisons with Some Other Estimators
14. André KLENN* (University of Amsterdam), Guy MELARD (Université Libre de Bruxelles) and Toufik ZAHAF (Université Libre de Bruxelles): Construction of the Exact Fisher Information Matrix of Time Series Models by means of Matrix Differentiation Rules
15. Tõnu KOLLO* (University of Tartu) and Maria ZELTSER (University of Tartu): Pattern Matrix and Its Generalizations
16. Alexander KOVAČEC (University of Coumbra): On some Occurrences and Characterizations of the Bruhat Order of the Symmetric Group
17. Wolfgang POLASEK (University of Basel) and Shuangzhe LIU* (University of Basel): MANOVA Models: A Bayesian Analysis
18. Song-Gui WANG (Chinese Academy of Sciences, Beijing), Erkki P. LISK (University of Tampere) and Tapio NUMMI* (University of Tampere): TWO-WAY Selection of Covariables in Multivariate Growth Curve Models
19. Fikri ÖZTÜRK* (University of Ankara) and Fikri AKDENIZ (Çukurova University, Adana): Ill-Conditioning and Multicollinearity
20. Albert W. MARSHALL (The University of British Columbia, Vancouver) and Ingram OLKIN* (Stanford University): Functional Equation Characterizations of Non-normal Distributions
21. Mustafa Ç. PINAR (Bilkent University, Ankara): On the Finite Compatation of the $\ell_{1}$ Estimator from Huber's M-Estimator in Linear Regression
22. Vlastimil PTÁK (Academy of Sciences of the Czech Republic, Prague): Geometric Means of Operators
23. Simo PUNTANEN (University of Tampere): Comparing Estimators in Reduced Linear Models
24. Simo PUNTANEN* (University of Tampere) and George P. H. STYAN (McGill University, Montréal): A Second Guide to Books on Matrices and Books on Inequalities, with Statistical and Other Applications
25. C. Radhakrishna RAO (The Pennsylvania State University, University Park): Statistical Solutions to Some Matrix Problems
26. Burkhard SCHAFFRIN (The Ohio State University): Softly Unbiased Estimation - Part I: The Gauss-Markov Model
27. Gülhan ALPARGU (McGill University, Montréal) and George P. H. STYAN* (McGill University, Montréal): Some Comments on the Wielandt Inequality and Its Connection to the Frucht-Kantorovich Inequality
28. Gülhan ALPARGU (McGill University, Montréal) and George P. H. STYAN* (McGill University, Montréal): A Further Bibliography on the FruchtKantorovich Inequality and on Some Related Inequalities
29. S. W. DRURY (McGill University, Montréal) and George P. H. STYAN* (McGill University, Montréal): An Extension of an Inequality of BloomfieldWatson and Knott
30. Yoshio TAKANE* (McGill University, Montréal) and Hamo YANAI (National Cenver for University Entrance Examination, Tokyo): On Oblique Projectors
31. Ene-Margit TIIT (University of Tartu): Boundary Correlation Matrices
32. Imbi TRAAT (University of Tartu): A Note on Matrix Moments and Cumulants
33. Yimin WEI (Fudan University, Shanghai): The Weighted Moore-Penrose Inverse of Modified Matrices
34. Hans Joachim WERNER (University of Bonn): Some Matrix Methods for the General Gauss-Markov Model
35. Simo PUNTANEN (University of Tampere), George P. H. STYAN (McGill University, Montréal) and Hans Joachim WERNER* (University of Bonn): Two New Accessible Proofs that the Linear Estimator $G y$ is the Best Linear Unbiased Estimator
36. Yimin WEI (Fudan University, Shanghai) and Hans Joachim WERNER* (University of Bonn): Some Further Results on \{2\}-Inverses
37. Kenichi KIKUCHI (National Center for University Entrance Examination, Tokyo) and Hanuo YANAI* (National Center for University Entrance Examination, Tokyo): Orthogonal Projectors onto the Intersection of Subspaces and Their Applications to Multivariate Linear Models
38. Cemil YAPAR* (Karadeniz Technical University, Trabzon), Ihsan ÜNVER (Karadeniz Technical University, Trabzon) and Selahauin MADEN (Karadeniz Technical University, Trabzon). On Using Inequality Constrained Least Squares to Delineate the Effects of Misspecification in Linear Models

Please visit the website http: / eos. ect . uni-bonn. de/werner.html for the complete Workshop Programme booklet, with abstracts (in English) of all 38 papers. Nicely printed (hard) copies of the two bibliographies [24] and [28], bound together ( 80 pp .), and/or soft copies in LATEX, are available from George Styan: styane Math . McGill. CA. It is expected that selected fully-refereed papers from this Sixth International Workshop will be published in the Seventh Special Issue on Linear Algebra and Statistics of Linear Algebra and Its Applications, edited by Simo Puntanen, George P. H. Styan and Hans Joachim Werner-the Sixth Special Issue has just been published: vol. 264 (October 1997).

A delicious Workshop Dinner (featuring çipura = gilt-head bream) was served at the Süper Köşem Restaurant by the edge of the Bosphorus, followed by an enjoyable Belly Dancer Show. Since many participants were accompanied by their spouses, Süheyla Akdeniz (Adana, Turkey) and Magdala Werner (Meckenheim, Germany) organized spontaneously two tours: a visit of the Topkapı Palace on the Saturday, and a Bosphorus Cruise on the Sunday. Many thanks go to both of them! Without their enormous help these tours would not have been possible.

In Image, No. 15, Summer 1995, p. 24, we challenged readers to identify a certain gentleman and asked "Is his book on Linear Algebra, published in 1882, the first book ever published on Linear Algebra?" In Image, No. 16, Winter 1996, p. 29, we identified the gentleman as Hüseyin Tevfik Paşa (1832-1901) and the book as Linear Algebra, published (in English) by A. H. Boyajian in Constantinople in 1882. Guided by Fikri Akdeniz, we visited the tomb of Hüseyin Tevfik Paşa in the Eyüp cemetery in İstanbul on Tuesday, August 19, 1997. The tomb (photo by Simo Puntanen) is located on the right-hand side of Beybaba Street on the way from the tomb of Ferhat Paşa to the tomb of Feridun Bey. The inscription on the tomb, translated into English, is "He is eternal. Pray for the soul of Hüseyin Tevfik Paşa from Vidin, member of the High Military Inspection Committee and one of the High Marshals."
"In the unpublished Memoirs of the noted Ottoman mathematician Salih Zeki, Hüseyin Tevfik Paşa appears as a man of exceptional ability and honest character who everywhere encouraged scientific research. He reached as high a point in his scientific endeavours as permitted by his sterile environment. This remarkable man in the history of science in Turkey was later almost entirely forgotten and all his works written in Turkish were regrettably lost! Of his venerable memory, only a street bearing his name in Vezneciler (a quarter of İstanbul south of the Golden Horn and west of the Sultan Ahmet Square or Hippodrome) and a mute tombstone in the Eyüp cemetery remain." - Kâzım Çeçen (1988), Hüsevin Tevfik Paşa ve "Linear Algebra", İstanbul Teknik Üniversitesi Bilim ve Teknoloji Tarihi Araştırma
 Merkesi Yayn, no: 5, 1988, p. 15.

$\mathbb{T}_{\text {stanbul }}\left[\begin{array}{ll}1 & 9 \\ 9 & 7\end{array}\right]$ Sixth International Wor

ods for Statistics" - İstanbul, Turkey: August 16-17, 1997.

## International Calendar of Events in Linear Algebra \& Related Topics

## 1998

January 5-9: Haifa, Israel. 10th Haifa Matrix Theory Conference. Dept of Mathematics \& Institute for Advanced Studies in Mathematics, Technion. Dept of Mathematics, Technion-Israel Institute of Technology, Haifa 32000; hershkowetx.technion.ac.il, http://math.technion.ac.il/iic]

June 1-2: Madison, Wisconsin. Fourth Workshop on Numerical Ranges and Numerical Radii. Dept of Mathematics, Univ of Wisconsin. [Chi-Kwong Li, Dept of Mathematics, College of William and Mary, Williamsburg, VA 23187; http: //www.math.wm.edu/~ckli/wonra.html]

June 3-6: Madison, Wisconsin. 7th International Linear Algebra Society (ILAS) Conference: The "Hans Schneider Linear Algebra" Conference. Univ of Wisconsin-Madison. [Richard Brualdi, Dept of Mathematics, Univ of Wisconsin, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706-1388; brualdiemath. wisconsin.edu]

Dates and Location TBA: 7 th International Workshop on Matrices and Statistics, with Special Emphasis on Multivariate Analysis in Celebration of T. W. Anderson's 80th Birthday (Summer 1998). [George Styan: styan@Math.McGill. CA]

July 24-25: Winnipeg, Manitoba. 2nd International Conference on Matrix-Analytic Methods in Stochastic Models. [A. S. Alfa, Dept Mechanical \& Industrial Engrg, Univ of Manitoba, Winnipeg, Manitoba R3T 5V6; alfaecc. umanitoba.ca]

July 30-31: Victoria, British Columbia. 4th Western Canada Linear Algebra Meeting. [Steve Kirkland, Dept of Mathematics and Statistics, Univ of Regina, Regina, Saskatchewan S4S 0A2; kirklandemath. uregina.ca]

August 3-7: Lethbridge, Alberta. Mini-Course on Coding, Cryptography and Computer Security. Univ of Lethbridge. [Hadi Kharaghani; http://www.cs.uleth.ca/workshop/]

August 8-13: Zhangjiagye, Hunan Province, China. 3rd China Matrix Theory Conference. Chinese Mathematical Society \& Xiangtan Polytechnic Univ. [Bit-Shun Tam: bsm01@mail.tku.edu.tw, Dept of Mathematics, Tamkang Univ, Tamsui, Taiwan 25137]

## 1999

July 19-22: Barcelona, Spain. 8th International Linear Algebra Society (ILAS) Conference. Universitat Politecnica de Catalunya. [Isabel García-Planas, Marqués de Sentmenat 63-4-3, E-08029 Barcelona; igarcia@ma1. upc.es]

August 7-8: Tampere, Finland. 8th International Workshop on Matrices and Statistics. [Simo Puntanen, Dept of Mathematical Sciences, Univ of Tampere, P.O. Box 607, FIN-33101 Tampere, Finland; sjpeuta.fi]

August 10-18: Helsinki, Finland. 52nd Biennial Session of the International Statistical Institute (ISI). [Ilkka Mellin, Statistics Finland, FIN-00022 Statistics Finland; isi99@stat.fi, http://www.stat.fi/isi99/]

August 19-23: Tarfu, Estonia. 6th Tartu Conference on Multivariate Statistics. Univ of Tartu. [Ene-Margit Tiit, Inst. Math. Statistics, Univ of Tartu, Liivi 2, EE-2400 Tartu; etiit\&ut.ee]

## 2000

Moy 15-20: Guanajuato, México. 5th World Congress 2000. Centro de Investigación en Matematicas. [V PérezAbreu, CIMAT, AP 402, Guanajuato, Gto. 36000; pabreu@buzon.main. conacyt.mx]

## 2001

Dates TBA: Haifa, Israel. 9th International Linear Algebra Society (ILAS) Conference: Challenges. [Richard Brualdi, Dept of Mathematics, Univ of Wisconsin, Madison, WI 53706-1388; brualdiemath.wisconsin.edu]

Dates TBA: Seoul, Korea. 53rd Biennial Session of the International Statistical Institute (ISI). [ISI Permanent Office, 428 Prinses Beatrixlaan, Postbus 950, NL-2270 AZ Voorburg; isiecs.vu.nl]

2002
Dotes TBA: Auburn, Alabama. 10th International Linear Algebra Society (ILAS) Conference: Challenges. [Frank Uhlig, Dept of Mathematics, Auburn Univ, Alabama, AL 36849-5310; uhligfdemail. auburn. edu] See Image 16:28.

See also: http: //www.math.technion.ac.il/iic/conferences.html; http://www.netlib.org/confdb/conf_list.html, http://www.ams.org/mathcal/, and http://wwwath.uni-muenster.de/math/inst/statistik/publ/icse/index.html.

# Seventh Conference of the International Linear Algebra Society The "Hans Schneider Linear Algebra" Conference 

## Madison, Wisconsin, USA: June 3-6, 1998

The 7th Conference of the International Linear Algebra Society: The "Hans Schneider Linear Algebra" Conference will provide an opportunity to bring together researchers and educators in all aspects of pure and applied linear algebra and matrix theory in order to allow for a broad exchange of ideas and dissemination of recent developments and results. The conference will be dedicated to Hans Schmeider in recognition of his enormous contributions to linear algebra and the linear algebra community.

THEMES: Algebraic, analytic and combinatorial matrix theory, numerical linear algebra, matrix perturbations, matrix stability and applications in engineering, linear algebra in control and systems theory, splines and linear algebra, applications of linear algebra to statistics, linear algebra education.

ORGANIZING COMMITTEE: R. A. Brualdi (chair), B. Cain, B. Datta, J. Dias da Silva, S. Friedland, M. Goldberg, U. Rothblum, J. Stuart, D. Szyld, and R. Varga.

INVITED SPEAKERS: R. Barmish, Madison (USA), R. Bhatia, New Delhi (India), G. Harel, West Lafayette (USA), D. Hershkowitz, Haifa (Israel), N. Higham, Manchester (England, UK), T. Laffey, Dublin (Ireland), P. Lancaster, Calgary (Canada), R. Loewy, Haifa (Israel), J. McDonald, Regina (Canada), V. Mehrmann, Chemnitz (Germany), U. Rothblum, Haifa (Israel), and F. Silva, Lisbon (Portugal). The ILAS-LAA Lecturer will be C. de Boor, Madison (USA).

INVITED MINISYMPOSIA: Topological methods in linear algebra (M. Goldberg), Linear algebra methods in statistics (H. J. Werner), Graph theory and linear algebra (R. Merris), Numerical linear algebra (M. Overton), Matrix inertia and stability (B. N. Datta), and Educational issues in linear algebra (D. Carlson \& F. Uhlig).

CALL FOR PAPERS: Contributed papers from all areas of linear algebra and its applications are solicited. Papers that fall within the scope of the conference will be scheduled for 15 minute presentations (with 5 minute intervals between talks) in parallel sessions. In order to be assured of getting on the program, an abstract (at most one page) must be submitted by March


Miriam and Hans Schneider: Photo by Harold V. Henderson in Dunedin, New Zealand, August 1995.

1, 1998: By e-mail (preferred) to: ilas98@math. wisc.edu or to: ILAS98-Madison, Dept. of Mathematics, University of Wisconsin, Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706-1388, USA. Abstracts should mention all authors and their affiliations, specify key words, and identify the speaker and give her or his e-mail address. A ETEX-template for abstracts is available on the website: http://www.math. wisc.edu/~brualdi/template. It can also be obtained by anonymous ftp to brualdi . math. wisc. edu. The IETEX-template is also available from the ILAS Information Center. Speakers are urged to use the abstract template if at all possible.

CONFERENCE PROCEEDINGS: A special issue of the journal Linear Algebra and Its Applications (LAA), with special editors B. Cain, B. N. Datta, M. Goldberg, U. Rothblum, and D. Szyld. The issue will be dedicated to Hans Schneider. Speakers who wish to have their paper considered for publication in this special issue of LAA should submit their paper to one of the special editors. Only those papers that meet the standards of LAA and that are approved by the normal refereeing process will be published in the special issue. Deadline for submission is September 30, 1998.

HOUSING: An entire (air-conditioned) dormitory, Chadbourne Hall, a two-minute walk to the mathematics building Van Vleck Hall, has been reserved for conference participants. A special floor will accommodate couples. Breakfast is included in the room rate of $\$ 40$ single and $\$ 27$ per person in a double room. Conference participants are encouraged to stay at Chadbourne Hall. To reserve a room in Chadbourne Hall complete and then return the enclosed form to the address indicated on the form. Full payment will be due at check-in. Rooms have also been set aside at a nearby Howard Johnson's Hotel. Those wishing to stay at the Howard Johnson's Hotel should make their reservations directly by calling: 608-251-5511. Mention the conference and UW to get the conference rate of $\$ 74$ single and $\$ 84$ per person in a double room.

BANQUET: A banquet will be held on Friday, June 5, 1998, starting at 7 p.m., in the Great Hall of the Memorial Union (the Union on the Terrace overlooking Lake Mendota) of UW-Madison. Dinner choices will be Boneless Cornish Game Hen, Stuffed Rainbow Trout, and Eggplant \& Pasta (vegetarian). Dessert will be the world famous UW fudge-bottom pie. After dinner, several people will offer reminiscences and vignettes about Hans Schneider.

EXCURSION: An excursion is scheduled for Saturday afternoon, June 6, 1998, to the famous"House on the Rock" in nearby Spring Green. This is more than a fascinating house; it is a veritable large museum of remarkable mechanical and electrical contraptions with an incredible in-door carousel. Not to be missed! The cost of the excursion is $\$ 20$.

FINANCIAL SUPPORT: The conference has been approved and partially funded by the Participating Institutions of the Institute for Mathematics and its Applications (IMA) in Minneapolis. Approval implies that a member of a university which is a IMA Participating Institution can request from her or his Dept. Chair to use PI funds held at the IMA to attend the conference. Other sources of support are currently being investigated.

NUMERICALRANGE WORKSHOP: A workshop on the numerical range will precede the conference on June 1-2, 1998. For information contact Chi-Kwong Li, Dept. of Mathematics, The College of William and Mary, Williamsburg, VA 23187, USA; ckli最math.wm.edu, or visit the website: http: //www.math.wm.edu/~ckli/wonra.html.

REGISTRATION FEES: \$60: Early registration for ILAS members (by April 1, 1998); \$70: Early registration for nonILAS members (by April 1, 1998); \$70: Late registration for ILAS members (after April 1, 1998); $\$ 80$ : Late registration for non-ILAS members (after April 1, 1998); Student (registration fee waived).

WEATHER: Theorem. The sun will be shining, a cool breeze will be blowing over Lake Mendota, and the temperature will be in the 70s (Fahrenheit). Proof: To be given during the conference.

## Fourth Western Canada Linear Algebra Meeting Victoria, British Columbia, Canada: July 30-31, 1998

The Western Canada Linear Algebra Meeting (W-CLAM) provides an opportunity for mathematicians in western Canada working in linear algebra and related fields to meet, present accounts of their recent research, and to have informal discussions. While the meeting has a regional base, it also attracts people from outside the geographical area. Participation is open to anyone who is interested in attending or speaking at the meeting. Previous W-CLAMs were held in Regina (1993), Lethbridge (1995) and Kananaskis (1996).

The fourth W-CLAM will be held in Victoria, B.C., July 30-31, 1998. Participants are invited to contribute a talk on linear algebra or its applications ( $30-45$ minutes, depending on the number of participants). Abstracts should be sent to Steve Kirkland or Michael Tsatsomeros; the deadline for abstracts is June 15, 1998. A second announcement will contain details concerning accommodations. Up-to-date information on this 1998 Western Canada Linear Algebra Meeting (W-CLAM '98) can
be found at: http: //www.math.uregina. ca/~tsat/wclam.html/. The W-CLAM Organizing Committee comprises: Hadi Kharaghani: hadiecs. uleth. ca; Stephen J. Kirkland: kirklandemath. uregina. ca; Peter Lancaster: lancaste@ acs.ucalgary.ca; Dale Olesky: doleskyecsr.csc.uvic.ca; Michael Tsatsomeros: tsatemath.uregina.ca; and Pauline van den Driessche: pvddemath. uvic.ca.

Following W-CLAM '98, the University of Lethbridge will be offering a mini-course entitled "Coding, Cryptography and Computer Security" on August 3-7, 1998. For further information on the mini-course, please contact Hadi Kharaghani or for up-to-date information visit http: //www. cs . uleth. ca/workshop/.

## Third China Matrix Theory Conference Zhangjiagye, Hunan Province, China: August 8-13, 1998

The 3rd China Matrix Theory Conference will be held in Zhangiiagye, Hunan Province, China, from August 8-13, 1998. Supported by the Chinese Mathematical Society and with the collaboration of a national committee, this conference is being organized by Xiangtan Polytechnic University. There is no funding to support participants. Zhangjiagye is near the north-north-west border of Hunan Province, northwest of its capital city of Changsha. A conference proceedings (in English) will be published. Deadline for submission of titles and abstracts is February 28, 1998. For further information please contact: Bit-Shun Tam: bsm01email.tku . edu . tw, or write to: Prof. Huang Liping, Institute of Mathematics, Xiangtan Polytechnic University, Xiangtan 411201, China.

## SIAM Linear Algebra Prize: 1997

The 1997 SIAM Activity Group on Linear Algebra Prize will be awarded joindly to Ming Gu (UCLA) and Stanley Eisenstat (Yale University) for their paper, "A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem," and to Gerard Sleijpen and Henk Van Der Vorst (both of the Mathematical Institute at University of Utrecht, The Netherlands) for their paper, "A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems." The award ceremony will take place on November 1, 1997, during the Sixth SLAM Conference on Applied Linear Algebra at Snowbird, Utah. Cited for honorable mention was the paper, "A Formula for Computation of the Real Stability Radius," co-authored by L. Qui (Hong Kong University of Science), B. Bernhardsson and A. Rantzer (Lund Institute of Technology, Sweden), E. J. Davison (University of Toronto), P. M. Young (MIT), and J. C. Doyle (CalTech). The selection committee was chaired by Biswa Nath Datta (Northern Illinois University). Other members of the committee: Tony Chan (UCLA), Ludwig Esner (Universität Bielefeld, Germany), Anne Greenbaum (New York University), and Jim Varah (University of British Columbia).

## A Quotation About Linear Algebra

We looked up "Linear Algebra" at http: //math. furman. edu/ mwoodard/mquot.html, the Mathematical Quotations website maintained by Mark Woodard in the Dept. of Mathematics at Furman University (Greenville, South Carolina) and found this entry: "We [he and Halmos] share a philosophy about linear algebra: we think basis-free, we write basis-free, but when the chips are down we close the office door and compute with matrices like fury. - Paul Halmos Celebrating 50 Years of Mathematics [John H. Ewing \& F. W. Gehring, eds., Springer-Verlag, New York, viii + 320 pp., 1991]."

Image Publication Schedule: 1998

We expect that the two issues of Image for 1998 will be published in April 1998 (No. 20) and October 1998 (No. 21). Please send all material for inclusion in these issues by e-mail in IATEX(or plain ASCII) to George Styan: styanemath . McGill . CA to arrive, respectively, by February 1, 1998, and August 1, 1998.

## MATLAB 5

## The Language of Technical Computing

## New features include:

- Data structures and types, including multidimensional arrays and user-definable objects
- Programming environment with visual debugging, interactive performance optimization, and online references
- Interactive graphical interface (GUI) layout and development
- Fast, accurate advanced visualization and 3-D modeling
- Visual interfaces for Signal Processing and Control System Toolboxes and a new release of SIMULINK*


## Available Now! Call 508-647-7000

To find out more about MAILAB 5, SIMUIINK 2, and the new toolbox updates, call now and request KP167 to receive your free edition of MATAB 5 News \& Noles.
hitp://www.mathworks.com
For more information on our Connections OEM/VAR program, visit our Web site of hitp://www.mattworks.com/oem, or coll us at 508-647-7253.


New editor/debugger simplifies MATLAB code development for analysis, algorithm design, and system prototyping.


MATLAB lets you model complex data graphically. Here, lighting effects highlight topography data. Source: NOAA.


New GUIs in Signal Processing Toolbox 4.0 make signal analysis faster and easier.

## Numerical Linear Algebra

Lloyd N. Trefethen and David Bau, III
"A beautifully written texthook offering a distinctive and original treatment. It will be of use to all who teach or study the subject."

- Nicholas J. Higham, University of Manchester.
"... carefully brings to the reader the important issues connected with the computational issues in matrix conuputations. The authors show a brond knowledge of this witnl aren and make wonderful comections to a anriety of problems of current interest. ..."
- Gene Golub, Stanford University.

Numerical Linear Algebm is a concise, insightful,
and elegant introduction to the field of numerical linear algebra. Designed for use as a stand-alone textbook in a one-semester, graduate-level course in the topic, it has already been class-tested by MIT and Cornell graduate students. The authors' clear, inviting style and evident love of the field, along with their eloquent presentation of the most fundamental ideas in numerical linear algebra, make it popular with teachers and students alike. Numerical Linear Algebra aims to expand the reader's view of the field and to present the core, standard material in a novel way. Trefethen and Bau offer a fresh perspective on all of the most important topics in the field, including iterative methods for systems of equations and eigenvalue problems and the underlying principles of conditioning and stability.

1997 / xii + 361 pages - Softcover - ISBN 0-89871-361-7
List Price 534.50 - SIAM Member Price 527.60 - Order OT50

## ScaLAPACK Users' Guide

L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley

ScaLAPACK is an acronym for Scalable Linear Algebra Package or Scalable LAPACK. It is a library of high-performance linear algebra routines for distributed memory message-passing MIMD computers and networks of workstations supporting parallel virtual machine (PVM) and/or message passing inter-
 face (MPI). It is a continuation of the LAPACK project, which designed and produced analogous software for workstations, vector supercomputers, and shared memory parallel computers. Both libraries contain routines for solving systems of linear equations, least squares problems, and eigenvalue problems. The goals of both projects are efficiency, scalability, reliability, portability, flexibility, and ease of use.

Each Users' Guide includes a CD-ROM containing the HTML version of the ScaLAPACK Users' Guide, the source code for the package, testing and timing programs, prebuilt versions of the library for a number of computers, example programs, and the full set of LAPACK Working Notes

1997 / Approximately Sil pagen - Softcover - ISBN 0-898.1-397-8
List Price 549.20 - SIAM Memier l'rice 539.60 - Order SE04


[^1][^2]http://www.siam.org

## de Gruyter Textbook

Peter Deuflhard • Andreas Hohmann

# Numerical Analysis A First Course in Scientific Computation 

Translated from the German by F.A. Potra and F. Schulz

1995 - xvi +355 pages • With 62 figures and 14 tables
Hardcover \$69.95 ISBN 3-11-014031-4 • Paper \$39.95 ISBN 3-11-013882-4

The complexity of solvable problems has been expanding continuously due to the rapid development of both computers and algorithms. This textbook on Numerical Analysis is a first introduction to the fundamentals of efficient algorithms. The selection of topics and the presentation of the material has been made with strict attention to the needs of Computational Science. Important concepts of modern numerical analysis are illustrated with the simplest type of problem to which they are applicable. The main aim of the book is the development of algorithmic thinking and intuition. The book is written for students of mathematics and natural sciences, as well as applied mathematicians and computational scientists in academia and industry. Prerequisites are a basic knowledge of undergraduate
 Linear Algebra and Calculus.

Contents: Linear Systems - Error Analysis • Linear Least Squares Problems - Nonlinear Systems and Least Squares Problems - Symmetric Eigenvalue Problems - Three-Term Recurrence Relations • Interpolation and Approximation • Large Symmetric Systems of Equations and Eigenvalue Problems • Definite Integrals

Prices subject to change

# Walter de Gruyter W Berlin • New York <br> for North America: <br> Walter de Gruyter, Inc. 200 Saw Mill River Road Hawthorne, NY 10532 

## Image Problem Corner

We present solutions to four of the six problems appearing in our previous Problem Corner: Image, no. 18 (Winter/Spring 1997), p. 32, and we introduce five new problems. We invite readers to submit solutions, as well as new problems, for publication in Image. We look forward particularly to receiving solutions to Problems 18-1 and 18-4! Please send all material to George Styan in HTEX and by e-mail to styanemath. McGill. CA.

## Problem 18-1: $5 \times 5$ Complex Hadamard Matrices

Proposed by S. W. Drury, McGill University, Montréal, Québec, Canada.

The Editor has not yet received a solution to this problem-indeed even the Proposer has not yet found a solution!
Show that every $5 \times 5$ matrix $U$ with complex entries $u_{j, k}$ of constant absolute value one that satisfies $U^{*} U=5 I$ can be realized as the matrix $\left(\omega^{j k}\right)_{j, k}$ where $\omega$ is a complex primitive fifth root of unity by applying some sequence of the following: (1) A rearrangement of the rows, (2) A rearrangement of the columns, (3) Multiplication of a row by a complex number of absolute value one, (4) Multiplication of a column by a complex number of absolute value one.

## Problem 18-2: $7 \times 7$ Complex Hadamard Matrices

Proposed by S. W. Drury, McGill University, Montréal, Québec, Canada.

Show that there exist two $7 \times 7$ nonzero complex matrices $U$ and $V$ with the following bizarre properties.

1. For all $j, k$ with $1 \leq j \leq 7$ and $1 \leq k \leq 7$, either $\left|u_{j, k}\right|=1$ and $v_{j, k}=0$ or $\left|v_{j, k}\right|=1$ and $u_{j, k}=0$.
2. For every complex number $z$ of absolute value 1 , the matrix $W=U+z V$ satisfies $W^{*} W=7 I$.

Solution 18-2.1 by S. W. Drury, McGill University, Montréal, Québec, Canada.
Let the matrices

$$
U=\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^{4} & \omega^{2} & 1 & \omega^{4} & \omega^{3} \\
1 & \omega^{3} & 0 & \omega^{2} & \omega^{4} & 0 & 1 \\
1 & 0 & 0 & 0 & \omega^{3} & 0 & 0 \\
1 & \omega^{3} & \omega^{2} & \omega^{5} & 1 & \omega^{2} & \omega^{4} \\
1 & 0 & 0 & 0 & \omega^{3} & 0 & 0 \\
1 & \omega^{5} & 0 & \omega^{4} & \omega^{2} & 0 & \omega^{2}
\end{array}\right) \quad \text { and } \quad V=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \omega^{3} & 0 \\
0 & \omega^{5} & \omega^{2} & \omega^{2} & 0 & 1 & \omega^{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \omega^{2} & \omega^{3} & \omega^{5} & 0 & \omega^{5} & \omega \\
0 & 0 & \omega^{5} & 0 & 0 & \omega^{2} & 0
\end{array}\right)
$$

where $\omega$ is a primitive sixth root of unity (e.g. $\omega=e^{\pi i / 3}$ ). Then, one easily checks that $U^{\star} V=V^{\star} U=0$ and $U^{\star} U+V^{\star} V=$ 71 . It follows that if $z$ is a complex number of absolute value 1 then $W=U+z V$ is a $7 \times 7$ matrix with entries of absolute value 1 and yet $W^{\star} W=71$.

Problem 18-3: A Further Matrix Version of the Cauchy-Schwarz Inequality Proposed by ShUANGZhe Liv, Universität Basel, Basel, Switzerland.

Prove that $\left(X^{\prime} A X\right)^{+} \leq X^{+} A^{+} X^{\prime+}$, where $A \geq 0, \mathcal{R}\left(X X^{\prime} A\right) \subseteq \mathcal{R}(A)$; here $\mathcal{R}(\cdot)$ denotes range (column space) and (. $)^{+}$ the Moore-Penrose inverse.

Solution 18-3.1 by Simo Puntanen, University of Tampere, Tampere, Finland.
According to Theorem 1 in Baksalary \& Puntanen (1991) [Aequationes Mathematicae 41:103-110], if $A \geq 0$ then

$$
\begin{equation*}
X^{\prime} P_{A} X\left(X^{\prime} A X\right)^{-} X^{\prime} P_{A} X \leq X^{\prime} A^{+} X \tag{1}
\end{equation*}
$$

with equality if and only if $\mathcal{R}(A X)=\mathcal{R}\left(P_{A} X\right)$; here $P_{A}$ is the orthogonal projector onto the column space of $A$ and $(\cdot)^{-}$ refers to an arbitrary generalized inverse. The matrix inequality (1) is a special case of Theorem 2.1 in Pečarić, Puntanen \& Styan (1996) [Linear Algebra Appl. 237/238:455-477]. To prove $\left(X^{\prime} A X\right)^{+} \leq X^{+} A^{+} X^{\prime+}$, we first note that assumption $\mathcal{R}\left(X X^{\prime} A\right) \subseteq \mathcal{R}(A)$ is equivalent to $P_{A} X X^{\prime} A=X X^{\prime} A$. Hence, in view of $\mathcal{R}\left(X\left(X^{\prime} A X\right)^{+} X^{\prime}\right)=\mathcal{R}\left(X\left(X^{\prime} A X\right)\right)=$ $\mathcal{R}\left(X X^{\prime} A\right)$, we can delete the orthogonal projectors $P_{A}$ from (1) and thus obtain

$$
\begin{equation*}
X^{\prime} X\left(X^{\prime} A X\right)^{+} X^{\prime} X \leq X^{\prime} A^{+} X \tag{2}
\end{equation*}
$$

Pre- and post-multiplying (2) with $\left(X^{\prime} X\right)^{+}$yields

$$
\begin{equation*}
P_{X^{\prime}}\left(X^{\prime} A X\right)^{+} P_{X^{\prime}} \leq\left(X^{\prime} X\right)^{+} X^{\prime} A^{+} X\left(X^{\prime} X\right)^{+}=X^{+} A^{+} X^{\prime+} \tag{3}
\end{equation*}
$$

In (3), the orthogonal projectors $P_{X^{\prime}}$ can be deleted since $\mathcal{R}\left(\left(X^{\prime} A X\right)^{+}\right) \subseteq \mathcal{R}\left(X^{\prime}\right)$ and thus the proof is completed.

## Solution 18-3.2 by HANS JOACHIM Werner, Universität Bonn, Bonn, Germany.

In this solution we wish to demonstrate how the claimed matrix inequality can be established by means of a powerful result from statistics. For the sake of clarity, we start with stating the Gauss-Markov model. Then we review briefly the famous BLUE approach and show how the well-known BLUE-Conditions generate a myriad of matrix inequalities between certain positive semidefinite matrices. It is interesting that our approach reveals, at the same time, also a technique which enables us to verify many conjectured inequalities such as the claimed one.

The general Gauss-Markov model

$$
\mathcal{L}=(y, X \beta, V)
$$

characterizes an observable random vector $y$ by requiring $\mathcal{E}(y)=X \beta$ and $\mathcal{D}(y)=V(\mathcal{E}$ and $\mathcal{D}$ denote expectation and dispersion, respectively), where the model matrices $X \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{n \times n}$ are fixed and known and where $V$ is assumed to be positive semidefinite. The linear transformation $\gamma:=L \beta$, with $L \in \mathbb{R}^{p \times m}$ fixed and known, is linearly unbiasedly estimable if and only if $\mathcal{R}\left(L^{\prime}\right) \subseteq \mathcal{R}\left(X^{\prime}\right)$. In what follows, let $\gamma=L \beta$ be linearly unbiasedly estimable. The linear estimator $C y$ is then defined as the traditional BLUE (best linear unbiased estimator) of $\gamma$ under the model $\mathcal{L}$ whenever

$$
C y \in \operatorname{argmin}_{D y \in \mathcal{C}_{\epsilon}} \mathcal{D}(D y)
$$

here $\mathcal{C}_{\mathcal{L}}:=\{D y \mid D X=L\}$ and minimization is with respect to the Löwner ordering. Observe that all the statistics $D y$ with $D X=L$ are linear unbiased estimators for $\gamma=L \beta$ under the model $\mathcal{L}$. We are now in the position to quote the following powerful result from statistics; see, e. g. (18) in P. Schönfeld and H. J. Werner (1987) ["A note on C. R. Rao's wider definition BLUE in the general Gauss-Markov model", Sankhya Ser. B 49:1-8]; compare also Theorem 3.1 in C. R. Rao (1973) ["Representations of the best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix", $J$. Multivariate Anal. 3:276-292].

Theorem 1: Let $Q$ be any matrix such that $\mathcal{R}(Q)=\mathcal{N}\left(X^{\prime}\right) ; \mathcal{N}(\cdot)$ indicates the null space. Then $\hat{\gamma}:=C y$ is a representation for the traditional $B L U E$ of $\gamma=L \beta$ in the model $\mathcal{L}$ if and only if

$$
\begin{equation*}
C(X, V Q)=(L, 0) \tag{4}
\end{equation*}
$$

The conditions (4) are the so-called BLUE-Conditions. Recall that the dispersion of any statistic $B y$ is always given by $\mathcal{D}(B y)=B V B^{\prime}$. From Theorem 1 and the definition of the traditional BLUE we therefore directly get the following result between positive semidefinite matrices.

Corollary 1: For given matrices $X \in \mathbb{R}^{n \times m}$ and $V \in \mathbb{R}^{n \times n}$, with $V$ positive semidefinite, let $Q$ be any matrix such that $\mathcal{R}(Q)=\mathcal{N}\left(X^{\prime}\right)$. Moreover, let $C$ be an arbitrary but fixed matrix with $C V Q=0$. For each matrix $D$ satisfying $D X=C X$ we then have the following matrix inequality

$$
\begin{equation*}
C V C^{\prime} \leq D V D^{\prime} \tag{5}
\end{equation*}
$$

with equality in (5) if and only if $D V Q=0$.
We can obviously generate a lot of matrix inequalities by means of this result. Conversely, however, this result also provides us with a simple technique which, in very many cases, enables us to verify that a conjectured (or claimed) matrix inequality is indeed correct. The claim that under the assumption

$$
\begin{equation*}
X X^{\prime} \mathcal{R}(A) \subseteq \mathcal{R}(A) \tag{6}
\end{equation*}
$$

the matrix inequality

$$
\begin{equation*}
\left(X^{\prime} A X\right)^{+} \leq X^{+} A^{+} X^{\prime+} \tag{7}
\end{equation*}
$$

holds can serve as a simple example.
For that purpose, observe first that the inclusion (6) implies

$$
\begin{equation*}
\mathcal{N}\left(X^{\prime}\right)=\left[\mathcal{N}\left(X^{\prime}\right) \cap \mathcal{R}(A)\right] \oplus\left[\mathcal{N}\left(X^{\prime}\right) \cap \mathcal{N}(A)\right] \tag{8}
\end{equation*}
$$

where $\oplus$ indicates a direct sum; see, for instance, Theorem 5.5 along with Theorem 5.3 in H. J. Werner (1992) ["G-inverses of matrix products", in Data Analysis and Statistical Inference (S. Schach and G. Trenkler, eds.), pp. 531-546, Verlag Josef Eul, Bergisch Gladbach]. Now put $V:=A^{+}$and $C:=\left(X^{\prime} A X\right)^{+} X^{\prime} A$. By assumption, $A \geq 0$. Note that $A A^{+}=A^{+} A=$ $P_{\mathcal{R}(A)}$; here $P_{\mathcal{R}(A)}$ denotes the orthogonal projector onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$. In view of (8), therefore $X^{\prime} A A^{+} Q=0$, where $Q$ is defined as in Corollary 1. Consequently, $C V Q=0$. Check that $C V C^{\prime}=\left(X^{\prime} A X\right)^{+}$. Put $D:=X^{+} A^{+} A$. Clearly, $D V D^{\prime}=X^{+} A^{+} X^{\prime+}$. According to Corollary 1, it is now evident that (7) holds whenever $D X=C X$. Since $C X=P_{\mathcal{R}\left(X^{\prime} A X\right)}$, we therefore try to prove $D X=P_{\mathcal{R}\left(X^{\prime} A X\right)}$. Clearly, $D X=X^{+} A^{+} A X$. In view of (6) and $A^{+} A=$ $P_{\mathcal{R}(A)}, A^{+} A X X^{\prime} A=X X^{\prime} A$. Since $X^{+} X X^{\prime}=X^{\prime}$, therefore $X^{+} A^{+} A X X^{\prime} A X=X^{\prime} A X$. Moreover, $\mathcal{N}\left(X^{+} A^{+} A X\right)=$ $\mathcal{N}\left(A^{+} A X\right)=\mathcal{N}(A X)=\mathcal{N}\left(X^{\prime} A X\right)$. As $\mathcal{N}\left(X^{\prime} A X\right)$ is the orthogonal complement of $\mathcal{R}\left(X^{\prime} A X\right)$, it now follows that $D X$ coincides with the orthogonal projector $P_{\mathcal{R}\left(X^{\prime} A X\right)}$. Hence, as desired, $D X=C X$.

Comment. We conclude this small note with mentioning that, according to Corollary 1 , we have equality in (7) if and only if $X^{+} A^{+} Q=0$ or, equivalently, $A^{+} \mathcal{N}\left(X^{\prime}\right) \subseteq \mathcal{N}\left(X^{\prime}\right)$. It is left to the reader to find other conditions, such as $A^{+} \mathcal{R}(X) \subseteq$ $\mathcal{R}(X)$ or $A \mathcal{R}(X) \subseteq \mathcal{R}(X)$, which are equivalent to $X^{+} A^{+} Q=0$.

A solution was also received from the Proposer: Shuangzhe Liu, Universität Basel, Basel, Switzerland.

## Problem 18-4: Bounds for a Ratio of Matrix Traces

Proposed by Shuangzhe Liu, Universität Basel, Basel, Switzerland.

Let $\Sigma>0$ be an $n \times n$ matrix with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}, X$ be an $n \times k$ matrix such that $X^{\prime} X=I$ and $n \geq 2 k$. Show that

$$
1 \leq \frac{\operatorname{tr} X^{\prime} \Sigma^{2} X}{\operatorname{tr}\left(X^{\prime} \Sigma X\right)^{2}} \leq \frac{\Sigma_{j=1}^{k}\left(\lambda_{j}+\lambda_{n-j+1}\right)^{2}}{4 \Sigma_{j=1}^{k} \lambda_{j} \lambda_{n-j+1}}
$$

The only solution that the Editor has received so far is from the Proposer!

## Problem 18-5: Eigenvalues and Eigenvectors of a Pattermed Matrix

## Proposed by I. S. Alalouf \& K. Brenda MacGibbon, Université du Québec à Montréal, Montréal, Québec, Canada.

Find the eigenvalues and eigenvectors of the $n \times n$ patterned matrix $A=\left\{a_{i j}\right\}=\{i-j\} \quad(i, j=1,2, \ldots, n)$.
Solution 18-5.1 by JÜRgen Groß \& GöTZ Trenkler, Universität Dortmund, Dortmund, Germany.
The patterned matrix $\mathbf{A}=\{i-j\}$ for $i, j=1, \ldots, n$ can be written as

$$
\mathbf{A}=\mathbf{a} \mathbf{b}^{\prime}-\mathbf{b} \mathbf{a}^{\prime}
$$

where $\mathbf{a}=(1, \ldots, n)^{\prime}$ and $\mathbf{b}=(1, \ldots, 1)^{\prime}$. We derive the eigenvalues and eigenvectors of $\mathbf{A}$ when $\mathbf{a}$ and $\mathbf{b}$ are arbitrary linearly independent vectors:

The matrix $\mathbf{A}$ is skew-symmetric and therefore has purely imaginary eigenvalues. Moreover, the algebraic multiplicity of 0 as an eigenvalue of $\mathbf{A}$ is $n-\operatorname{rank}(\mathbf{A})$ due to normality of $\mathbf{A}$. But since $a$ and $b$ are linearly independent, the rank of the matrices $\mathbf{a b}^{\prime}$ and $-\mathbf{b a}^{\prime}$ is additive, cf. Theorem 3.6.1 in Rao \& Bhimasankaram (1992) [Linear Algebra, Tata McGraw-Hill, New Delhi], i.e., $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{a} \mathbf{b}^{\prime}-\mathbf{b} \mathbf{a}^{\prime}\right)=\operatorname{rank}\left(\mathbf{a b}^{\prime}\right)+\operatorname{rank}\left(-\mathbf{b} \mathbf{a}^{\prime}\right)=2$.

OBSERVATION 1. The $n \times n$ real matrix $A$ has $n-2$ zeros and one conjugate pair of nomzero imaginary numbers as eigenvalues.
Straightforward computations show that $\mathbf{A}^{3}=-\varrho \mathbf{A}$, where $\varrho=\mathbf{a}^{\prime} \mathbf{a b}^{\prime} \mathbf{b}-\left(\mathbf{a}^{\prime} \mathbf{b}\right)^{2}$ is strictly positive due to the CauchySchwarz inequality, cf. Theorem 5.1.4 in Horn \& Johnson (1985) [Matrix Analysis, Cambridge Univ. Press]. The identity $\mathbf{A}^{3}=-\varrho \mathbf{A}$ may equivalently be written as $(\mathbf{A}-i \sqrt{\varrho} \mathbf{I})(\mathbf{A}+i \sqrt{\varrho} \mathbf{I}) \mathbf{A}=\mathbf{0}$ and thus the polynomial $q(t)=(t-i \sqrt{\varrho})(t+i \sqrt{\varrho}) t$ annibilates $A$. In view of Observation 1 we have

OBSERVATION 2. The polynomials $q(t)$ and $q(t) / t$ are the minimal polynomials of $\mathbf{A}$ in case $n \geq 3$ and $n=2$, respectively.
Now, from Observation 2 the eigenvalues of the matrix $\mathbf{A}$ are

$$
\{0,+i \sqrt{\varrho},-i \sqrt{\varrho}\}, \quad i=\sqrt{-1}, \quad \varrho=\mathbf{a}^{\prime} \mathbf{a} \mathbf{b}^{\prime} \mathbf{b}-\left(\mathbf{a}^{\prime} \mathbf{b}\right)^{2}
$$

Of course 0 is not an eigenvalue of $\mathbf{A}$ when $n=2$. For the special case which is addressed in the problem we obtain

$$
\varrho=n \sum_{k=1}^{n} k^{2}-\left(\sum_{k=1}^{n} k\right)^{2}=\frac{n^{2}\left(n^{2}-1\right)}{12} .
$$

From the identity $q(\mathbf{A})=0$ and the commutativity of $\mathbf{A}-i \sqrt{\varrho} I$ and $\mathbf{A}+i \sqrt{\varrho} \mathbf{I}$, we easily see that any vector

$$
\mathbf{x}=(\mathbf{A} \pm i \sqrt{\varrho} \mathbf{I}) \mathbf{A z}, \quad \mathbf{z} \text { arbitrary } n \times 1 \text { such that } \mathbf{x} \neq \mathbf{0}
$$

is an eigenvector corresponding to the eigenvalue $\pm i \sqrt{\varrho}$ respectively. Moreover, the identity $\mathbf{A}^{3}=-\varrho \mathbf{A}$ shows that the matrix $\mathbf{A}^{-}=(-1 / \varrho) \mathbf{A}$ is a generalized inverse of $\mathbf{A}$ (in fact it is the unique Moore-Penrose inverse). Since the null space of $\mathbf{A}$ equals the range of $I-\mathbf{A}^{-} \mathbf{A}$, any vector

$$
\mathbf{x}=\mathbf{z}+\frac{1}{\varrho} \mathbf{A} \mathbf{A z}, \quad \mathbf{z} \text { arbitrary } n \times 1 \text { such that } \mathbf{x} \neq 0
$$

is an eigenvector corresponding to the eigenvalue 0 .

Solution 18-5.2 by Eugene A. Herman, Grinell College, Grinell, Iowa, USA.

Zero is an eigenvalue of multiplicity $n-2$ for the $n \times n$ matrix $A=\left\{a_{i j}\right\}=\{i-j\}$, as can be seen from the fact that the difference between any two consecutive rows of $A$ is the vector of all 1 's. To find the two complex conjugate eigenvalues, we first note that every row of $A$ is an eigenvector of $A^{2}$ with eigenvalue $-c_{n}=-n^{2}\left(n^{2}-1\right) / 12$, as may be verified by a
direct calculation. Therefore, selecting any row $R$ of $A$, we check that $A$ has the eigenvectors $A R \pm i \sqrt{c_{n}} R$ with eigenvalues $\pm i \sqrt{c_{n}}: A\left(A R+i \sqrt{c_{n}} R\right)=A^{2} R+i \sqrt{c_{n}} A R=-c_{n} R+i \sqrt{c_{n}} A R=i \sqrt{c_{n}}\left(i \sqrt{c_{n}} R+A R\right)$

## Solution 18-5.3 by PrZemysłAW Kosowski, Polish Academy of Sciences, Warsaw, Poland.

We show that the eigenvalues of the $n \times n$ patterned matrix $A=\left\{a_{i j}\right\}=\{i-j\}(i, j=1,2, \ldots, n)$ are equal to $\lambda_{1,2}=$ $\mp i \sqrt{\frac{n^{2}\left(n^{2}-1\right)}{12}}$ and $\lambda_{3}=\ldots=\lambda_{n}=0$. To prove this we consider the more general case $A=x y^{\prime}-y x^{\prime}=\left\{x_{i} y_{j}-y_{i} x_{j}\right\}$, where $x, y \in \mathbb{R}^{n}$ are assumed to be linearly independent. First we orthogonalize the vectors $x, y$. We find $u, w \in \operatorname{span}\{x, y\}$ such that $\|u\|=\|w\|=1$ and $u^{\prime} w=0$; here $\|u\|^{2}=u^{\prime} u$. Let $u=\frac{y}{\|y\| \|}$ and $w=\frac{q}{\|q\|}$, where $q=x-\left(x^{\prime} u\right) u$. Then $A$ can be rewritten in the form $A=-r\left(u w^{\prime}-w u^{\prime}\right)$, where $r=\|y\| \cdot\|q\|=\sqrt{\left(x^{\prime} x\right)\left(y^{\prime} y\right)-\left(x^{\prime} y\right)^{2}}$. Denote by $q_{1}, q_{2}, \ldots, q_{n}$ the set of the eigenvectors of $A$ corresponding to the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$. We see that $A w=-r u$ and $A u=r w$, so $A(w \pm i u)= \pm i r(w \pm i u)$. We can take $q_{1,2}=w \pm i u$ as the first two eigenvectors and $q_{3}, \ldots, q_{n}$ may be chosen as an arbitrary set of linearly independent vectors such that $q_{j}^{\prime} u=q_{j}^{\prime} w=0$ for $j=3, \ldots, n$. Then $A q_{j}=\lambda_{j} q_{j}, j=1,2, \ldots, n$, where $\lambda_{1,2}= \pm i r, \lambda_{3}=\ldots=\lambda_{n}=0$. Now we consider the case of this problem: $x=(1,2, \ldots, n)^{\prime}$ and $y=(1,1, \ldots, 1)^{\prime}$. Then $A=x y^{\prime}-y x^{\prime}=\{i-j\}$. Thus we obtain $x^{\prime} x=\frac{n(n+1)(2 n+1)}{6}, y^{\prime} y=n, x^{\prime} y=\frac{n(n+1)}{2}$, so $r=\sqrt{\frac{n^{2}\left(n^{2}-1\right)}{12}}$. Moreover, for the vectors $u=\left(u_{1}, \ldots, u_{n}\right)^{\prime}, w=\left(w_{1}, \ldots, w_{n}\right)^{\prime}$ we have $u_{j}=\frac{\sqrt{n}}{n}, w_{j}=\sqrt{n}\left(j-\frac{n+1}{2}\right) / r$ for $j=1, \ldots, n$; so we can set $q_{1,2}=w \pm i u$ and $q_{j}=e_{j}-u_{j} u-w_{j} w$ for $j=3, \ldots, n$, where $e_{j}$ denotes $j$ th unit vector. Then $\left\{q_{1}, \ldots, q_{n}\right\}$ forms the set of eigenvectors of $A$.

## Solution 18-5.4 by CHI-Kwong LI, The College of William and Mary, Williamsburg, Virginia, USA.

Let $x=(1,2, \ldots, n)^{\prime}$ and $y=(1, \ldots, 1)^{\prime}$. Then $A=x y^{\prime}-y x^{\prime}=B C^{\prime}$ with $B=(x,-y)$ and $C=(y, x)$. It is clear that the eigenspace of the zero eigenvalue equals $\{x, y\}^{\perp}$ and has dimension $n-2$. The nonzero eigenvalues of $A=B C^{\prime}$ are the same as those of the nonsingular matrix

$$
C^{\prime} B=\left(\begin{array}{cc}
n(n+1) / 2 & -n \\
n(n+1)(2 n+1) / 6 & -n(n+1) / 2
\end{array}\right)
$$

which can be easily checked to be $\pm i\left\{(n-1) n^{2}(n+1) / 12\right\}^{1 / 2}$. Moreover, if $u \in \mathbb{C}^{2}$ is an eigenvector of $C^{\prime} B$ then $B u$ is an eigenvector of $B C^{\prime}$. Hence one can use the eigenvectors of $C^{\prime} B$ to get the eigenvectors of $B C^{\prime}$ of the 2 nonzero eigenvalues. For example, one can use $u=\left(2,(n+1)-i \sqrt{\left(n^{2}-1\right) / 3}\right)^{\prime}$ for the eigenvalue $i\left\{(n-1) n^{2}(n+1) / 12\right\}^{1 / 2}$, and use $u=$ $\left(2,(n+1)+i \sqrt{\left(n^{2}-1\right) / 3}\right)^{\prime}$ for the cigenvalue $-i\left\{(n-1) n^{2}(n+1) / 12\right\}^{1 / 2}$. We note that this proof works for any rank 2 skew-symmetric matrix.

## Solution 18-5.5 by CARL D. Mey er, Jr. North Carolina State University, Raleigh, North Carolina, USA.

The eigenvalues are 0 (repeated $n-2$ times) and $\pm \beta i$ where $\beta=\frac{n}{2} \sqrt{\frac{n^{2}-1}{3}}$. Any subset of $n-2$ columns of $A^{2} / \beta^{2}+I$ is an eigenbasis corresponding to 0 , and eigenvectors associated with $\pm \beta i$ are $[I \mp i(A / \beta)]$ e where $e=(1,1, \ldots, 1)^{\prime}$.

Derivation. Since $A=c e^{\prime}-e c^{\prime}$ with $c=(1,2, \ldots, n)^{\prime}$, standard rank results insure rank $(A)=2$. Furthermore, $A$ is skew-symmetric (and hence normal), so there are only two nonzero eigenvalues, and they must be of the form $\pm \beta i$. To evaluate $\beta$, set $\lambda_{0}=0, \lambda_{1}=\beta i$, and $\lambda_{2}=-\beta i$, and use the spectral theorem $f(A)=f\left(\lambda_{0}\right) P_{0}+f\left(\lambda_{1}\right) P_{1}+f\left(\lambda_{2}\right) P_{2}$ where $P_{k}$ is the orthogonal projector onto $\mathcal{N}\left(A-\lambda_{k} I\right)$. The Lagrange formula $P_{k}=\prod_{j \neq k}\left(A-\lambda_{j} I\right) / \prod_{j \neq k}\left(\lambda_{k}-\lambda_{j}\right)$ yields

$$
P_{0}=\frac{A^{2}}{\beta^{2}}+I, \quad P_{1}=-\frac{A^{2}}{2 \beta^{2}}-i \frac{A}{2 \beta}, \quad \text { and } \quad P_{2}=\overline{P_{1}}=-\frac{A^{2}}{2 \beta^{2}}+i \frac{A}{2 \beta}
$$

so, by using $f(z)=z^{2}$ along with $c^{\prime} e=n(n+1) / 2$ and $c^{\prime} c=n(n+1)(2 n+1) / 6$, we have

$$
-2 \beta^{2}=\operatorname{trace}\left(A^{2}\right)=\operatorname{trace}\left(c e^{\prime}-e c^{\prime}\right)^{2}=2\left(c^{\prime} e\right)^{2}-2 n c^{\prime} c=-\frac{n^{2}\left(n^{2}-1\right)}{6}, \quad \text { and thus } \beta=\frac{n}{2} \sqrt{\frac{n^{2}-1}{3}} .
$$

All eigenvectors corresponding to $\pm \beta i$ must be of the form $P_{1} y$ and $\overline{P_{1} y}$, so you can judiciously vary $y$ to generate patterned eigenvectors to suit your tastes. For example, setting $y=2 e$ yields eigenvectors $[I \mp i(A / \beta)] e$ by noting that for $z=$ $(1,-1,0, \ldots, 0)^{\prime}$,

$$
e=A z \Rightarrow e \in \mathcal{R}(A)=\mathcal{N}(A)^{\perp}=\mathcal{N}\left(P_{0}\right) \Longrightarrow A^{2} e=-\beta^{2} e \Longrightarrow P_{1}(2 e)=e-i(A e / \beta) .
$$

With $z=(2,-1,0, \ldots, 0)^{\prime}$, vector $e$ can be replaced by $c$ in the previous sentence. Finally, all vectors in $\mathcal{N}(A)$ are of the form $P_{0} y$, and a basis for $\mathcal{N}(A)$ is obtained by extracting any subset of $n-2$ columns from $P_{0}$ (independence is guaranteed by the fact that $P_{0} e=0=P_{0} c$ ). Furthermore, by verifying that $A B=0$, one sees that another simple basis for $\mathcal{N}(A)$ is given by the set of columns in

$$
B=\left(\begin{array}{rrlc}
1 & 2 & \cdots & (n-2) \\
-2 & -3 & \cdots & -(n-1) \\
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) .
$$

## Solution 18-5.6 by Hans Joachim Werner, Universität Bonn, Bonn, Germany.

The case $n=1$ is trivial: since now $A=0$, it is clear that 0 is the only eigenvalue of $A$. An associated eigenvector is 1 . Next, let $n \geq 2$. Put

$$
\alpha_{n}:=\frac{n(n-1)}{2}, \quad \gamma_{n}:=\frac{n}{2} \sqrt{\frac{n^{2}-1}{3}} i, \quad \tau_{n}:=\frac{6}{(n-1) n(2 n-1)},
$$

where $i$ is the purely imaginary number such that $i^{2}=-1$. Define the $n \times 1$ vectors

$$
c_{1}:=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right)+\tau_{n}\left(\gamma_{n}-\alpha_{n}\right)\left(\begin{array}{c}
n-1 \\
n-2 \\
\vdots \\
1 \\
0
\end{array}\right), \quad c_{2}:=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right)-\tau_{n}\left(\gamma_{n}+\alpha_{n}\right)\left(\begin{array}{c}
n-1 \\
n-2 \\
\vdots \\
1 \\
0
\end{array}\right),
$$

and, provided $n \geq 3$, the $n-2$ additional $n \times 1$ vectors

$$
d_{1}:=\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \quad d_{2}:=\left(\begin{array}{c}
0 \\
1 \\
-2 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \cdots, \quad d_{n-2}:=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
-2 \\
1
\end{array}\right) .
$$

In what follows, we interpret all statements concerning $d_{j}(j=1,2, \ldots, n-2)$ as absent whenever $n=2$. Since $A d_{j}=0$ $(j=1,2, \ldots, n-2), A c_{1}=\gamma_{n} c_{1}$ and $A c_{2}=-\gamma_{n} c_{2}$, it follows that $A$ has the two non-null eigenvalues $\gamma_{n}$ and $-\gamma_{n}$ and, provided $n \geq 3$, a null eigenvalue of multiplicity $n-2$. It is further clear that $c_{1}, c_{2}, d_{1}, d_{2}, \ldots, d_{n-2}$ are linear independent right eigenvectors associated with the eigenvalues $\gamma_{n},-\gamma_{n}, 0,0, \ldots, 0$, respectively.

Solutions were also received from Christopher W. Norman, Royal Holloway and Bedford New College, Egham, Surrey, England, UK \& William F. Trench, Divide, Colorado, USA.

## Problem 18-6: Two Imaginary Sisters of the Vector Cross-product Proposed by Götz Trenkler, Universität Dortmund, Dortmund, Germany.

Let a be a non-zero vector from R3. Show that there are just two square matrices A with purely imaginary entries which satisfy

$$
\begin{equation*}
\mathbf{A}^{2} \mathbf{x}=\mathbf{a} \times(\mathbf{a} \times \mathbf{x}) \quad \text { for all } \mathbf{x} \in \mathbb{R} 3 \tag{9}
\end{equation*}
$$

and identify them!
Note. As pointed out (subsequently) by GöTZ TRENKLER, the problem statement should have read "Find two square matrices $A$ with purely imaginary entries which satisfy ..." We apologize for the incorrect (original) wording. -Ed.

Solution 18-6.1 by CHI-Kwong Li, The College of William and Mary, Williamsburg, Virginia, USA.
It is clear that the mapping $x \mapsto a \times(a \times x)$ is linear. Consider $A^{2} x=a \times(a \times x)$ for the three standard basic vectors in $\mathbb{R}^{3}$. One sees that $A^{2}=a a^{\prime}-\left(a^{\prime} a\right) I_{3}$. Alternatively, one can get the conclusion by considering $A^{2} x$ for $x=a, b, c$, where $\{b, c\}$ is an orthonormal basis for $a^{\perp}$. Let $A=i B$ for a real matrix $B$. Then $B^{2}=\left(a^{\prime} a\right) P$ with $P=I_{3}-\left(a^{\prime} a\right)^{-1} a a^{\prime}=V V^{\prime}$, where $V=(b, c)$. As a result, $B$ can be chosen to be $\pm \sqrt{a^{\prime} a} P$, or a matrix of the form $\sqrt{a^{\prime} a} P V S^{-1}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) S V^{\prime}$ for some $2 \times 2$ real invertible matrix $S$.

Solution 18-6.2 by William F. Trench, Divide, Colorado, USA.
We will show that there are infinitely many matrices $C$ in $\mathbb{R}^{3 \times 3}$ such that $-C^{2} x=(a \times x) \times a \quad$ for all $x \in \mathbb{R}^{3}$. If $C$ is such a matrix then $A=i C$ satisfies the requirements of the problem. If $a=\left(a_{1}, a_{2}, a_{3}\right)^{\prime}$ and $x=\left(x_{1}, x_{2}, x_{3}\right)^{\prime}$ then

$$
(a \times x) \times a=-B x, \quad \text { where } \quad B=\left(\begin{array}{ccc}
a_{2}^{2}+a_{3}^{2} & -a_{1} a_{2} & -a_{1} a_{3} \\
-a_{2} a_{1} & a_{1}^{2}+a_{3}^{2} & -a_{2} a_{3} \\
-a_{3} a_{1} & -a_{3} a_{2} & a_{1}^{2}+a_{2}^{2}
\end{array}\right)
$$

We want matrices $C$ in $\mathbb{R}^{3 \times 3}$ such that $C^{2}=B$. Since

$$
\begin{equation*}
-\frac{(a \times x) \times a}{\|a\|^{2}}=x-\frac{(a \cdot x)}{\|a\|^{2}} a \tag{10}
\end{equation*}
$$

is the projection of $x$ on the subspace of $\mathbb{R}^{3}$ orthogonal to $a$ and $\|a\|^{-2} B$ is the matrix of this projection, it follows that $\left(\|a\|^{-2} B\right)^{2}=\|a\|^{-2} B$, which implies that if $C= \pm\|a\|^{-1} B$ then $C^{2}=B$. To see where infinitely many other choices of $C$ come from, note from (10) that $\lambda=0$ is an eigenvalue of $B$ and $a$ is an associated eigenvector, while $\|a\|^{2}$ is an eigenvalue of multiplicity 2 and any nonzero vector orthogonal to $a$ is an associated eigenvector. The matrices $\pm\|a\|^{-1} B$ have the same eigenspaces as $B$. However, there are infinitely many other solutions of $C^{2}=B$ that do not have this property. For example, let $C=(a, p, q) \operatorname{diag}(0,\|a\|,-\|a\|)(a, p, q)^{-1}$, where $p$ and $q$ are linearly independent and orthogonal to $a$. If $x=\alpha a+\beta p+\gamma q$ is an arbitrary vector in $\mathbb{R}^{3}$ then $C^{2} x=\|a\|^{2}(\beta p+\gamma q)=-(a \times x) \times a$, and so $C^{2}=B$.

Solution 18-6.3 by Hans Joachim Werner, Universität Bonn, Bonn, Germany.
Let $a$ be a nonzero vector from $\mathbb{R} 3$. Since $a \times(a \times x)=-\left(a^{\prime} a I_{3}-a a^{\prime}\right) x$, clearly $A^{2} x=a \times(a \times x) \quad$ for all $x \in \mathbb{R} 3$ iff $A^{2}=$ $-\left(a^{\prime} a I_{3}-a a^{\prime}\right)$. Observing $\left(I-\frac{a a^{\prime}}{a^{\prime} a}\right)^{2}=I-\frac{a a^{\prime}}{a^{\prime} a}$ shows that $A$ can be chosen as $\pm i \sqrt{a^{\prime} a}\left(I-\frac{a a^{\prime}}{a^{\prime} a}\right)$. Notice, however, that there exist infinitely many further pairs of matrices with the desired property. For, if $P$ is any column-orthonormal matrix with $P P^{\prime}=I-\frac{a a^{\prime}}{a^{\prime} a}$, then the matrices $\pm i \sqrt{a^{\prime} a} P F P^{\prime}$ also satisfy (9) whenever $F$ is such that $F^{2}=I_{2}$.

## New Problems

## Problem 19-1: Eigenvalues

Proposed by Jürgen Groß \& GöTZ Trenkler, Universität Dortmund, Dortmund, Germany.
Let $\mathbf{a}$ and $\mathbf{b}$ be two nonzero $n \times 1$ real vectors and consider the matrix

$$
\mathbf{A}=\alpha \mathbf{a} \mathbf{a}^{\prime}+\beta \mathbf{a b}^{\prime}+\gamma \mathbf{b} \mathbf{a}^{\prime}+\delta \mathbf{b} \mathbf{b}^{\prime}
$$

where $\alpha, \beta, \gamma, \delta$ are real scalars such that $\beta=-\gamma$ and $\gamma^{2}=-\alpha \delta$. Find the (nonzero) eigenvalues of $\mathbf{A}$.

## Problem 19-2: Non-negative Definite Matrices <br> Proposed by Hans Joachim Werner, Universität Bonn, Bonn, Germany.

A matrix $A \in \mathbb{C}^{n \times n}$ is said to be non-negative definite if $\operatorname{Re}\left(x^{\star} A x\right) \geq 0$ for all vectors $x \in \mathbb{C}^{n}$. Prove that $A$ is non-negative definite if and only if its Moore-Penrose inverse $A^{\dagger}$ is non-negative definite.

## Problem 19-3: Characterizations Associated with a Sum and Product

Proposed by Robert E. Hartwig, North Carolina State University, Raleigh, North Carolina, USA, PETER ŠEMRL, University of Maribor, Maribor, Slovenia \& HANS JoACHIM WERNER, Universität Bonn, Bonn, Germany.

1. Characterize square matrices $A$ and $B$ satisfying $A B=p A+q B$, where $p$ and $q$ are given scalars.
2. More generally, characterize linear operators $A$ and $B$ acting on a vector space $\mathcal{X}$ satisfying $A B x \in \operatorname{Span}(A x, B x)$ for every $x \in \mathcal{X}$.

## Problem 19-4: Eigenvalues of Non-negative Definite Matrices

Proposed by FUZhen Zhang, Nova Southeastern University, Fort Lauderdale, Florida, USA.
Show that there are constants $\gamma \in\left(0, \frac{1}{2}\right]$ and $\varepsilon \in\left(0, \frac{1}{2}\right)$ such that, if $A_{1}, \ldots, A_{n}$ are non-negative definite $r \times r$ matrices of rank one satisfying

1. $A_{1}+\cdots+A_{n}=I_{r}$ and
2. $\operatorname{trace}\left(A_{i}\right)<\gamma$ for each $i=1, \ldots, n$,
then there is a subset $\sigma$ of $\{1,2, \ldots, n\}$ such that the eigenvalues of $A_{\sigma}=\sum_{i \in \sigma} A_{i}$ all lie in the interval $(\varepsilon, 1-\varepsilon)$.

## Problem 19-5: Symmetrized Product Definiteness?

Proposed by Ingram Olkin, Stanford University, Stanford, California, USA.
Let $A$ and $B$ be real symmetric matrices. Then prove or disprove:

1. If $A$ and $B$ are both positive definite (non-negative definite) then $A B+B A$ is positive definite (non-negative definite).
2. If $A$ and $A B+B A$ are both positive definite (non-negative definite) then $B$ is positive definite (non-negative definite).

Please submit solutions, as well as new problems, to George Styan in GTEX and by e-mail to styanemath. mcGill.cA. We look forward particularly to receiving solutions to Problems 18-1 and 18-4!


[^0]:    North/South America (BOOKS) University of Toronto Press, 250 Sonwil Drive, Buffalo, NY 14225, USA Tel: +1 8005659523 Fax: +1 8002219985 [utpbooks@gpulutec.utoronto.ca](mailto:utpbooks@gpulutec.utoronto.ca) (JOURNALS) Intemational Publishers Distributor, PO Box 27542, Newark, NJ 07101-8742, USA Tel: +18005458398 Fax: +1 2157506343 Europe/Middle East/Africa (BOOKS) Marston Book Services, Ltd, PO Box 269, Abingdon, Oxon OX14 4YN, UK Tel: +4401235 465500 Fax: +44 01235465555 (JOURNALS) International Publishers Distribunor, PO Box 90, Reading, Berkshire RGl 8JL, UK Tel: +4401189568516 Fax: -44 01189568211 Asia Intemational Publishers Distributor, Kent Ridge, PO Box 1180, Singapore 911106 Tel: +657416933 Fax: +657416922 Australia/Niew Zeatand (BOOKS) Fine Arts Press, PO Box 480, Roseville, NSW 2069, Australia Tel: +61 294171033 Fax: -61294171045 (JOURNALS) see Asia above. Japan Yohan (Western Publications Distribution Agency), 3-14-9, Okubo,

[^1]:    - Use your credit card (AMEX, MasterCard, and VISA): Call whll free in USA 800-44.SLAM; Outside USA call 215-382.980); Fax: 215.386.7999;
    E-mail service@siam.org
    - Or send check or money order to:

    SIAM, Dept. BKCH97, P.O. Bos 7260 Philadelphia, PA 19101.7260

[^2]:    - Shipping and Handling

    LSA: Add $\$ 2.75$ for the first book and $\$ .50$ for each addinional book.
    Canada: Add $\$+.50$ for the first book and $\$ 1.50$ for each addinional book. Outside USA/Canada: Add $\$ 4.50$ per book.
    All overseas delivery is via airmail.

