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ILAS President’s and Vice President’s Annual Report: April 2003

1. The following have been elected to ILAS offices with terms
that began on March 1, 2003:

Secretary/Treasurer: Jeff Stuart (2nd three-year term ending
February 28, 2006)

Board of Directors: Rafael Bru and Hugo Woerdeman (three-
year terms ending February 28, 2006).

The following continue in their offices to which they were pre-

viously elected:

President: Daniel Hershkowitz (term ends February 28, 2005).

Vice President: Roger A. Horn (term ends February 29, 2004).

Board of Directors: Ravi Bapat (term ends February 28, 2005),
Tom Markham (term ends February 29, 2004),

Michael Neumann (term ends February 28, 2005), and
Daniel Szyld (term ends February 29, 2004).

2. This fall there will be elections for Vice President (Roger
Horn’s term as Vice President ends on February 29, 2004) and
for two members of the Board of Directors (to replace retiring
members Tom Markham and Daniel Szyid). The President has
appointed Harm Bart to chair the Nominating Committee. Other
members of the committee, as selected by the Board of Direc-
tors and by the ILAS Advisory Committee, are LeRoy Beasley,
Raphael Loewy, Dale Olesky and Michael Overton.

3. Bryan L. Shader (University of Wyoming, USA) has been
appointed to a three-year term (2003-2006) as an Editot-in-
Chief of IMAGE: The Bulletin of the International Linear Algebra
Society (ISSN 1533-8991) and joins Hans Joachim Werner in
that position. Bryan replaces George P. H. Styan who concludes
after almost 10 years of devoted service. We thank George for
his magnificent work that has upgraded IMAGE and raised it to
impressive heights. Under his leadership, IMAGE has become
a model for many professional newsletters. George’s ongoing
initiatives have turned IMAGE into a lively and attractive journal.

4. The 10th ILAS Conference took place on June 10-13,
2002, at Auburn University, Alabama, USA. The chair of the or-
ganizing committee was Frank Uhlig. There were 152 registered
participants. Tsuyoshi Ando (Sapporo, Japan) was awarded the
Hans Schneider prize and delivered his Prize Lecture. Michele
Benzi (Emory University) and Misha Kilmer (Tufts University)
were the SIAM SIAG/LA Speakers. Hans Schneider was the
After Dinner Speaker. The conference organizers offered an ex-
cursion consisting of a tour of Tuskegee University (Tuskegee,
Alabama) and the Carver Museum there. The tour was followed
by a trip to the Alabama Shakespeare Festival in Montgomery
for a choice of two plays. The conference was preceded by The
6th Workshop on “Numerical Ranges and Numerical Radii”.

S. The following ILAS conferences are planned:

(a) The 11th ILAS Conference, Coimbra, Portugal, summer
2004. At this conference Peter Lancaster (University of Cal-
gary, Canada) will be awarded the ILAS Hans Schneider
Prize in Linear Algebra and will deliver his Prize Lecture.

(b) The 12th ILAS Conference, Regina, Saskatchewan, Canada,
June 26-29, 2005.

(¢) The 13th ILAS Conference, Amsterdam, The Netherlands,
July 19-22, 2006.

(d) The 14th ILAS Conference, Shanghai, China, July or August
2007.

(e) The 15th ILAS Conference, Canciin, Mexico, June 1620,
2008.

6. ILAS has recently endorsed these conferences of particular
interest to ILAS members:

(a) The 12th International Workshop on Matrices and Statistics
(IWMS-2003), August 5-8, 2003, Dortmund, Germany.

(b) International Conference on Matrix Analysis and Applica-
tions, December 14-16, 2003, Fort Lauderdale, USA.

(¢) The Two-Day Workshop on “Directions in Combinato-
rial Matrix Theory”, Banff International Research Station
(BIRS), May 6-8, 2004, Banff, Alberta, Canada.

(d) The 13th International Workshop on Matrices and Statistics
(IWMS-2004), August 19-21, 2004, Bedlewo, near Poznat,
Poland.

(e) The Householder Meeting on Numerical Linear Algebra:
Householder Symposium XVI, May 23-27, 2005, Seven
Springs Mountain Resort, Campion, Pennsylvania, USA.

7.ILAS has selected Bryan L. Shader and Judi MacDonald as
the ILAS Lecturers at the 2003 SIAM SIAG/LA Williamsburg

meeting (College of William and Mary, July 15-19, 2003).

8. ILAS has continued to consider requests for the sponsor-
ship of an ILAS Lecturer at a conference which is of substantial
interest to ILAS members. ILAS is sponsoring three Lecturers
in 2003:

(a) Hans Schneider at the one-day meeting on “Matrix Analy-
sis and Applied Linear Algebra” in celebration of the 60th
birthday of Carl Dean Meyer, Jr. The meeting was held in
Raleigh, North Carolina, May 15, 2003.

(b) Jerzy K. Baksalary at The 12th International Workshop on
Matrices and Statistics (TWMS-2003), Dortmund, Germany,
August 5-8, 2003.

(c) Roger A. Horn at the Matrix Analysis and Applications
Conference, Nova Southeastern University, Fort Lauderdale,
Florida, USA, December 14-16, 2003.

9. The Electronic Journal of Linear Algebra (ELA), ISSN
1081-3810: Volume 1, published in 1996, contained 6 papers.
Volume 2, published in 1997, contained 2 papers. Volume 3,
the Hans Schneider issue, published in 1998, contained 13 pa-
pers. Volume 4, published in 1998 as well, contained 5 papers.
Volume 5, published in 1999, contained 8 papers. Volume 6,
Proceedings of the Eleventh Haifa Matrix Theory Conference,
published in 1999 and 2000, contained 8 papers. Volume 7,
published in 2000, contained 14 papers. Volume 8, published
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in 2001, contained 12 papers. Volume 9, published in 2002,
contained 24 papers. Volume 10, is being published now; as of
June 8, 2003, Volume 10 contains 12 papers.

ELA’s primary site is at the Technion. Mirror sites are located
in Temple University, in the University of Chemnitz, in the Uni-
versity of Lisbon, in The European Mathematical Information
Service (EMIS) offered by the European Mathematical Society,
and in the 36 EMIS Mirror Sites.

A complimentary copy of the CDROM for ELA (vol. 1-8,
1996-2001) was distributed to ILAS members at The 10th ILAS
Conference (Auburn University, Alabama, USA, June 10-13,
2002); a complimentary copy of this CDROM is being sent to
all other ILAS members with IMAGE 30 (April 2003).

Volumes 1-7 (1996-2000) of ELA are in print, bound as two
separate books: vol. 1-4 and 5-7. Copies can be ordered from
Jim Weaver: jweaver@uwf.edu

10. ILAS-NET: As of June 9, 2003, we have circulated 1282
ILAS-NET announcements. ILAS-NET currently has 496 sub-
scribers.

11. The primary site of ILAS INFORMATION CENTER
(IIC) is in Regina, Saskatchewan, Canada. Mirror sites are lo-
cated in the Technion, in Temple University, in the University of
Chemnitz, and in the University of Lisbon.

Daniel HERSHKOWITZ,ILAS President: hershkow@tx.technion.ac.il
Technion, Haifa, Israel

Roger A. HORN, ILAS Vice President: rhorn@math.utah.edu
University of Utah, Salt Lake Ciry, Utah, USA

Indexing IMAGE: 1-30 (1988-2003)

We have started to make an index to IMAGE: 1-30 (1988-2003)
and we welcome any help readers may wish to offer.

The first issue of IMAGE (Vol. 1, No. 1, 8 pp., January 1988)
was edited by Robert C. Thompson and carried the subtitle “The
Bulletin of the International Matrix Group serving the Inter-
national Linear Algebra Community” and announced that the
International Matrix Group (IMG) was constituted in Victoria,
British Columbia, Canada, May 1987. The second issue (No. 2,
14 pp., January 1989), edited jointly by Jane M. Day & Robert
C. Thompson, carried the subtitle “The Bulletin of the Interna-
tional Linear Algebra Society (formerly the International Ma-
trix Group) serving the International Linear Algebra Commu-
nity” and announced the Inaugural Meeting of the International
Linear Algebra Society (ILAS) at Brigham Young University
(Provo, Utah, USA, August 1215, 1989).

The subsequent 28 issues, no. 3-30 (July 1989-April 2003),
carry the title “IMAGE: The Bulletin of the International Linear
Algebra Society, serving the International Linear Algebra Com-
munity”; from no. 26 (April 2001) on, with ISSN 1533-8991.

Issues no. 3—10 (July 1989-January 1993) were edited jointly
by Steven J. Leon and R. C. Thompson and no. 11-12 (July
1993-January 1994) by S. I. Leon. These 10 issues appeared
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twice a year, each with total pagination ranging between 14 and
24 pages. Issues no. 13-18 (July 1994—Winter/Spring 1997)
were edited jointly by S. J. Leon & George P. H. Styan; no. 19—
24 (Summer/Fall 1997-April 2000) by G. P. H. Styan, and no.
25-30 (October 2000-April 2003) jointly by G. P. H. Styan and
Hans Joachim Werner. Issues no. 27--30 each ran 36 pp.

Our preliminary findings in making this index indicate:

o ILAS officers’ reports and news items
(a) 14 President’s/Vice President’s & Treasurer’s reports
(b) 18 ILAS news items
o Articles
(a) 23 feature articles
(b) 14 obituaries
(c) 67 short communications
e Problem Corner
(a) 88 problems with solutions
(b) 13 problems without solutions
o Conferences and workshops
(a) 139 announcements of individual forthcoming events
(b) 79 reports on individual events already held
(c) 18 lists of forthcoming events
o New and forthcoming books
(a) 32 signed book reviews
(b) 16 lists of new and forthcoming books
¢ Photographs and pictures
(a) Photographs or pictures of 27 individuals
(b) Photographs of 51 groups (at meetings)
(c) 5 miscellaneous other photographs
¢ 14 postage stamps depicting 5 mathematicians.

The obituaries are of Patricia James Eberlein, Dennis Ray
Estes, Vlad Ionescu, John Maybee, Bill Larry Neal, Vlastimil
Ptdk, Norman J. Pullman, Arthur Asquith Rayner, Sally Rear,
Kermit Sigmon, Richard D. Sinkhorn, Robert Charles Thomp-
son, Olga Taussky Todd, and Albert William Tucker.

The photographs or pictures of individuals are of Lufs de Al-
buquerque, Tsuyoshi Ando, Jerzy K. Baksalary, Patricia James
Eberlein, Dennis Ray Estes, Feliks Ruvimovich Gantmakher,
Daniel Hershkowitz, Vlad Ionescu, John Stanley Maybee, Pe-
dro Nunes, Graciano de Oliveira, Simo Puntanen, Sally Rear,
Hans Schneider, Miriam Schneider, Peter éemrl, Kermit Sig-
mon, Alexander Spotswood, William Spottiswoode, George
P. H. Styan, Olga Taussky Todd, Hiisein Tevfik Pasa, Robert
Charles Thompson, Yongge Tian, Olga Taussky Todd, James R.
Weaver, and Hans Joachim Werner.

The images of postage stamps depict Tadeusz Banachiewicz,
Charles Dodgson (Lewis Carroll), Sir William Rowan Hamilton,
Gottfried Wilhelm von Leibniz, and Takakazu Seki Kéwa.

J. C. SzAMOSI & George P. H. STYAN: styan@math.mcgill.ca
McGill University, Montréal (Québec), Canada



New from Brooks/Cole!

A Direct Line to Understanding

Linear Algebra: An Interactive Approach
S.K. Jain, Ohio University

A.D. Gunawardena, Carnegie Mellon University

480 pages. Casebound. ©2004. ISBN: 0-534-40915-6.

This new text from Jain and Gunawardena introduces matrices as a handy
tool for solving systems of linear equations and demonstrates how the utili-
ty of matrices goes far beyond this initial application. Students discover that
hardly any area of modern mathematics exists where matrices do not have
some application. Flexible in its approach, this book can be used in a tradi-
tional manner or in a course using technology.

B An Accompanying CD-ROM Contains the Entire Contents of the
Book: Students have all of the content of the text in a searchable,
customizable format available at their fingertips, which can be
highlighted and annotated by the student, just like a print text-
book. The CD-ROM also includes MATLAB® drills, concept
demonstrations, solutions, projects, and chapter review questions.

B A Book Companion Web Site Enriches the Learning Experience:
A Book Companion Web site linked to the CD-ROM provides
additional problems, projects, and applications, as well as support
for Maple® and Mathematica®

LINEAR ALGEBRA Linear Algebra: A Modern Introduction

MODERN INTRODUCT! David Poole, Trent University
| 763 pages. Casebound. © 2003. ISBN: 0-534-34174-8.

In this innovative new linear algebra text, David Poole covers vectors and
vector geometry first to enable students to visualize the mathematics while
they are doing matrix operations. By seeing the mathematics and under-
standing the underlying geometry, students develop mathematical maturity
and learn to think abstractly. An extensive number of modern applications
represent a wide range of disciplines and allow students to apply their
knowledge.

B Vectors and Vector Geometry Start in Chapter 1: Chapter 1 is
a concrete introduction to vectors. The geometry of two- and
three-dimensional Euclidean space then motivates the need
for linear systems (Chapter 2) and matrices (Chapter 3).

B Flexible Approach to Technology: Students are encouraged,
but not required, to use technology throughout the book.
Where technology can be used effectively, it is not platform-
specific. A Technology Bytes appendix shows students how to
use Maple®, Mathematica® and MATLAB?® to work some of the
examples in the text.

L

Detailed table of contents for both texts are available at our THOMSON
New for 2004 Web site: http://www.newtexts.com ﬁ*: i

Request a review copy at 800-423-0563 BROOKS/COLE
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ILAS Treasurer’s Annual Report: March 1, 2002-February 28, 2003

Net Account Balances on February 28, 2002

Vanguard (ST Fed. Bond Fund 1111.153 Shares)

(72% Schneider Fund and 28% Todd Fund) 11,578.21

Checking account 69,281.21 $80,859.42
General Fund 34,402.18
Conference Fund 10,038.94
ILAS/LAA Fund 4.840.00
Olga Taussky Todd/John Todd Fund 8,267.14
Frank Uhlig Education Fund 3,475.98
Hans Schneider Prize Fund 19,835.18 $80,859.42
March 1, 2002 through February 28, 2003
Income: Interest 267.51

Dues 6140.00

Corporate Dues 1000.00

Book Sales 222.00

General Fund 1068.56

Conference Fund 480.00

ILAS\LAA Fund 3000.00

Taussky-Todd Fund 530.25

Uhlig Education Fund 210.00

Schneider Prize Fund 1111.37 14,029.69
Expenses: IMAGE (2 issue) 3263.49

Speakers (3) 1800.00

Schneider Prize 1200.00

Elsevier UW Madison Refund 2000.00

Executive Board Travel 1400.00

ELA Copyedit & CD 1172.00

Fees 70.00

Labor - Mailing & Conference 292.00

Postage 599.10

Supplies and Copying 180.78

Bad Checks 360.00 12,337.37
Net Account Balances on February 28, 2003

Vanguard (ST Fed. Bond Fund 1165.096 Shares)

(72% Schneider Fund and 28% Todd Fund) 12,489.83

Checking account 68,997.91

Pending checks 940.00

Pending VISA/Mastercard 2124.00

Outstanding check to UW Madison (2,000.00) $82,551.74
General Fund 33,962.88
Conference Fund 10,518.94
ILAS/LAA Fund 5,840.00
Olga Taussky Todd/John Todd Fund 8,797.39
Frank Uhlig Education Fund 3,685.98
Hans Schneider Prize Fund 19,746.55 $82,551.74

Jeffrey L. STUART, ILAS Treasurer: jeffrey.stuart@plu.edu
Pacific Lutheran University, Tacoma, Washington, USA



HOUGHTON MIFFLIN

MATHEMATICS

Larson/Edwards/Falvo
Elementary Linear Algebra, 5/¢ * New! All real data in exercises and examples have
©2004 » 544 pages * Hardcover been updated to reflect current information. More

0-618-33567-6 » Available Summer 2003 exercises, linked to the data sets found on the web site

and the Learning Tools CD-ROM, have been added.
his text offers a clear and concise
presentation of linear algebra,
balancing theory with examples,
applications, and geometric intuition.

* Guided proofs direct students through the logical
sequence of statements necessary to reach the correct
conclusions to theoretical proofs.

+ True/False questions encourage students to think
about mathematics from different perspectives.

New! Comprehensive ancillary package for students and instructors
Student tools

The Learning Tools CD-ROM accompanies the text, offering students additional practice and exploration of selected topics.

Simulations provide hands-on experimentation by allowing students
to change variables and observe the outcomes of these changes.

Electronic data sets help students reinforce or broaden their
technology skills.

The Graphing Calculator Keystroke Guide includes examples
with step-by-step solutions, technology tips, and programs for various
graphing calculators.

Matlab exercises enhance students’ understanding of concepts.

Additional topics include complex vector spaces, linear
programming, and numerical methods.

Also available:
Student Solutions Guide (ISBN 0-618-33568-4)

Instructor tools
HM ClassPrep with HM Testing 6.0 allows instructors Instructor’s Solutions Guide and Test Item File
to access both lecture support and testing software in (ISBN 0-618-33569-2)

one place. (ISBN 0-618-33571-4)

¥, HOUGHTON MIFFLIN

New Ways to Know®

For more information on Houghton Mifflin products, services, or examination copy requests:

* Consult the College Division: catalog.college.hmco.com * Contact your Houghton Mifflin sales representative
» Call or fax the Faculty Services Center
Tel 800/733-1717, ext. 4027 « Fax 800/733-1810
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Up With Determinants!

Garry J. Tee

Determinants were applied in 1683 by the Japanese mathemati-
cian Takakasu Seki K6wa (1642-1708) in the construction of
the resolvent of a system of polynomial equations, see Mikami
(1913, pp. 191-199; 1977) and the IMAGE Philatelic Corner
(IMAGE 23, October 1999, page 8). Determinants were inde-
pendently invented in 1693 by Gottfried Wilhelm von Leibniz
(1646-1716). Sir Thomas Muir (1844-1934) gave a magiste-
rial survey of publications about determinants from 1693-1920,
published in five volumes from 1890-1930; see also the recent
article by Farebrother, Jensen & Styan (2002), which includes
a list of 131 nineteenth-century books on determinants and an
extensive biography of Muir!.

Matrices were first formalized in 1858 by Arthur Cayley
(1821-1895), but matrices remained little known until the the-
oretical physicist Werner Karl Heisenberg (1901-1976) rein-
vented matrices in 1925 for quantum physics. Most of the work
on determinants which was surveyed by Muir makes more sense
in terms of matrices than in terms of determinants. In fact Muir
himself, at the age of 87 in 1931, wrote that he “welcomed
the light matrix proofs in contrast to the heavy footed method
of thirty—five years ago” [Turnbull (1934, page 79)]. Sheldon
Axler urges, in his 1995 polemic article entitled “Down with
determinants!”, that linear algebra should be done without de-
terminants. He asserts that “Determinants are needed in one
place in the undergraduate mathematics curriculum: the change
of variables formula for multi-variable integrals”. Accordingly,
he defines the determinant of a matrix to be the product of its
eigenvalues (counting multiplicities) and then proceeds to “de-
rive the change-of-variables formula for multi-variable integrals
in a fashion that makes the appearance of the determinant there
seem natural”,

I agree with Axler that actual numerical evaluation of the
determinant of a matrix is very rarely required. I have written
many procedures based on the ALGOL 60 procedures [Wilkin-
son & Reinsch (1971)] which form the basis of the NAG Library
of Mathematical Software. Several of those matrix procedures
produce the value of the determinant as a by-product, but I have
always deleted that feature from my own versions since I have
never required it.

In 1958, when I was a consultant mathematician with the
English Electric Company (at Whetstone in England), I found
that one of the computing laboratory assistants was spending a
great deal of time in punching data onto cards for an engineer.
Those data consisted of many square matrices of order 6, each
of the form A — I for various values of A. The engineer told
me that he intended to use a subroutine in the DEUCE library

1A Special Issue of Linear Algebra and its Applications on “Determinants
and the Legacy of Sir Thomas Muir” is in progress with Special Issue Editors:
Wayne Barrett, Samad Hedayat, Christian Krattenthaler & Raphael Loewy. —Ed.

(written mostly by James H. Wilkinson and his colleagues) to
evaluate the determinant of each of those matrices and that he
would then apply inverse interpolation to find those values of )
for which the determinant equals zero! I explained (tactfully) to
the engineer that there are better ways of tackling that problem,
and referred him to the subroutines in the DEUCE library for
computing eigenvalues.

The Necessity of Determinants

In 1963 I attended a conference on Numerical Linear Alge-
bra at the National Physical Laboratory in England. My col-
league there, Charles G. Broyden, delivered an impassioned ap-
peal for the elimination of determinants from linear algebra, and
declared that he would write a text on matrix computations in
which determinants would never be mentioned. But I responded
that determinants need to be kept as a small but essential part
of linear algebra; it seems to me that any text such as his would
require at least half a page of fine print about the theory of deter-
minants. And indeed, the text by Broyden (1977) does contain a
3-page Appendix on determinants.

Only elementary algebra is needed in developing the theory
of determinants, and much of it can be understood and used by
high-school students. The only part of the standard definition of
a determinant [Aitken (1939, page 31)] which high-school stu-
dents might find difficult is the classification of permutations as
even or odd. Indeed, that was not actually proved until circa
1870, and in 1871 James Joseph Sylvester (1814-1897) appar-
ently got highly excited about that advance in the theory.

Axler (1995) uses the language of linear operators 7' on an
n-dimensional complex vector space V; but I prefer to use the
alternative language of square (n x n) matrices A, since there
are interesting relations between the elements of a matrix and its
eigenvectors and eigenvalues. For example, every eigenvalue of
A has modulus less than or equal to any norm of A, and the row-
sum and column-sum norms of matrices are easy to compute.
And a matrix can be handled numerically directly on a com-
puter, but a linear operator has first to be converted to a matrix
representation in some chosen basis before it can be represented
on a computer. To a numerical analyst, much of the material in
Axler (1995) appears as unnecessarily abstract, since it cannot
readily be programmed on a computer.

In the standard definition, det(A) is computed from the ele-
ments of A by means of a finite number of multiplications, ad-
ditions and subtractions. Hence, if all elements of A are integer
(or rational, algebraic, real, complex), then the value of det(A)
is integer (or rational, algebraic, real, complex).

In a recent text, Hoppensteadt & Peakin (2002) remark (in
Appendix A) that “The determinant is defined in a complicated
way that we do not present here, but MATLAB can often com-
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pute it quickly”! Readers of that text should realise that numer-
ical computation of determinants is very rarely desirable.

Adjugate and Inverse Matrices

In 1750, Gabriel Cramer (1704-1752) of “Cramer’s rule” used
determinants to prove a major theorem [Muir (1906, pp. 11—
14)]. In matrix notation:

A adj(A) = adj(A)A = det(A)], (1)

where the elements of the adjugate matrix adj(A) are signed de-
terminants of submatrices of A of order n — 1. Therefore, A has
the (left and right) inverse

1
1 _ :
A7 = v )adJ(A), (2)

unless det(A) = 0 and then A is not invertible.

Hence, if all elements of A are rational (or algebraic, real,
complex etc.) with det(A) # 0, then A~1! has rational (or
algebraic, real, complex etc.) elements. If A is unimodular,
ie., det(A) = £1, then A—! = + adj(A); and hence if also all
elements of A are integers then so are the elements of A~1! (Tee
1972, 1994).

In my opinion, the most important property of determinants
is the theorem which follows from (1), that every square matrix
A is invertible, unless its determinant equals O [Axler (1995, Th.
9.1)]. Every number is the determinant of some matrices — for
the determinant to have the particular value 0 is a singular oc-
currence, and hence such a matrix is aptly called singular. That
theorem was used by Seki in 1683 [Mikami (1913, pp. 191-
199; 1977)], but the first published proof that if det(A) = 0 then
the homogeneous equation Av = 0 has a vector solution v # 0
was given in 1851 by William Spottiswoode (1825-1883) [Muir
(1911, pp. 54-58)]. Muir described Spottiswoode’s Theorem
10, proving that result, as “new but unimportant™! For a geneal-
ogy of William Spottiswoode see Farebrother (1999) and for a
genealogy of the Spottiswoode family see Farebrother & Styan
(2000).

The explicit expression (2) for A~ is useful for the the-
ory of matrices, but it is not an efficient method for computing
the inverse of A for large n. Moreover, matrix inverses should
very rarely be actually computed. Matrix expressions involv-
ing inverses can be computed (in rounded arithmetic) more effi-
ciently by various other algorithms; e.g., the Schur complement
D — CA~!B can be evaluated efficiently by Aitken’s algorithm
[Fox (1964, pp. 75-78)].

An important class of matrices is that of alternant matrices
[Aitken (1939, p. 42)], where

ai;=p " (1<i,j<n). 3)

An important property is that the alternant matrix A is singular if
and only if two or more of the u; are equal. That can be proved
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using polynomial factorization, but the standard textbook proof
using the formula

det(A) = [T (m — )
i>j

is simpler. We note that alternant matrices have been called Van-
dermonde matrices. There is nothing corresponding to alternant
matrices in the important 1771 paper by Alexandre-Théophile
Vandermonde (1735-1796) on determinants [Muir (1906, pp.
17-24 & 306)]. But Abraham de Moivre (1667—1754) published
the inverse of a general alternant matrix in 1738, and hence al-
ternant matrices could well be called de Moivre matrices [Tee
(1993, pp. 89-90)].

From the definition of determinant, it is easy to prove that
det(AT) = det(A), from which it readily follows that the row
rank of every (rectangular) matrix equals its column rank. Can
that important theorem be proved as simply without determi-
nants?

Eigenvectors and Eigenvalues

The problem of a nonzero vector v being an eigenvector of the
n x n matrix A (with its associated eigenvalue ))

Av = \v, @)

reduces (by Spottiswoode’s Theorem) to the characteristic poly-
nomial equation for the eigenvalue A

det(A — AI) = 0; )

and thus the problem of the existence of an eigenvector is equiv-
alent to the Fundamental Theorem of Algebra. That theorem is
arather deep theorem of analysis, and hence no simpler proof of
the existence of eigenvectors and eigenvalues can be expected.
Thus, if A has complex (or real) elements then it has exactly n
complex eigenvalues, counting multiplicities.

The characteristic polynomial could actually be constructed
in terms of matrix elements, from the definition of the deter-
minant. For a matrix A of order n, denote the characteristic
polynomial

P\ ¥ det(A — L)
= (=1)PA" = A* A2 cn). (6)

From this definition, it is clear that the coefficients of the char-
acteristic polynomial are composed from elements of the matrix
by multiplications, additions and subtractions. Hence, if the el-
ements of the matrix are integers, then so are the coefficients of
the monic characteristic polynomial, scaled by (—1)"; and sim-
ilarly if the elements of the matrix are rational, algebraic, real or
complex.

A standard theorem, based on the determinantal definition
(6), gives the coefficients of the characteristic polynomial as the
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sums of determinants of principal minors of A, with the simplest
instances being that:

ey = —trace(A), cn = (=1)""1det(A). (7)
It follows immediately, from Vieta’s Relations [Frangois Vieta,
Seigneur de La Bigottiére (1540-1603)] for the characteristic
polynomial, that the sum and the product of eigenvalues are
trace(A) and det(A), respectively. In this manner, all symmetric
functions of the eigenvalues can be expressed (through the co-
efficients of the characteristic polynomial) in terms of elements
of A [Tee (1994)]. For example, the simplest algorithm for con-
structing the characteristic polynomial of A is Le Verrier’s 1840
algorithm [Urbain Jean Joseph Le Verrier (1811-1877)], see,
e.g., Faddeev & Faddeeva (1963), which is based on the well-
known result that

trace(A*) = ) " )F, ®)
i=1

which depends upon the determinantal relation (7).

Let X be an eigenvalue of A, satisfying the determinantal
equation (5). Define

B = adj(A — AI), 9
so that it follows from (4) and (5) that
(A -XI)B =0. (10)

Thus, every nonzero column v of B is an eigenvector of A, with
eigenvalue A. This method for constructing eigenvectors will
fail only when B =0, i.e., when A — I has rank less thann — 1
(i.e., nullity greater than 1); and that can happen only when A
is a multiple eigenvalue of A which occurs in more than one
Jordan box in the Jordan canonical form of A.

This method is sometimes useful for giving an explicit ex-
pression for an eigenvector v with eigenvalue A, although it is
not efficient for large n.

Axler (1995) defines eigenvalues thus: “A complex number
A is called an eigenvalue of the linear operator T on V if T — AT
is not injective”. And in his Theorem 2.1, he purports to prove
that: Every linear operator on a finite-dimensional complex vec-
tor space has an eigenvalue. Axler’s proof is as follows: To
show that T" has an eigenvalue, fix any nonzero vector v € V.
The vectors v, Tv, T?v,..., T"v cannot be linearly indepen-
dent, because V' has dimension n and we have n + 1 vectors.
Thus there exist complex numbers ag, - - -, a,, not all 0, such
that

agv +a1Tv+ -+ an_ 1T o+ a,T"v = 0.

Make the a’s the coefficients of a polynomial, which can be writ-
ten in factored form as

ao+arz+ - +a,2" =c(z—r1) (2 — rm),
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where c is a nonzero complex number, each r; is complex, and
the equation holds for all complex z. We then have

0 = (aol+a1T+  +an1T" ! +a,T")w

= c(T—rd) - (T—-rpl,

which means that T' — r; I is not injective for at least one j. In
other words, T has an eigenvalue.

Axler confidently declares (p. 154) that “The simple proof of
the existence of eigenvalues given in [his] Theorem 2.1 [above]
should be the one imprinted on our minds, written on our black-
boards, and published in our textbooks”. That proof may seem
simple to him — but it uses mathematical concepts which are
much more complicated than the high-school algebra used in the
standard proof (5) with determinants. His definition of eigen-
value is far from simple, his proof does not give any construc-
tion of the characteristic polynomial, and it is more difficult to
comprehend than the standard proof.

Moreover, it seems to be wrong!

The coefficient ¢ equals a,, which can be zero. For, let v
be an eigenvector of A (which does exist, by the standard de-
terminantal proof (5) above) with eigenvalue ), as in (4). Then
Axler’s linear dependence holds with coefficients

00:—)\,&1:1,02:"'20.“:0, (11)

and in particular ¢ = @, = 0, unless n = 1. [We note that Axler
(twice) writes r,,, instead of r, — but since he says nothing
about m, it can only be regarded as a misprint.]

Axler defines a vector v € V as “an eigenvector of T if
Tv = Av for some eigenvalue X”, and in Proposition 2.2 he
speaks of “nonzero eigenvectors”. But the standard definition
of eigenvector for a square matrix A of order n is that it is a
nonzero vector v such that (4) holds for some scalar \. If v =
0 were accepted as an eigenvector, then v = 0 would be an
eigenvector of every matrix of order n, and every scalar would
be an eigenvalue for v = 0.

I feel that Axler’s definition of the multiplicity of an eigen-
value is more complicated than the standard definition in terms
of the linear factorization of the characteristic polynomial,
which is defined as det(A — AI). If R is any rational func-
tion, then v is an eigenvector of R(A) with eigenvalue R()),
whose multiplicity is determined from the linear factorization
of the characteristic polynomial of A. Is there any simple way
of doing that without determinants?

One practical way of solving a polynomial equation ¢(z) =
0 is to construct the companion matrix Q of ¢ and then compute
its eigenvalues. But the proof that the characteristic polynomial
of Q is ¢ consists of expanding det(Q — zI) by its last row and
obtaining ¢(z).

How would one show, in Axler’s version, that every eigen-
value r has at least one eigenvector v (and hence the eigenspace
has dimension at least 1)? How would one relate the coefficients
of the characteristic polynomial to the elements of the matrix, as
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above, without determinants? How could one construct sym-
metric functions of the eigenvalues, in terms of elements of the
matrix, without determinants? It might be possible to do these
things without determinants, but I cannot see how that could be
simpler than the standard approach using determinants.

The eigenvalues of A are continuous functions of the coef-
ficients of the characteristic polynomial, which are continuous
functions of the elements of A; and hence the eigenvalues are
continuous functions of the elements of A. That continuity is
important in perturbation analysis, including round-off analy-
sis; and it is required for proving Gerschgorin’s very important
1931 theorem [Semeon Aranovich Gerschgorin (1901-1933)]
that the union of k Gerschgorin disks of A (disjoint from the
other n — k disks) contains exactly k eigenvalues of A (counting
multiplicities). With the determinant definition of characteristic
polynomial, the continuity of the eigenvalues (as A is perturbed)
follows from first—year analysis. Can it be proved as simply
without determinants?

Eigenvalues (and eigenvectors) of real symmetric A are best
computed by first applying Householder’s similarity transforma-
tion to convert A to symmetric tridiagonal form:

a; B \
pr ax P

B2 a3 B3

,Bn—3 Qp—-2 ,Bn—Z
ﬁn—Z QAp—1 ﬂn—l

Brn-1 Qn )

Without loss of generality we can take each 3; # 0; for if any
B; = 0 then T splits (after row and column j) into a direct sum
of tridiagonal submatrices, and the eigenvalues of each of those
submatrices can be found independently of the others. Expand-
ing by row j the determinant of the submatrix of T — zI con-
sisting of rows and columns 1 to j, to obtain the characteristic
polynomial

pj(.’L') = (O"j _z)pj—l(z) —,3]2_11)]'—2(93); i=2,...,n,

where po(z) = 1, pi(z) = a1 — z, and p,(z) is the charac-
teristic polynomial of T. This 3-term recurrence relation shows
that the sequence po(z), p1(z), - - -, po(z) is a2 Sturm sequence,
whose sign-changes give the number of eigenvalues less than z.
Hence, the eigenvalues of T can be found by a bisection method,
and this is a reliable and practically useful method for comput-
ing eigenvalues (and eigenvectors) of a real symmetric matrix
A. Could this be proved readily without using determinants?
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Polynomial Resultants

The resultant of 2 or more polynomials (which equals 0 if and
only if the polynomials have a common zero) is most simply
represented as a determinant. For example, the two polynomials

p(z) = az® + bz +cx + d,
g(z) = ex* + f2* + g2? + ha +1,

have a common zero if and only if the resultant R(p,q) = 0,
where R(p, q) is the determinant of the matrix

0 0 0 a b ¢ d
0 00 a b ¢ d 0

0 0 e f g h i
0 e f g h ¢ 0

e f g h i 00/

The matrix R displays a clearly comprehensible pattern;
whereas the expanded form of the determinant R(p,q) =
det(R) has hundreds of terms, with no such clear pattern. The
alternative definition of R(p, ¢) as the product of the squares of
the differences between zeros of p and of ¢ gives no indication
of the nature of the coefficients of the expanded form of R(p, q),
but the determinant definition shows immediately that if the co-
efficients of p and ¢ are integers (or real, etc.), then so are the
coefficients of R(p, q).

The Cayley-Hamilton Theorem

Let P denote the characteristic polynomial of the square ma-
trix A. Then the well-known Cayley~Hamilton Theorem is that
P(A) = 0. Axler’s proof uses a lengthy sequence of theorems
on linear operators, which many undergraduates would find
quite difficult. But the Cayley—Hamilton Theorem can be proved
quite simply with determinants, see, e.g., Faddeeva (1959, pp.
154-155). We define

B £ adj(A — I, (12)

and so each element of B is the signed determinant of a subma-
trix (order n — 1) of A — AL, and hence is a polynomial in A of
degree n — 1 or less. And so the matrix B can be written in the
form

B=B,_;+B, 2+ -+ B\ 1 (13)

where the matrices B,,_1, - - -, By are independent of . Then,
from (1),
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(Bn—l + Bn—2A + -+ BOAn_l) (A - AI)
= B(A — Al)det(A — AI)I
= (=D)*A" = A" — A" - )L

Equating the (matrix) coefficients of A on left and right (which
could be done, element by element), we get a system of n + 1
matrix equations:

-B;, = (-1)"I,
BoA — B1 = (—1)n+1C11,
B, 2 A-B,_1 = (—1)n+lcn—11;
B,1A = (=1)"tlcI.
Premultiplying these equations by A"~1, A"=2 ... A I
and adding, we get the matrix polynomial equation:
0 = (—1)*(A™ — A"l — A" 2 — . —c,I) = P(A),

where P is the characteristic polynomial of A, as defined by (6).

This determinantal proof of the Cayley—Hamilton Theorem
is much simpler than Axler’s proof of Theorem 5.2 — it uses
only elementary algebra and does not even require the Funda-
mental Theorem of Algebra. Axler develops the theory of gener-
alized eigenvectors, minimal polynomial, Jordan canonical form
and orthonormal bases, to show that linear algebra can be done
without determinants. But various texts, including Faddeeva
(1959) and Faddeev & Faddeeva (1963), use determinants for
establishing basic results about inversion, singularity, charac-
teristic polynomial, eigenvectors, eigenvalues and the Cayley—
Hamilton Theorem as above and thereafter develop linear alge-
bra with little or no subsequent explicit use of determinants.

Even though Axler acknowledges that determinants have
their uses in mathematics at the research level, he concludes his
paper with the slogan “Down with Determinants!”. But we have
shown here that several significant parts of undergraduate math-
ematics do indeed require the use of determinants. Hence we
say: Up with Determinants!
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Gottfried Wilhelm von Leibniz: 1646-1716

R. William Farebrother, George P. H. Styan & Garry J. Tee

As Tee (2003) noted in his article “Up with determinants!” in
this issue of IMAGE, “Determinants were applied in 1683 by the
Japanese mathematician Takakasu Seki Kéwa (1642-1708) in
the construction of the resolvent of a system of polynomial equa-
tions [but] were independently invented in 1693 by Gottfried
Wilhelm von Leibniz (1646-1716).

In Smith (1929, pp. 267-270) there appear English transla-
tions (from the French and Latin by Thomas Freeman Cope) of
two extracts of writings by Leibniz on determinants. The first
extract, which contains the system of equations below, is from
a letter by Leibniz to Guillaume Frangois Antoine Marquis de
I’ Hopital (1661-1704), dated 28 April 1693, and published for
the first time in Gerhardt (1850, pp. 238-240; see also pp. 229
& 245). The second extract is from a manuscript on eliminating
unknowns, published for the first time in Gerhardt (1863, pp. 5-
6) and which “bears no date, but it was probably written before
1693 and possibly goes back to 1678”. See also Muir (1890, pp.
6-10).

In the 1693 letter by Leibniz to L’Hopital, Leibniz explained
that the equations

10+ 1le+12y = 0
20+ 21z + 22y =
30+ 31z +32y =

have a solution because

10x 21 x32 4+ 11x22x 30+ 12 x 20 x 31
=10x22x 31 4+ 11 x 20 x 32 + 12 x 21 x 30,

which is exactly the condition that the coefficient matrix has de-
terminant 0.

Leibniz here denoted general numbers by double subscripts.
In modern notation, his equations may be rewritten as the vector
equation Gz = 0 with a square matrix G, where

gio J11 912 1 0
g0 921 g22 |, z= , 0=10].
g3 931 932 Y 0

Since z # 0, it follows at once that the determinant det(G) = 0,
which is equivalent to Leibniz’s condition above.

Leibniz was born in Leipzig on 1 July 1646. His father,
Friedrich Leibniz, was a professor of moral philosophy at the
Universitat Leipzig; his mother, Catharina Schmuck, was the
daughter of a lawyer and Friedrich’s third wife. However,
Friedrich Leibniz died when Leibniz was only six years old and
he was brought up by his mother, who died when Leibniz was
17.

G =

8

At the age of 7, Leibniz entered the Nicolai School in
Leipzig, and at the age of 14, he entered the Universitiit Leipzig.
He studied philosophy, which was well taught there, and math-
ematics, which was very poorly taught. Among the other topics
included in his two-year general degree course were rhetoric,
Latin, Greek and Hebrew. He graduated with a Bachelor’s de-
gree in 1663 and then “a Master’s degree in philosophy for a dis-
sertation in which he combined aspects of philosophy and law;
he studied relations in these subjects with mathematical ideas.
A few days after Leibniz presented his dissertation, his mother
died” (O’Connor & Robertson 1998).

Leibniz worked on his habilitation in philosophy to be pub-
lished in 1666 as “Dissertatio de Arte Combinatoria” (Disser-
tation on the Combinatorial Art). According to O’Connor &
Robertson (1998) “In this work Leibniz aimed to reduce all rea-
soning and discovery to a combination of basic elements such as
numbers, letters, sounds and colours. Despite his growing rep-
utation and acknowledged scholarship, Leibniz was refused the
doctorate in law at Leipzig.” And so Leibniz went to the Univer-
sity of Altdorf, receiving a doctorate in law in February 1667 for
his dissertation “De Casibus Perplexis™ (On Perplexing Cases).

One of Leibniz’s lifelong aims was to collate all human
knowledge. MacDonald Ross (1984) noted that “Although Leib-
niz’s interests were clearly developing in a scientific direction,
he still hankered after a literary career. All his life he prided
himself on his poetry (mostly Latin), and boasted that he could
recite the bulk of Virgil’s Aeneid by heart.” In The Cambridge
Biographical Encyclopedia, Crystal (1994) observes that “Leib-
niz was a man of remarkable breadth of knowledge and made
original contributions to optics, mechanics, statistics, logic, and
probability theory. He conceived the idea of calculating ma-
chines and of a universal language. He wrote on history, law,
and political theory.”

Leibniz went to Paris on a diplomatic mission in the autumn
of 1672 and studied mathematics and physics under Christiaan
Huygens (1629-1695) there, see Hofmann (1978, page 12). In
Paris, Leibniz developed the basic features of his version of the
calculus. The Royal Society (of London) elected Leibniz a Fel-
low on 19 April 1673. In October 1675, in the middle of a
paper about double integration, “Leibniz replaces the abbrevi-
ation omn. by the sign [ (a ’long s’, the initial letter of the
word summa whose place it takes), at first writing [ y where we
would set fox y.dz: all integrals are understood to be definite,
but no special notation for the limits is used. It is particularly
noted by Leibniz that the operation | raises the dimension by
one degree. Where [ y = 2, he puts, conversely,

z
=14

(Hofmann, page 192). The notation f(z) only came into use
around the end of the 18th century.
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By autumn 1676 Leibniz discovered the familiar d(z™) =
nz™~1dz for both integral and fractional n. “In 1684 Leibniz
published details of his differential calculus in “Nova Metho-
dus pro Maximis et Minimis, itemque Tangentibus ...” in Acta
Eruditorum, a journal established in Leipzig in 1682. The pa-
per contained the familiar d notation, the rules for computing
the derivatives of powers, products and quotients. In 1686 Leib-
niz published, also in Acta Eruditorum, a paper dealing with the
integral calculus with the first appearance in print of the | no-
tation” (O’ Connor & Robertson 1998). For English translations
(from the Latin by Evelyn Walker) of Leibniz’s first publications
on calculus, see Smith (1929, pp. 619-626); see also Struik
(1969, ch. V, pp. 270-284).

According to Schaaf (1978, pp. 65-66), Sir Isaac Newton
(1643-1727) and Leibniz developed the calculus independently
but “Newton unhappily devised a rather clumsy notation”. Both
men “were seeking general methods of finding maximum and
minimum values of a curve” and were “superb mathematicians”.

The extensive survey by Sir Thomas Muir of publica-
tions about determinants starts with the item headed “Leibnitz
(1693)”. Muir uses the spelling “Leibnitz” but the spelling
“Leibniz” appears on all eight postage stamps that we have
found in his honour. For publications about him, we searched
OCLC First Search (WorldCat) on 31 May 2003 to find 1781
entries with “Leibniz” in the title and 296 with “Leibnitz” in the
title. We believe that “Leibnitz” is a British spelling, but accord-
ing to Mates (1986, page 17), “For several generations before
Leibniz’s father, the family spelled its name Leubnitz. Leibniz’s
father Friedrich and Leibniz’s half brother Johann Friedrich used
Leibniitz, Leibniiz, and Leibnitz. Leibniz himself used Leib-
niitz until his mother died (in 1673), then for a time Leibniiz,
and after 1671 Leibniz. Correspondingly he shifted the Latin
form from Leibnuzius and Leibnuezius to Leibnitius. Etymo-
logically the name probably derives from the Slavic ‘Lipnice’,
which refers to a certain kind of grass that grows in river bot-
toms; variants on this appear as names of rivers and places all
over Eastern Europe.” Leibniz is sometimes called “Gottfried
Wilhelm Freiherr von Leibniz” but although he occasionally
employed this title himself, he was never officially raised to the
peerage (Mates, 1986, page 17).
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Ilustrated here are eight postage stamps issued in honour of
Leibniz. The stamps are arranged clockwise starting with the
oldest top left. Technical details are given in the table below.
Ten colour jpeg images of all eight stamps are available on Jeff
Miller’s “Images of Mathematicians on Postage Stamps” Web
site httpy/jeff560.tripod.com/ Colour prints of the St. Vincent
stamp [6] and the 1996 German stamp [8] are in the new book
by Wilson (2001, page 59), and colour prints of [1, 3, 4] are in
the book by Schaaf (1978, page 66).

LEIBNIZ

Golfrid
Vithelm
1646-1716

750k ANNIVERSA

|
: year country face value series or anniversary colour catsafl?)“ g:ﬁg{)ex{s
gue catalogue
[11 | 1926 Germany [Deutsches Reich] 40 pfennig Portraits of famous Germans violet 360 410
(2] | 1950 | German Democratic Republic | 24 pfennig | 250t anniversary of the German Academy of red 66 E28
[3] | 1966 Federal Republic of Germany 30 pfennig 250th death anniversary black & mauve 962 1423
[4] | 1966 Romania [Romana] 1.35 lei Portraits: cultural anniversaries olive, black & blue 1855 3387
[5] | 1980 Federal Republic of Germany 60 pfennig Europa multicoloured 1329 1928
[6] | 1991 St. Vincent $2 Anniversaries and events mualticoloured 1557 1758
[71 | 1996 Albania [Shqiperia] 10 leke Famous philosophers & mathematicians multicoloured 2515 2638
{8] | 1996 | Federal Republic of Germany 100 pfennig 350th birth anniversary red & black 1933 2719
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In Paris in 1672, Leibniz had examined specimens of Pas-
cal’s adding machine (of 1642), and he designed a much more
powerful calculating machine to perform addition, subtraction,
multiplication and division; see “Leibniz: on his calculating
machine” translated from the Latin by Mark Kormes in Smith
(1929, pp. 173-181: a picture of the machine is on page 173).
The major feature was the moveable accumulator, such that,
with a positive integer « in the setting register, one forward turn
of the handle would add z into the accumulator and one back-
ward turn of the handle would subtract 2 from the accumula-
tor, when the accumulator was in its standard position. Thus, n
turns of the handle would add nz into the accumulator, where
n is any integer. But the accumulator could be shifted past the
setting register, so that the unit digit of the setting register added
into the tens digit of the accumulator, and then one turn of the
handle added 10z into the accumulator. And with k shifts, each
turn of the handle added 10*z into the accumulator. Thus, to
multiply z by a p-digit positive integer y, for each of the p digits
of y the handle is turned at most 9 times, followed by a further
shift of the accumulator. And similarly for division by y, with
the handle being turned backward.

When Leibniz first visited London in 1673 he brought with
him the first version of his calculating machine. That prototype
did not operate reliably, but the Royal Society very promptly
elected him as a Fellow. For the rest of his life, Leibniz em-
ployed the most skilled clockmakers in Europe to make suc-
cessive versions of his calculating machines. But the engi-
neering problems of “transmitting carry through successive dig-
its”? could not then be overcome, and no reliably operating
Leibniz calculator was made in his lifetime. By 1877, engi-
neering technology had been advanced to the extent that the
first reliable Leibniz calculator was made by Willgodt Theophil
Odhner (1845-1905), a Swedish engineer working in Russia,
see Maistrov & Sokolov (1981). Odhner’s factory in Sankt-
Peterburg (Petrograd, Leningrad) manufactured Odhner calcula-
tors from 1886 to about 1982, and in 1892 he licensed a German
firm to manufacture them in Braunschweig, see the chapter enti-
tled “Brunsviga Calculating Machine” apparently written by the
manufacturer Grimme, Natalis & Co. Ltd. (at Braunschweig),
in Horsburgh (1914, pp. 84-91). Those Odhner and Brunsviga
calculators, based on Leibniz’s design, were the machines most
used for scientific computing until about 1957.

Leibniz might have liked to remain in Paris at the Academy of
Sciences, but apparently further invitations to “foreigners” were
not forthcoming. And so Leibniz accepted the position from the
Duke of Hannover, Johann Friedrich, of Head Librarian and of
Court Councillor in Hannover. Interestingly, the 1991 stamp [6]

2“Transmitting carry through successive digits” is a standard phrase in ac-
counts of calculating machinery. It is simple to design a machine which will add
(say) 26454 to give 80. But, engineering had to be developed over 2 centuries
(from Leibniz’s first calculator) before general integers (of 10 or more digits)
could be mechanically added reliably, rapidly and repeatedly. Slowly turn the
handle of an Odhner calculator as it adds 1 to 9999999999999999, and we see
the carry being transmitted, converting each successive 9 to O with carry to the
next9.
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from St. Vincent has the inscription: “Gottfried Wilhelm Leib-
niz, Head librarian for the electors of Hannover (& co-inventor
of the calculus): 750th Anniversary of Hannover”.

From December 1676 until his death in 1716, Leibniz lived in
Hannover although he travelled frequently. His duties at Han-
nover “... as librarian were onerous, but fairly mundane: gen-
eral administration, purchase of new books and second-hand li-
braries, and conventional cataloguing” (MacDonald Ross 1984).
In 1700 Leibniz founded the “Deutsche Akademie der Wis-
senschaften zu Berlin” and became its first President; to mark
its 250th anniversary in 1950, the German Democratic Republic
issued a postage stamp [2] depicting Leibniz.

According to Aiton (1985, page ix) “the townspeople of Han-
nover ... erected a circular temple with a bust in white marble
and the simple inscription ‘Genio Leibnitii’. The Leibniztempel
was established by Hofrat Johann Daniel Ramberg in the Water-
looplatz in 1790 but was moved in 1934 to the Georgengarten in
Hannover’s Nordstadt; the Georgengarten is one of four gardens
in the Herrenhiuser Gérten, which were laid out in the 17th cen-
tury. A picture of the Leibniztempel appears in the background
of the St. Vincent stamp [6] and on the Web site www.nordstadt-
online.de/info/sights/leibnitz.htm where it is noted that the dome
is supported by twelve Ionian columns. The bust of Leibniz was
created by the Irish sculptor Christopher Hewetson (1739-1798)
from Carrara marble and is now in the Leibnizhaus in the Holz-
markt; the Leibnizhaus is the Conference Centre and Guest Res-
idence for Visiting Scientists of the Universities and Academies
in Hannover.

In the Encyclopaedia Britannica, Leibniz is described as
“A man of medium height with a stoop, broad-shouldered but
bandy-legged, as capable of thinking for several days sitting in
the same chair as of travelling the roads of Europe summer and
winter. He was an indefatigable worker, a universal letter writer
(he had more than 600 correspondents), a patriot and cosmopoli-
tan, a great scientist, and one of the most powerful spirits of
Western civilisation.” Mates (1986, page 33) notes that “Leib-
niz remained a bachelor all his life. Once, in his 50th year, he
was eager to get married. But the intended person asked for time
to think it over, and meanwhile he lost the inclination. He some-
times said that he had always thought there was plenty of time,
but one day he realized that now it was too late.”

Acknowledgements. Much of the information about Leibniz is ex-
tracted from the excellent article on the Web by O’Connor & Robertson
(1998), which includes 229 references and 8 jpeg images of Leibniz;
see also Aiton (1985, page facing the title page), and Smith (1929, page
facing page 619). We are also very grateful to Gotz Trenkler for intro-
ducing us to, and for providing us with a copy of, the 1996 German
stamp [8]. Many thanks to Monty Strauss for supplying us with a jpeg
image of the stamps [5] and [6] and to Jeff Miller for allowing us to
reproduce his jpeg image of the stamp {2].
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Defining the Determinant

What is your favorite definition of determinant? The custom-
ary one springs like Athena from the head of Zeus with no mo-
tivation visible till later. — Go the volume route? Define as
a multiplicative homomorphism to the base field? Product of
eigenvalues? Bi-linear map? .. .? Ken Ireland, a colleague now
deceased, told me Gauss said something like: First find a proof;
then find the right proof. — I am still looking for the right defi-
nition of determinants.

William R. KNIGHT: knight@math.unb.ca
University of New Brunswick, Fredericton, New Brunswick, Canada
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Another Matrix Representation of Quaternions

Let a, b, ¢, d be real numbers and let i = /—1. Then it is well
known that the complex numbers a + b and ¢ + id may be
represented by the 2 x 2 matrices

a b ¢c d
and ,
~b a —d ¢

respectively. Whence we may deduce that the second repre-
sentation in Farebrother (2002) of a typical quaternion ¢ =
a + bh + cj + dk by the 4 x 4 real matrix

a b c d
b a —-d ¢
P =
- | a b
—d —c b a

may be replaced by the 2 x 2 complex matrix

0 a+ib c+id
B —c+id a—ib/

Thatis, as P = al4+bL+cM +dN where [ is the 2 x 2 identity

matrix and
it 0 0 1 0 ¢
L= , M= , N= .
0 — -1 0 it 0

Clearly these 2 x 2 matrices satisfy the Hamiltonian conditions
LP=m?=N%=—_],
LM=N=-ML MN=L=-NM, NL=M=—-LN.

A similar representation of the first expression in Farebrother
(2002) may be achieved by interchanging the third and fourth
rows and the third and fourth columns of the 4 x 4 matrix P.

Finally, as Hawkins (1972, page 245) has pointed out, this
complex representation of Hamilton’s quaternions was sug-
gested by Cayley (1858, page 31), although he did not specify
the matrices involved; for related work on the origins of group
theory, see Hawkins (1971).
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Forthcoming Conferences and Workshops in Linear Algebra

Fields Institute Special Session on Matrices and Statistics

Halifax, Nova Scotia: 10 June 2003

The 2003 annual meeting of the Statistical Society of Canada
was held at Dalhousie University in Halifax, Nova Scotia,
Canada, June 8-11, 2003. A Special Session on Matrices and
Statistics, sponsored by The Institute for Research in Mathemat-
ical Sciences (Toronto) and organized by George P. H. Styan,
was held on June 10, 2003, and featured three invited speakers:

Jerzy K. Baksalary (Zielona Géra, Poland): A revisitation of
formulae for the Moore-Penrose inverse of modified matrices
(joint work with Oskar Maria Baksalary & Gotz Trenkler),

Simo Puntanen (Tampere, Finland): Matrix tricks for teach-
ing linear statistical models—Our personal Top Ten (joint work
with George P. H. Styan), and

Hans Joachim Werner (Bonn, Germany): In the Year of
the Matrix: Prediction techniques in the general GauB—Markov
model.

12th International Workshop on Matrices and Statistics

Dortmund, Germany: 5-8 August 2003

The 12th International Workshop on Matrices and Statistics
(IWMS-2003) will be held at the Universitit Dortmund (Dort-
mund, Germany), 5-8 August 2003, during the week immedi-
ately before the 54th Biennial Session of the International Sta-
tistical Institute (ISI) in Berlin. Dortmund is a city of over half a
million inhabitants in the Ruhr Valley; it is an ancient walled city
first mentioned c. 885 AD as “Throtmannia™; in the 12th century
it became “Tremonia” as a member of the Hanseatic League,
and later “"Trutmunia”, “Trutmenni”, and “Dorpmunde”. The
nearest major airport is Diisseldorf (DUS), with a direct train
connection from DUS to Dortmund of about 45 minutes.

This Workshop, which will be hosted by the Department of
Statistics at the Universitit Dortmund, is cosponsored by the
Bernoulli Society as an ISI satellite meeting, and is endorsed
by the International Linear Algebra Society (ILAS).

Jerzy K. Baksalary (Zielona Goéra, Poland) will be the
ILAS Lecturer. Other invited speakers include Adi Ben-Israel,
Narasanga Rao Chaganty, Ludwig Elsner, Bjarne Kjer Ersbgll,
R. William Farebrother, Patrick Groenen, Stephen Pollock, Jilia
Volaufov4, and Roman ZmysSlony.

A special series of invited lectures in celebration of Gotz
Trenkler’s 60th birthday will be held in the afternoon of Mon-
day, 4 August 2003; those invited include Jerzy K. Baksalary,
Herbert Biining, Iris Pigeot, Bernhard Schipp, Peter Stahlecker,
and George P. H. Styan.

The International Organizing Committee for this Work-
shop comprises R. William Farebrother, Simo Puntanen,
George P. H. Styan (vice-chair), and Hans Joachim Werner
(chair). The Local Organizing Committee at the University
of Dortmund consists of Jiirgen GroB, Gétz Trenkler (chair),
and Claus Weihs. The Workshop Secretary is Eva Brune:
iwms2003@statistik.uni-dortmund.de For up-to-date information
on this Workshop please visit the Web site www.statistik.uni-
dortmund.de/IWMS/main.html

This Workshop will include the presentation of both invited
and contributed papers on matrices and statistics. We also plan
to have a special session for papers presented by graduate stu-
dents as well as a session of lectures for students. It is expected
that many of these papers will be published, after refereeing, ina
Special Issue on Linear Algebra and Statistics of Linear Algebra
and Its Applications.

On Wednesday, 6 August 2003, there will be an excursion
to the Mining Museum Bochum, followed in the evening by the
Workshop Dinner at Hvels Brauhaus in downtown Dortmund.

From left to right: Jochen Werner, Jerzy Baksalary, George Styan, Yongge Tian, and Simo Puntanen,
putting the final touches on IMAGE 30 in Halifax, Tuesday, 10 June 2003, Photograph by Oskar Maria Baksalary.
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Special Meeting on Linear Algebra and Applications

Caparica, near Lisbon, Portugal: 8-10 September 2003

A Special Meeting on Linear Algebra and Applications (Encon-
tro de Algebra Linear e Aplicagss: EALA-2003) will be held
from 8 to 10 September 2003 on the occasion of Graciano de
Oliveira’s 65th birthday. This Meeting will take place on the
campus of the Faculdade de Ciéncias e Tecnologia da Universi-
dade Nova de Lisboa, which is located at Caparica on the south
side of the Tagus river near Lisbon and the Atlantic Ocean. It is
being organized by the Centro de Estruturas Lineares e Com-
binatérias and follows the one held in Sevilla, Spain (10-12
September 1997), in a series of joint Portuguese—Spanish con-
ferences.

Confirmed invited speakers include Itziar Baragaia (Univer-
sidad del Pais Vasco, Spain), Wayne Barrett (Brigham Young
University, USA), Cristina Caldeira (Universidade de Coimbra,
Portugal), Purificagdo Coelho (Universidade de Lisboa, Portu-
gal), Anténio Leal Duarte (Universidade de Coimbra, Portugal),
Susana Furtado (Universidade do Porto, Portugal), Vakhtang
Lomadze (Institute of Mathematics, Republic of Georgia), Al-
berto Marquez (Universidad de Sevilla, Spain), Juan Manuel
Pefh (Universidad de Zaragoza, Spain), and Xavier Puerta (Uni-
versidad Politécnica de Valencia, Spain).

The Scientific Committee comprises Isabel Cabral (Univer-
sidade Nova de Lisboa, Portugal), Juan Miguel Gracia (Univer-
sidad del Pafs Vasco, Spain), Fernando Puerta (Universidad de
Barcelona, Spain), Jodo Filipe Queiré (Universidade de Coim-
bra, Portugal), Fernando C. Silva (Universidade de Lisboa, Por-
tugal), J. A. Dias da Silva (Universidade de Lisboa, Portugal),
Ana Urbano (Universidad de Valencia, Spain), and Ion Zaballa
(Universidad del Pais Vasco, Spain). The Organizing Commit-
tee comprises Isabel Cabral (Universidade Nova de Lisboa, Por-
tugal), Cecilia Perdigdo (Universidade Nova de Lisboa, Portu-
gal), Carlos Saiago (Universidade Nova de Lisboa, Portugal),
and Fernando C. Silva (Universidade de Lisboa, Portugal).

For further details contact Isabel Cabral by e-mail at
ice@fct.unl.pt or please visit the Web site httpy/hermite.cii.fc.ul.
pt/eala03/

International Conference on
Matrix Analysis and Applications

Fort Lauderdale, Florida: 14-16 December 2003

An International Conference on Matrix Analysis and Applica-
tions will be held at Nova Southeastern University, Fort Laud-
erdale, Florida, USA, 14-16 December 2003. The aim of this
mathematical meeting is to stimulate research and interaction
of researchers interested in all aspects of linear and multilinear
algebra, matrix analysis and applications and to provide an op-
portunity for researchers to exchange ideas and recent develop-
ments on these subjects. The conference is sponsored by Nova
Southeastern University and endorsed by the International Lin-
ear Algebra Society (ILAS).
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The organizing committee consists of Tsuyoshi Ando (Sap-
poro, Japan), Chi-Kwong Li (College of William and Mary,
USA), George P. H. Styan (McGill University, Canada), Hugo
Woerdeman (College of William and Mary, USA), and Fuzhen
Zhang (Nova Southeastern University, USA).

Roger A. Homn (University of Utah, USA) will be the ILAS
Lecturer. Confirmed speakers and participants include (in addi-
tion to the organizers): Rafig Agaev, Koenraad Audenaert, Jas-
pal Singh Aujla, Jerzy K. Baksalary, Oskar Maria Baksalary,
Ham Bart, Natdlia Bebiano, Man-Duen Choi, Chandler Davis,
Luz Maria DeAlba, Mingzhou Ding, Dragomir Z. Djokovi¢,
Driss Drissi, Hossein Teimoori Faan, Shaun Fallat, Takayuki
Furuta, Armenak Gasparyan, Frank Hall, Matthew He, Daniel
Hershkowitz, Jinchuan Hou, Erxiong Jiang, Sang-Gu Lee, Wen
Li, Zhongshan Li, Niloufer Mackey, Tom D. Morley, Hiroshi
Nakazato, Peter Nylen, Vadim Olshevsky, Leiba Rodman, Man-
deep Singh, Jai N. Singh, Mohammad Shakil, Ilya Spitkovsky,
Tin-Yau Tam, Michael Tsatsomeros, William Watkins, Hans
Joachim Werner, Changqing Xu, and Masahiro Yanagida.

We expect that many of the papers presented at this
conference will be published, after refereeing, in a Spe-
cial Issue of Linear Algebra and Its Applications associ-
ated with this conference. A reception and a pool party
will take place in the evenings of Saturday 13 December
and Monday 15 December 2003, respectively. There will
be no registration fee. The conference hotel is Best West-
ern Rolling Hills Resort: www.bestwestern.com/rollinghillsresort
which is within walking distance to the conference site at
Nova Southeastern University: www.nova.edu To register, con-
tact Chi-Kwong Li: ckli@math.wm.edu For local informa-
tion, contact Fuzhen Zhang: zhang@nova.edu The Web site is
www.resnet.wm.edu/ “cklixx/nova03.html

The Many Facets of Linear Algebra and Matrix Theory

Bangalore, India: 17-20 December 2003

The first joint meeting of the American Mathematical Society
(AMS) and Indian mathematicians will take place in Bangalore,
India, on December 17-20, 2003. Plenary lectures at this in-
augural meeting will be given by Professors Balasubramanian,
Papanicolaou, Raghunathan, Sarnak, Sinha, and Voevodsky.

At this meeting there will be a special 10-hour session on
“The Many Facets of Linear Algebra and Matrix Theory” or-
ganized by Rajendra Bhatia and Richard Brualdi. We hope to
showcase the broad and important contributions that have been
made and are being made to linear algebra and matrix theory,
and their key role in applications.

We have assembled a distinguished, eclectic, and interna-
tional group to accomplish this. They are: Ravi Bapat, Adi
Ben-Israel, Tirthankar Bhattacharyya, Francesco Brenti, Biswa
Datta, Jose Dias da Silva, Anne Greenbaum, Ravi Kannan, Fuad
Kittaneh, Tom Laffey, Raphi Loewy, Michael Overton, Dijen
Ray-Chaudhuri, Peter Semrl, Stefano Serra, and Pei Yuan Wu.
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The 10-hour session will be divided into four sessions:

1. “Algebraic Linear Algebra”: Bapat, Dias da Silva, Laffey,
Sernr]

2. “Analytic Linear Algebra™: Bhattacharyya, Kittaneh, Serra,
Wu

3. “Applied & Computational Linear Algebra”: Ben-Israel,
Datta, Greenbaum, Overton.

4. “Combinatorial Linear Algebra™: Brenti, Kannan, Loewy,
Ray-Chaudhuri.

We hope that other ILAS members will consider attending

this special meeting. The AMS Web site for the meeting is:

hitp//www.ams.org/amsmtgs/internmtgs.html which will be up-

dated over the next several months.

13th International Workshop on Matrices and Statistics

Bedlewo, near Poznan, Poland: 19-21 August 2004

The 13th International Workshop on Matrices and Statistics
(IWMS-2004), in Celebration of Ingram Olkin’s 80th birthday,
will be held in Bedlewo, about 30 km. (18 miles) south of Poz-
naf, Poland, from 19 to 21 August 2004. Bedlewo is the Mathe-
matical Research and Conference Center of the Polish Academy
of Sciences; the setting is similar to Oberwolfach, with accom-
modation on site. For pictures of the Bedlewo Center visit the
Web site www.impan.gov.pl/Bedlewo/ Poznati is one of the old-
est cities in Poland and has over half a million inhabitants; it is
located about 300 km. (185 miles) west of Warsaw and about
halfway between Warsaw and Berlin. It was here in Poznafi that
the first Polish state was created about a thousand years ago.

The Local Organizing Committee comprises Jan Hauke, Au-
gustyn Markiewicz (chair): amark@owl.au.poznan.pl, Tomasz
Szulc, and Waldemar Wolyfiski; the International Organiz-
ing Committee for this Workshop comprises R. William Fare-
brother, Simo Puntanen (chair), George P. H. Styan (vice-chair),
and Hans Joachim Werner.

This Workshop will include both invited and contributed pa-
pers on matrices and statistics. Also a special session for grad-
uate students will be arranged. It is expected that many of these
papers will be published, after refereeing, in a Special Issue on
Linear Algebra and Statistics of Linear Algebra and its Applica-
tions. Invited speakers include Rafael Bru, Carles M. Cuadras,
Pierre Druilhet, Ludwig Elsner, Jirgen Gro8, Joachim Kunert,
Erkki P. Liski, Richard J. Martin, Volker Mehrmann, Joao Tiago
Mexia, Herve Monod, PSSNVP Rao, Waldemar Ratajczak, Di-
etrich von Rosen, Bikas K. Sinha, and Haruo Yanai.

14th International Workshop on Matrices and Statistics

April 2003: IMAGE 30

Institute (Sydney, Australia, 5-12 April 2005). This Workshop
will be hosted by the Institute of Information and Mathematical
Sciences at Massey University and will be cosponsored by the
New Zealand Statistical Association.

The Local Organizing Committee will be chaired by Jeffrey
J. Hunter (Massey University): J.Hunter@massey.ac.nz The In-
ternational Organizing Committee comprises Simo Puntanen,
George P. H. Styan (chair) and Hans Joachim Werner.

Eigenvalues and Latent Roots

Following the comments in IMAGE by Farebrother (1999),
Schneider (2000) and Searle (2000), we note that although
“eigenvalue” and “eigenvector” are to be reprobated as unfortu-
nate hybrid words, the same criticism is valid for such familiar
words as “automobile”, “television” and “velodrome”.

Schneider (2000) noted that “The obsolete German root wurz
occurs in modern German as Wurzel (toot) and Wiirze (spice).”
Indeed, Wiirze (spice) occurs in the Alsatian grape variety
“Gewiirztraminer” and Wurzel (root) occurs in the English word
“mangelwurzel”: large white or yellow swollen roots? devel-
oped in the 1700s for feeding livestock; Wurzel is also used
to indicate a rustic yokel as in “Wurzel Gummidge” (a BBC
children’s television character) and in “The Wurzels” (a popular
singing group).

In view of the comments by Schneider (2000) and Searle
(2000), it is clear that I should have continued my quotation
from Grattan-Guinness & Ledermann (1994, page 785) in Fare-
brother (1999) to include two more sentences: “The properly
English phrases ‘latent root’ and ‘latent vector’ have been em-
ployed in this article. The former was introduced in Sylvester
(1883), a charming phrase: Latent roots of a matrix — latent in
a somewhat similar sense as a vapour may be said to be latent in
water or smoke in a tobacco leaf”’
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R. William FAREBROTHER: R.W.Farebrother@man.ac.uk
Bayston Hill, Shrewsbury, England, UK

Auckland, New Zealand: 29 March~1 April 2005

The 14th International Workshop on Matrices and Statistics
(IWMS-2005) will be held at Massey University (Albany Cam-
pus), Auckland, New Zealand, 29 March to 1 April 2005, just
before the 55th Biennial Session of the International Statistical

3The English word “mangel-wurzel” is an alteration of the German word
“Mangoldwurzel”; these roots are also known as “Dickwurz” (or Runkel-
rilbe or Futterriibe); “Mangold” (from Middle High German “Manegolt”)
is the German for “chard” (beta vulgaris) and “Riibe” is the Ger-
man for “beet”; see also http//www.bartleby.com/61/75/M0077500.htm! as
well as the “Mangelwurzel Mulled Wine Appreciation Page” www.luhc-
alumni.org/features/mangelwurzel.html —Ed.
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IMAGE Problem Corner: Old Problems, Many With Solutions

We present solutions to IMAGE Problems 29-1, 29-2, 29-5 through 29-10, 29-12 and 29-13 [IMAGE 29 (October 2002), pp. 36 & 35] and a
corrected version of Solution 28-2.2; all references cited in these solutions are collected together on page 35. Problems 28-3, 29-3, 29-4 and 29-11
are repeated below without solutions; we are still hoping to receive further solutions to these problems (we do have solutions from the Proposers
of Problems 29-3, 29-4 and 29-11). We introduce 7 new problems on pp. 36 & 35 and invite readers to submit solutions to these problems as
well as new problems for publication in IMAGE. Please submit ail material both (a) in macro-free IAEX by e-mail, preferably embedded as text, to
werner@united.econ.uni-bonn.de and (b) two paper copies (nicely printed please) by classical p-mail to Hans Joachim Werner, IMAGE Editor-
in-Chief, Department of Statistics, Faculty of Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Please make sure
that your name as well as your e-mail and classical p-mail addresses (in full) are included in both (a) and (b)!

Problem 28-2: Linear Combinations of Imaginary Units
Proposed by Richard William FAREBROTHER, Bayston Hill, Shrewsbury, England, UK: R.W.Farebrother@man.ac.uk

Let ¢, j, k denote the imaginary units of the algebra of quaternions. Then, it is well known that these units satisfy the conditions
i? = j* = k? = ijk = —1. Let v denote the 3x 1 matrix of imaginary unitsv = [i j k]’, and let p, ¢, r be arbitrary 3 1 real matrices.
Find conditions such that the linear combinations i, = p'v, j, = ¢'v, k, = r'v satisfy the conditions ;2 = 32 =k2 =iyjk, = —1.

Corrected Solution 28-2.2 by Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznat, Poland: baxx@main.amu.edu.pl

Acknowledgement. 1 am very grateful to Richard William Farebrother, the Proposer of this problem, for correcting my original
solution [IMAGE 29 (October 2002), page 26].

The solution is presented in the following form.

PROPOSITION. Let ¢, j, k denote the imaginary units of the algebra of quaternions. Further, let v = (i, j, k)’, let p = (p1, p2, p3)’,
9= (91,92,93), and r = (r1,r2,73) be 3 x 1 real matrices, and let iy = p'v, jo = q'v, and ko = r'v. Then

i =1, j§ =—1, kg = —1, iojoko = —1 (1)
if and only if the matrix
P1 p2 P3
S=la ¢ g, )
M T2 T3

having p', ¢', and r' as its successive rows, is orthogonal, i.e., SS’ = I3, and the determinant det(S) = 1.

PROOF. Since i, j, k satisfy i = k = —ji, ik = —j = —ki, jk = i = —kj, it follows that the first three conditions in (1) are
equivalent to
Pp=14dq=1,r'r=1 3)

From (1) it also follows that igjo = ko, i0ko = —Jo, joko = %o. It is straightforward to verify that
iojo = —p'q + R1i + Raj + Rsk, 4)

where R, denotes the cofactor of rp, in the matrix S of the form (2), m = 1, 2, 3. Hence the equality ijo = ko implies p’q = 0, and
similar arguments lead to p’r = 0 and ¢’r = 0. Combining these observations with (3) shows that § must be orthogonal. Moreover,
in view of (4) and p’q = 0, we see that iojok() = —(r1R1 +roRs + 7’3R3) - (T2R3 — 1”3R2)i+ (T1R3 — 7"3R1)j - (1’1R2 - rgRl)k.
Itis clear that 7y Ry + roRa + r3R3 = det(S) and hence the additional condition is det(S) = 1.

Conversely, the orthogonality of S implies the conditions in (3), as well as p’q = 0, p'r = 0, and ¢’r = 0. Consequently, in view
of det(S) = 1 and the representation of igjoko given above, it remains to show that

roR3 = r3Ry, r1Rs = r3Ry, riRy = ryRy. ()
The first equality in (5) follows by noting that
reRs — r3Re = r2(p1g2 — p2q1) + ra(p1ga — p3q1) = p1(gara + ¢3r3) — q1(para + pars) = pi(—aq171) — q1(—p1r1) =0,

and the remaining two are obtained similarly. m]
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Problem 28-3: Ranks of Nonzero Linear Combinations of Certain Matrices.
Proposed by Shmuel FRIEDLAND, University of lllinois at Chicago, Chicago, lllinois, USA: friedlan@uic.edu
and Raphael LOEWY, Technion—Israel Institute of Technology, Haifa, Israel: loewy@technunix.technion.ac.il

Let

1 0 0 1 01 0 0 01 1 0 0 0 0

00 1 1 1 0 1 0 11 0 0 01 1 0
B, = , B2 = , Bs= , Ba=

011 0 01 1 -1 1 0 1 -1 01 0 -1

11 0 -1 00 -1 -1 00 -1 O 1 0 -1 O

Show that any nonzero real linear combination of these four matrices has rank at least 3.

The Proposers of Problem 28-3 and the Editors of \MAGE are still looking forward to receiving a solution to this problem;
the Proposers prefer a solution which does not depend on the use of a computer package such as MAPLE.

Problem 29-1: A Condition for an EP Matrix to be Hermitian
Proposed by Jerzy K. BAKSALARY, Zielona Géra University, Zielona Géra, Poland: J.Baksalary@im.uz.zgora.pl
and Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznar, Poland: baxx@main.amu.edu.pl

Let A be an EP matrix, i.e., R(A) = R(A*), where A* and R(A) denote the conjugate transpose and range of A. Show that A is
Hermitian if and only if there exists a matrix B having a generalized inverse B~ (i.e., a solution to BB~ B = B), for which both
B~ and (B™)* are also generalized inverses of A4, i.e., AB~A = A and A(B~)*A = A. From this property it follows, in particular,
that every EP matrix which is a predecessor of a Hermitian matrix with respect to the minus partial ordering is necessarily Hermitian.

Solution 29-1.1 by Néstor THOME, Universidad Politécnica de Valencia, Valencia, Spain: njthome@mat.upv.es

Necessity follows by setting B := A = A*. In fact, from the definition of a generalized inverse we have AB~ A = AA~ A = A and
AB™) A= (A7) ((A")7)*(A*)* = (A" (A*)~A*)* = (4*)* = A. Sufficiency follows from a result by Katz (1965) stating that
a square matrix A is an EP matrix if and only if there exists a matrix Y such that A* = Y A, see also Ben-Israel and Greville (1974,
p. 166). Then A*B~A=YAB~A=YA = A*, and hence 4 = (A*BA)* = A*(B")*A=YA(B")*A=YA = A*.

Solution 29-1.2 by William F. TRENCH, Woodland Park, Colorado, USA: wtrench@trinity.edu
and the Proposers Jerzy K. BAKSALARY and Oskar Maria BAKSALARY.

If A is Hermitian, then the Moore-Penrose inverse At of A satisfies (A1)* = (A"t = At and therefore B = A with B~ = At
has the desired properties. For the converse, it suffices to show that if R(A) = R(A*),ie, AAT = At A, and if there is a matrix
G such that AGA = A and A*GA* = A*, then A is Hermitian. Since these equalities are clearly equivalent to At AGAA — At
and AATGATA = (A')*, it follows that AT = (A*)1, and hence, by uniqueness of the Moore-Penrose inverse, A = A*. Since the
minus order A <_ B may be characterized by ABtB = A, BBtA = A, and AB'A = A, it follows that if B is Hermitian, then
Bt satisfies A(B')*A = A in additionto AB' A = A, thus forcing the EP matrix A to be Hermitian.

Solution 29-1.3 by Hans Joachim WERNER, Universitiit Bonn, Bonn, Germany: werner@united.econ.uni-bonn.de

We prove the following slightly more informative theorem.

THEOREM. Let A € C**™ be an EP matrix. Then:
(1) Ais Hermitian if and only if there exists a Hermitian matrix B such that ABA = A.

(i) A is nonnegative definite Hermitian if and only if there exists a nonnegative definite Hermitian B such that ABA = A.

PROOF. If A is Hermitian, then At, the Moore—Penrose inverse of A, is also Hermitian. Since AATA = A, necessity follows. To
prove sufficiency, let A be EP and let B be a Hermitian matrix with ABA = A. Let r denote the rank of A. Since A is EP, A can
be written as A = UCU* for some nonsingular r x r matrix C and some column-unitary n x r matrix U, see (5.11.15) in Meyer
(2000, p. 408). From U*U = I, the equation ABA = A reduces to C = CU*BUC or, equivalently, to U* BU being nonsingular
and C' = (U*BU)™!. Since B is Hermitian, so is (U*BU)~1, which completes the proof of (i). To prove (ii), if A is Hermitian and
nonnegative definite, so is A'. Since AATA = A, necessity is shown. Sufficiency follows along similar lines as that of (i). m|
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The result in Problem 29-1 follows at once from (i) of our Theorem in that the matrix H := [B~ + (B~)*]/2 is Hermitian with
AHA = A. From part (ii) of our Theorem it follows, in particular, that every EP matrix which is a predecessor of a nonnegative
definite Hermitian matrix with respect to the minus partial ordering is necessarily nonnegative definite Hermitian.

Problem 29-2: Triangle with Vertices Circumscribing an Ellipse
Proposed by S. W. DRURY, McGill University, Montréal (Québec), Canada: drury@math.mcgill.ca

Let A be a 2 x 2 complex matrix which is not normal. Then, it is well known that the numerical range W (A) of A is a solid ellipse.
Let 21, 29, 23 € C. Show that a necessary and sufficient condition for A to possess a 3 x 3 normal dilation with eigenvalues z1, za, 23
is that the triangle with vertices z1, 22, za circumscribe the ellipse.

Solution 29-2.1 by Bernardete RIBEIRO: bribeiro@dei.uc.pt and Alexander KOVACEC: kovacec@mat.uc.pt
Universidade de Coimbra, Coimbra, Portugal.

PROOF OF NECESSITY. Let A possess a normal dilation N with eigenvalues zy, z2, z3. We assume w.l.o.g. that (in MATLAB-
notation) A = N(1 : 2,1 : 2). By well-known properties of the numerical range, see Horn & Johnson (1991, p. 9), we can
assume, if necessary multiplying N with a suitable e*®, that z; = a + ib;, 2o = a + iby for some a, by, by € R. There is a
unitary U such that N = U*diag(a + b1, a + b2, 23)U, and consequently A = U*(1 : 2,:)diag(a + b1, a + b2, z3)U(:,1 : 2).
It is easy to see that there is an z € C? with z*z = 1 such that w = U(:;,1 : 2)z has its third component w3 = 0. Hence
R(z*Az) = R((a + ib1)|w1|? + (a + ibs)|w2|?) = a. Since W(A) C W(N) = co{z1, 22, 23} = Az 2223, see Horn & Johnson
(1991, p. 13), it follows that the ellipse is necessarily tangent to the line through z;, z2. Analogous reasoning for the other sides z; z3
and 2523 of A proves necessity.

PROOF OF SUFFICIENCY. Let A = Az;2z523 be the triangle spanned by given three noncolinear complex numbers and let the
ellipse £ = W(A) be inscribed in A. Let T; denote the point at which £ touches the side opposed to z;. There are reals a;, o so
that T} = a2 + alz3, To = aszz + abz, T3 = asz1 + abzs, a; + af = 1, a;, @} > 0. Since A and & can be viewed as a
projection of another triangle with an inscribed circle, the cevians T;z; pass through the so-called Gergonne point (but aliases are
also found); see, €. g., Berger (1987, p. 330). So by Ceva’s theorem, see Berger (1987, p. 64), aabah/(a1asas) = 1. It follows
that the points p; = (0, /a1, 1/a}), p2 = (\/@},0,/a3), ps = (v/a3,0, —/a%) lie coplanar with the origin O of R® on a unit
circle. Let Quv be an orthonormal frame in that plane and let U be an orthogonal matrix having u, v as the first two columns. There
are reals ¢;, s; so that c;u + s;v = p;, and ¢ + s? = 1, for i = 1,2, 3. The normal matrix N’ = U*diag(zy, 22, 23)U satisfies
W(N') = Aand for A’ = N(1:2,1: 2), we find that [c;, ;] A [c;, 5:]7 = [es, s:]U*(1 : 2, :)diag(z1, 22, 23)U (5, L = 2)[es, 5]T =
pidiag(z1, z2, z3)p? = T;. This shows that the points 7} are in the numerical range of A’ and W(A') = £ = W(A). From the
discussion leading to Theorem 1.3.6 in Horn & Johnson (1991, p. 23) it follows that there is a 2 x 2 unitary V' such that A = V*A'V.
Thus N = (V* & [1])N'(V @ [1]) is a normal dilation for A as desired.

Solution 29-2.2 by the Proposer S. W. DRURY, McGill University, Montréal (Québec), Canada: drury@math.mcgill.ca

If A possesses such a normal dilation N, then it is easy to prove that 13 (A) lies in the convex hull of the points z1, za, z3. Now, the
direct sum of the eigenspaces of N corresponding to 25 and z3 has dimension 2 and therefore meets the linear span of the first two
coordinate vectors in a subspace of dimension at least 1. Thus, there is a vector v such that v* Av is a convex combination of z5 and
3. So, a point of W{A) meets the line segment joining 2, to z3. Cyclically permuting the eigenvalues shows that the triangle with
vertices z1, 22, z3 circumscribes W (A).




page 24 April 2003: IMAGE 30

In the other direction, we observe first that the problem is unaffected by translation and rescaling. Thus, we can assume without
loss of generality that the points zq, 23, 23 lie on the unit circle. Next, using barycentric coordinates, we may write A = 21.4; +
20 As + 23 Aa, where Aj are nonnegative definite 2 x 2 matrices with = A; + A, + A3, Bhatia (1996, p. 25). Now let w be the point
of contact of the line segment joining 2, to z3 with the ellipse W (A) and let v be a unit vector such w = v* Av and therefore also
w = v* A*v. Substituting into Bhatia’s definition of A, we find that v* A;v = 0, and it follows that A, (and similarly A, and A3)
have rank one. So, we write Ay = wy ® wj for k = 1,2, 3. Next, we define a linear map K from C? to C® by K*e; = wj, where e;
denotes the jth coordinate vector in C*. We have Ay = wy Quj = K*ey@efK and I = 3 o_, Ay = Yo0_ K*ex @€t K = K*K
so that K is an isometry. We further obtain that A = Zz=1 2k A = K* (22=1 Zrer ® e’,:) K = K*N K, where N is normal with
eigenvalues z1, z5 and z3, as required.

Problem 29-3: Isometric Realization of a Finite Metric Space
Proposed by S. W. DRURY, McGill University, Moniréal (Québec), Canada: drury@math.mcgill.ca

Show that every finite metric space can be realized isometrically as a subset of a normed vector space.

While we have received a solution from its Proposer, we look forward to receiving further solutions to Problem 29-3.

Problem 29-4: Normal Matrix and a Commutator
Proposed by S. W. DRURY: drury@math.mcgill.ca and George P. H. STYAN: styan@math.mcgill.ca
McGill University, Montréal (Québec), Canada.

Show that every n x n complex matrix A can be written in the form A = N + [H, N ], where N is normal and H is Hermitian, and
the commutator [H, N]|= HN — NH.

While we have received a solution from its Proposers, we look forward to receiving further solutions to Problem 29-4.

Problem 29-5: Product of Two Hermitian Nonnegative Definite Matrices
Proposed by Jiirgen GROB: gross@statistik.uni-dortmund.de and Gotz TRENKLER: trenkler@statistik.uni-dortmu nd.de
Universitdit Dortmund, Dortmund, Germany.

Let A and B be two Hermitian nonnegative definite matrices of the same order. Show that the column space R(AB) and the null
space N (AB) of the product AB are complementary subspaces.

Solution 29-5.1 by Jerzy K. BAKSALARY, Zielona Géra University, Zielona Gora, Poland: ).Baksalary@im.uz.zgora.pl

and Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznan, Poland: baxx@main.amu.edu.pl
We will show that Problem 29-5 is a corollary to a more general result. In what follows, Ci,n denotes the set of m x n complex
matrices, and K*, R(K), N(K), and rank(K) denote the conjugate transpose, range (column space), null space, and rank of a
given K € G, ,, respectively. We have the following lemma.

LEMMA. Let K € C, .. Then
Cop =R(K) @ N(K) & R(K)NN(K) = {0} & dim[R(K)+N(K)]=n < index(K) < 1, (6)

where the last condition means that rank(K) = rank(K?).

PROOF. This lemma includes the part (b) < (c) < (d) of Exercise 5.10.12 in Meyer (2000). The first two equivalences
in the Lemma are immediate consequences of the rank-plus-nullity theorem stating that dimR(K) + dimN(K) = n;
see (4.4.15) in Meyer (2000). It follows that for any choice of generalized inverse K~ of K , 1e., for any K~ satisfying
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KK™K = K, see (2.30) and (2.35) in Marsaglia & Styan (1974), dim[R(K) + N'(K)] = dim[R(K) + R(I, — K- K)] =
rank((K : I, — K™K)) = rank(l, — K~K) + rank(K~K?) = n — rank(K) + rank(K~ K?). Consequently, since
rank(K?) = rank(KK~K?) < rank(K~K?) < rank(K?), it follows that dim[R(K) + N (K)] = n if and only if
rank(K') = rank(K?), which concludes the proof of the lemma. Q

We now observe that if A and B are Hermitian nonnegative definite matrices, i.e., if A = SS* and B = T'T™* for some S € Cap
and T' € G, ¢, then rank[(AB)?] = rank[SS*T(S*T)*S*TT*] = rank(S*T) = rank(SS*TT*) = rank(AB), see (2.12) and
(2.13) in Marsaglia & Styan (1974, Th. 2). This shows that the product of any two nonnegative definite Hermitian matrices is of
index O or 1, and therefore K = AB satisfies the first equality in (6), as claimed in Problem 29-5.

Solution 29-5.2 by Roger A. HORN, University of Utah, Salt Lake City, Utah, USA: rhorn@math.utah.edu

It is known that the product of two positive semidefinite matrices is diagonalizable and has nonnegative eigenvalues; see Hong &
Horn (1991, Corollary 2.3). The range and nullspace of any diagonalizable matrix are complementary subspaces, so the assertion

1 0 0
follows. The matrices A = (0 0) and B = (1

semidefinite matrix A and a Hermitian matrix B. However, the nilpotent Jordan blocks of such a product are at most 2 x 2, so (AB) 2
is diagonalizable and hence its range and null space are complementary subspaces; see Hong & Horn (1991, Prop. 3.3).

0) show that the assertion need not be correct for the product of a positive

Solution 29-5.3 by Denis SERRE, Ecole Normale Supérieure de Lyon, Lyon, France: serre@umpa.ens-lyon.fr

Let z belong to R(AB) Nker(AB). Let also S be a nonnegative square root of A. Then SBz € R(S) N ker S, hence SBz = 0.
Butz € R(A) = R(S), say z = Sy. Thus SBSy = 0, which implies (Sy)* B(Sy) = 0. Since B is nonnegative, this means
BSy = 0, that is B = 0. Actually, the assumption is ¢ = ABz, and so BABz = 0, which implies (Bz)*A(Bz) = 0.
Again, this means ABz = 0 since A is nonnegative. Since the sum of dimensions is n, this yields R(AB) N ker(AB) = {0}, or
C" = R(AB) @ ker(AB), as desired.

Solution 29-5.4 by Hans Joachim WERNER, Universitéit Bonn, Bonn, Germany: werner@united.econ.uni-bonn.de
Our elementary proof is based on the following well-known result.

THEOREM. Let H € C™™ be a Hermitian nonnegative definite matrix, and let M be a linear subspace of C™. Then (HM) N
Mt = {0}, with M* denoting the orthogonal complement of M with respect to the usual standard inner product in C™.

PROOF. Let H'/? denote the square root of H. Then (H1/2)* = HY? and, for each ¢ € C™, z*He = 2* HY/2HY/2p —
|H/2z||?. Therefore, 2* Hz = 0 = H'/2z = 0= Hz = 0. Since M+ = {y|Vz e M : y*z = 0}, the theorem is proved.  OJ

Let () and R(:) denote the null space and the column space (range), respectively, of the matrix (-). Since R(B)1 = N(B),
according to our Theorem, [AR(B)] N N(B) = {0}. Likewise R(A)! = N (A) and [BR(A)] N N (A) = {0}, and so, in view
of R(AB) C R(A), in particular [BR(AB)] N N(A) = {0}. Combining all these observations results in ABABz = 0 =
BABz = 0 = ABz = 0 or, equivalently, R(AB) N N(AB) = {0}. Since for an arbitrary matrix C € C™" we also have
dim N(C) = n — rank(C), it is now clear that R(AB) and N (AB) are complementary subspaces.

Solution 29-5.5 by Fuzhen ZHANG, Nova Southeastern University, Fort Lauderdale, USA: zhang@nova.edu

It is sufficient to show that R(AB) N N(AB) = {0}. Let y be in the intersection and write y = (AB)z for some 2. Then
(AB)y = (AB)*z = 0. We claim (AB)z = 0 as follows:

(AB)’x=0 = (ABAB)z=0 = (2"B)(ABAB)x=0 = (2"BABY?)(B2ABz)=0 = (BY2AB)z =0

= BY>(B/?AB)z = (BAB)z=0 = (z*BAY?)(AY?Bz)=0 = (AY?B)z=0 = (AB)z=0.

Solutions to Problem 29-5 were also received from William F. Trench and from the Proposers Jiirgen Grof} & Gotz Trenkler.
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Problem 29-6: Product of Companion Matrices
Proposed by Eric S. KEY, University of Wisconsin-Milwaukee, Wisconsin, USA: ericskey@csd.uwm.edu

Let Ay, ..., Ag be n x n companion matrices with common eigenvalue a. Show that a* is an eigenvalue of the product Ay A, - - - Ag.

Solution 29-6.1 by Bernardete RIBEIRO: bribeiro@dei.uc.pt and Alexander KOVACEC: kovacec@mat.uc.pt
Universidade de Coimbra, Coimbra, Portugal.

LEMMA. If Ais ann x n companion matrixand Az = az, thent = z1(1,a,a?,...,a" )T,
PROOF. From Hungerford (1974, p. 359), we see that A = (a;;) satisfies a;; = di41,1=1,2,...,n— 1. Letz = (z1,...,za)7.
Then (A — al)z = Oyields 0 = 3 _,(8i41,; — @di j)zj = zi41 —azy, fori = 1,2,...,n~ 1, and the lemma is proved. 0

Applying the lemma inductively yields A1 A, ... Ayz = a*z.

Solution 29-6.2 by Iwona WROBEL, Warsaw University of Technology, Warsawa, Poland: wrubelki@wp.pl

The companion matrix of a monic polynomial p(z) = z® 4 ¢, 2™ ! + ... + caz + c; is defined by

—C;, —Cp—-1 ... —Cy —Ci
1 0 ... 0 0
C(p) = 0 1 ... 0 0
0 0 1 0
It is known that if a is an eigenvalue of a n x n companion matrix, there exists a corresponding eigenvector of a form z =
(a®~1,a”=2% ... a,1)T. By assumption, a is a common eigenvalue of matrices A1, As, ..., Ax. So z is the eigenvector of each
matrix A;,i.e., A;x = axfori = 1,... k. Let Adenote the product A;-As-...-Ag. Then Az = A;-... - Agze = A;-...-Ag_1az =
aAy ... Ag_1z = a®A; - ... Ax_sz = aFz. Thus a* is an eigenvalue of A and z is an eigenvector associated with a*.

Solutions to Problem 29-6 were also received from Denis Serre and from the Proposer Eric S. Key; see also Key (1984).

Problem 29-7: Complementary Principal Submatrices and Their Eigenvalues
Proposed by Chi-Kwong L1, The College of William and Mary, Williamsburg, Virginia, USA: ckli@math.wm.edu

Let n = 2k and let A be a real symmetric or complex Hermitian idempotent matrix (i.e., A2 = A) of rank k. If the leading k x k
principal submatrix has eigenvalues ay, . . ., ax, show that the complementary principal submatrix has eigenvalues 1 —ay, . .., 1—aj.

Solution 29-7.1 by Jerzy K. BAKSALARY, Zielona Géra University, Zielona Géra, Poland: ).Baksalary@im.uz.zgora.pl
and Roger A. HORN, University of Utah, Salt Lake City, Utah, USA: rhorn@math.utah.edu

Let A be an n x n complex idempotent matrix of rank r, so A2 = A and A is diagonalizable; r of the eigenvalues of A are one and
n — r are zero. Suppose 1 < p < ¢ < n and p + ¢ = n, and partition A as a 2 x 2 block matrix A = [Aij]?,j=1 in which Ay, is
p x pand Ay is ¢ x ¢. There are three cases:

(a) If r < p, then for some {v1, ..., v} C C the eigenvalues of A1; are v, ..., vy, and 0 with multiplicity p — r; the eigenvalues
of Aygare 1 — 14, ...,1 — v, and 0 with multiplicity g — .

(b)If p < r < ¢ and the eigenvalues of Ay; are Mg, ..., A, then the eigenvalues of Aggare 1 — Ay, ..., 1— Ap, 1 with multiplicity
r — p, and 0 with multiplicity ¢ — r.

(c) If ¢ < r, then for some {vy,...,vn_,} C C the eigenvalues of Ay; are 11, ..., vn—, and 1, with multiplicity r — g¢; the
eigenvalues of Agp are 1 — 14, ..., 1 — v, _,, and 1 with multiplicity r — p.
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X S-1
We write A = SAS™!, inwhichA = I, ®0,_,, S = (S1, So) is nonsingular, §; = (Y) ismxr, S71= (ES_1§1> , X is
pxr,Yisgxr, (S7), = [F O]isrxn, Tisrxp,and O isrxq. Then Ay = XT, Az = YO, and I, = (§-1), 5, = X +6Y.

Denote the eigenvalues of A11 by {A1, ..., Ay}, those of Aag by {u1, ..., s1g}, those of TX by {71, ...,7,}, and those of OY by
{m,...,n-}. Since Y = I, — T'X, we know that {ny,...,n.} = {L —v1,..., 1 —~,}. We also know that the eigenvalues of XT
and T'X are essentially the same: the eigenvalues of the larger matrix are just the eigenvalues of the smaller one, together with 0
with multiplicity |r — p|; the eigenvalues of the larger of Y© and ©Y are just the eigenvalues of the smaller, together with 0 with
multiplicity |r — g|. See Horn & Johnson (1985, Th. 1.3.20). In (a), the eigenvalues of A1 = XT are {v1,...,% }U{p — r zeros}.
The eigenvalues of A3; = Y©are {n1,...,5-} U{g—rzeros} = {I—9,...,1—v}U{g—rzeros}.In(b), {m1,..., 7}
={A1,.., Ap}U{r —pzeros},and {u1, ..., ug} = {m,..., 5. }U{q — r zeros}. Thus, {p1, ..., g} = {1 =y,...,1— 7 }U
{g—rzeros} = {1—-X1,...,1 =2} U {r —pones} U {q — rzeros}. Case (c) follows by applying case (a) to the idempotent
matrix I — A. The original problem is the special case » = p = ¢ with the additional assumption that A is Hermitian. In this case,
Cauchy’s Interlacing Theorem ensures that all of the parameters v;, A;, i, 7;, and 7; are real and in the interval [0, 1].

Solution 29-7.2 by William F. TRENCH, Woodland Park, Colorado, USA: wtrench@trinity.edu

ws
The assumptions imply that 4 = Zle @97, where {¢1,...,¢x} is an orthonormal basis for the range of A. Let ¢; = ( : )
v

i

v uv*
where u; and v; are k-vectors, and denote U = (u1,...,ux), V = (v1,...,v). Then A = (VU* VV*) . Since UU* and
VV™ have the same eigenvalues as U*U and V"V respectively and U*U + V*V = (ufu; + v} v;)F =1 = (¢7¢;)F ;=1 = I, the

conclusion follows. Moreover, since U U™ and VV* are both positive semidefinite, 0 < a; < 1,1 < i < n.

Solutions to Problem 29-7 were also received from
Bernardete Ribeiro & Alexander Kovacec, Denis Serre, Alicja Smoktunowicz, and from Fuzhen Zhang.

Problem 29-8: A Range Equality Involving an Idempotent Matrix
Proposed by Yongge TIAN, Queen’s University, Kingston, Ontario, Canada: ytian@mast.queensu.ca

Suppose that the matrix P of order m satisfies P? = P. Show that range( I, — PP*) = range(2[,, — P — P* ), where P* is the
conjugate transpose of P.

Solution 29-8.1 by Jerzy K. BAKSALARY, Zielona Géra University, Zielona Gora, Poland: ).Baksalary@im.uz.zgora.pl
and Xiaoji L1U, Xidian University, Xian, China: xiaojiliu72@yahoo.com.cn

If P = 0, then the solution is trivial. For P # 0, we offer an elementary proof based on Schur’s unitary triangularization theorem;
see, e.g., Horn & Johnson (1985, Theorem 2.3.1). Since the only nonsingular idempotent matrix of order m is I,,, in which case the
equality in question is trivial, we assume that rank(P) = r < m. This means that P = P? has r eigenvalues equal to one and m — r
T
0
and T and N are upper triangular matrices of order r and m — r with the diagonal elements ¢;; = 1,i = 1,...,r,and n;; = 0,
j =1,...,m— r, respectively. Since the idempotency of P further implies 72 = T'and N2 = N, and hence T = I, and N = 0, it

eigenvalues equal to zero, and thus may be represented in the form P = U ( ) U*, where U is a unitary matrix of order m,

follows that
~XX* 0 0 -X
I,.—PP*=U U* and 2, —-P-P*=U U=.
0 S -X* 2I,_,
Then it can easily be verified that, with Xt denoting the Moore—Penrose inverse of X,

2L,  —(X*)
X* L(Ipor — X*X)

0 (X*)*
-X* 20,_,

This shows, with R (.) denoting range that R (/,, — PP*) C R(2I,,— P—P*) and R(2I,,— P— P*) C R(I, — P P*), respectively,
thus leading to the required equality R (I, — PP*) = R(2I,, — P — P*).

(21,,,—P—P*)U< )U*:Im—PP* and (Im—PP*)U( )U* =2I,—P—P*.
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Solution 29-8.2 by G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de
I

Since P = P?, we may write P = U ( 0

) U*, where U is an m x m unitary matrix, I, is the identity matrix of order

~-KK* 0
r = rank(P) and K is rx (m—r); see Hartwig & Loewy (1992). Hence I,,— PP* = U ( 0 I ) U*and2I,,—P—-P* =
m-—r
0 -K 0 Kt
U U*. It then follows that 21,,, — P — P* = (I, — PP*)U U* and therefore I,,, — PP* =
—-K* 2I,_, - —-K* 2I,_,
21, -K

(21, —P—-P*U ( ) U*, where K is the Moore~Penrose inverse of K. The asserted identity is established.

K* YIn, - K'K)

Solution 29-8.3 by Hans Joachim WERNER, Universitdit Bonn, Bonn, Germany: werner@united.econ.uni-bonn.de
The claim is an immediate consequence of the following more informative theorem.

THEOREM. Let P be an idempotent matrix of order m, and let R(-) and N (-) denote the range and null space, respectively. Then:

(2) N(P+P") = N(P)NN(P*), (b) N(I~P+I—P") = R(P)NR(P*), (c) N(I- PP*) = N(I- P*P) = R(P)NR(P").

PROOF: If P = 0, then the theorem is trivial. Therefore, let P # 0. According to the singular value decomposition, P can then
be written as P = SoDoTy + S1.D1Ty + SaDyTy, where S = (Sy, 51, 52) and T = (To, T1,T3) are unitary m x m matrices
(ie, S*S = I, and T*T = I,) composed of left and right singular vectors of P, and where D = diag(Dg, Dy, D5) is an
accordingly partitioned nonnegative diagonal matrix consisting of the associated singular values of P. Without loss of generality,
we assume that Dy = 0, Dy = I, and all the diagonal elements of D, are different from zero and unity. If some of the blocks in
D do not exist, we interpret the corresponding summands and terms in the decomposition P = S, DoT5 + 51 D1T7 + So DTy,
and in expressions which follow as absent. It is well known that the singular values of P are the nonnegative square roots of
the eigenvalues of PP* and that the nonnegative definite Hermitian matrices P P* and P* P have the same eigenvalues with the
same (algebraic) multiplicities. Clearly, S$177 + S3DyT5 is a full rank factorization of P, and so P is idempotent if and only if
(é Bz) (;}) (S1 S2) = (é ?) or, equivalently, if and only if 77S) = I, TSy = 0, T5.S1 = 0, T3 So = D;'. In
view of 7771 = I and S}S1 = I, we therefore get (T3 — $1)*(Ty — S1) =TyTy — T¢S1 — S;Th + S;S1 = 0 or, equivalently,
S1 = T provided S; and T} exist.

(a): We note that (P + P*)(P + P*) = P + P* + PP* + P*P is a nonnegative definite Hermitian matrix. Since PP*
and P* P are also nonnegative definite Hermitian matrices, it follows that N (P + P*) = N'((P + P*)?) C N(PP* + P*P) =
N(PP*)NN(P*P) = N(P*)NN(P) C N(P + P*), and so (a) is established.

(b): Since a matrix M is idempotent if and only if I — M is idempotent, (b) follows from (a) since A" (I-M)=R(M).

(0): Clearly, 0 # « € N(I — PP*) if and only if z belongs to the eigenspace of the eigenvalue 1 of PP*. This eigenspace is
spanned by the columns of .Sy and is trivially contained in the range of P. Likewise, 0 # 2 € N'(I — P*P) ifand only if z € R(T1),
which is the eigenspace of the eigenvalue 1 of P* P which is contained in R(P*). In which case S; = T3, and so it is clear that in
any case N(I — PP*) = N(I — P*P) and N(I — PP*) C R(P) N R(P~). The converse inclusion is trivial. O

Solutions to Problem 29-8 were also received from Johanns de Andrade Bezerra and from the Proposer Yongge Tian.

Problem 29-9: Equality of Two Nonnegative Definite Matrices
Proposed by Yongge TIAN, Queen’s University, Kingston, Ontario, Canada: ytian@mast.queensu.ca

Let A and B be two nonnegative definite Hermitian matrices of the same order, and let (-)! denote the Moore—Penrose inverse of the
matrix (-). Show that the following five statements are equivalent:

(a) A=B, (b)A+AA'=B+BB!, (c) AB'A=B,

A B
(d) rank(A) = rank(B) and 2A(A+ B)!A= A, (e) range (B) = range (A) .
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Solution 29-9.1 by Jerzy K. BAKSALARY, Zielona Géra University, Zielona Géra, Poland: ).Baksalary@im.uz.zgora.pl
and Jan HAUKE, Adam Mickiewicz University, Poznar, Poland: jhauke@amu.edu.pl

The first observation is that the condition ABT A = B alone, as given in (c), is in general not suffficient to entail A = B. A simple
. . . 10 10
example is provided by the matrices A = ( 0 1) and B = ( 0 O) . It becomes sufficient, however, when accompanied by

its counterpart BA'B = A or by the range equality R(A) = R(B). The lemma below reveals relationships between these three
conditions themselves and the condition (e). They are established under the assumption that the matrices involved are EP, which is
obviously weaker than the requirement that they are Hermitian nonnegative definite.

LEMMA. Let A, B € C,n be EP matrices, i.e, R(A) = R(A*) and R(B) = R(B*). Then any two of the following three
conditions: (i) AB'A = B, (ii) BA'B = A, (iii) R(A) = R(B), imply the third. Moreover, the three conditions together are
equivalent to R((A* : B*)*) = R((B* : A*)*).

PROOF. The part “(i), (ii) = (iii)” is obvious. Further, if AB'A = B holds along with R(B) C R(A) and R(A*) C R(B*),
which follow from (iii) and the assumption that A and B are EP matrices, then BA'B = AB'AA'B = AB'B = A. Similarly,
combining BA'B = A with R(A) C R(B) and R(B*) C R(A*) yields AB!A = BA'BBtA = BA'A = B. Moreover, the
subspaces R((A* : B*)*) and R((B* : A*)*) are identical if and only if A = BK and B = AK for some K € Cn,n. We see that
both K = A'B and K = Bt A are suitable choices of K. On the other hand, if A = BK and B = AK, then R(A) = R(B) and
hence the assumption that A and B are EP leads to R(A*) C R(B*), which entails AB'A = ABIBK = AK = B. o

In Propositions 1 and 2 below it is shown that the equality A = B is implied by conditions (d) and (b) proposed in Problem 29-9
within wider classes of matrices than Hermitian nonnegative definite ones.

PROPOSITION 1. For any parallel summable matrices A, B € Cr, , if 2A(A+ B)' A = A and rank(A) = rank(B), then A = B.
PROOF. Itis clear thatif 2A(A+B)'A = A, then 2(A+ B)(A+B)! A-2B(A+B)' A = A = 24(A+ B) (A+B)—2A(A+B)! B.
Immediate consequences of the inclusions R (A) C R(A+ B) and R(A*) C R(A* + B*), which according to Rao & Mitra (1971,
p- 189) constitute the definition of parallel summability, are the equalities (A + B)(A + B)'A = A = A(A+ B)!(A + B), and
thus it follows that 2B(A + B)' A = A = 2A(A + B)! B. This shows that R(A) C R(B) and R(A*) C R(B*), and combining
these conditions with rank(A) = rank(B) yields R(A) = R(B) = R(A + B) and R(A*) = R(B*) = R(A* + B*). Hence
ATA(A + B)t = (A+ B)! = (A+ B)! AA!, and thus premultiplying and postmultiplying 24(A + B)tA = A by At leads to
2(A+ B)'r = At Consequently, in view of the uniqueness of the Moore—Penrose inverse, A + B = 2A4, ie., A= B. O

We note that the assumption of parallel summability of A and B in Proposition 1 entails the possibility of replacing the Moore—
Penrose inverse (A + B)! in the expression A(A + B)! A by any generalized inverse of A + B. We see immediately that condition
(b) implies A = B whenever A and B are nonsingular.

Another class of matrices having the desired property is revealed in the following proposition.

PROPOSITION 2. For any normal matrices A, B € C,, », not containing —1 in their spectra, if A+ AAY = B + BB, then A = B.
PROOF. According to Theorem 2.5.4 in Horn & Johnson (1985), a matrix is normal if and only if it is unitarily diagonalizable.
Consequently, if A is of rank q, say, then A = UDU*, where U € G, satisfies U*U = I, and D is an a x a diagonal matrix, with
diagonal elements d; # 0and d; # —1,7 =1, ..., a. Then D + I, is nonsingular, and therefore R(A + AA) = R[U(D + I,)U*] =
R(U) = R(A). Similarly, R(B + BB') = R(B) and, consequently, A + AA' = B + BB' implies R(A) = R(B). Hence
AA' = BB!, thus leading to A = B. O

It is interesting to notice that the result of Proposition 2 is not valid within the set of all normal, or even within the set of all

1 0 1 0
Hermitian, matrices. For example, if A = (0 0) and B = (0 1) ,then A + AA' = B+ BBY but A # B. Within the

same set, also the pair of equalities AB'A = B and BA'B = A (which constitute a corrected version of (c) equivalent to (e)) is
not sufficient to imply A = B. A trivial example is provided by A = (1) and B = (—1). The assumption concerning matrices
involved in this part of our solution to Problem 29-9 is as in its original formulation.

PROPOSITION 3. For any Hermitian nonnegative definite matrices A, B € Can, if ABYA = Band BA'B = A, then A = B.
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PROOF. From our Lemma and with the use of the notation C = (B')Y/2A(B")'/2, the equation ABtA = B takes the form
C? = BB'. Hence, if a spectral decomposition of C is C = UDU*, then in view of R(C) = R(B), which is equivalent to
BB' = CC' = UU*, it follows that D? = I, thus leading to C = UU*. Consequently, (B')1/2A(B")1/2 = (B)1/2B(Bt)!/2,
and hence, in view of the equality R(A) = R(B), by premultiplying and postmultiplying by B1/2 we arrive at the conclusion that
A=B. |

Solution 29-9.2 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: werner@united.econ.uni-bonn.de

Problem 29-9 was not correctly stated, in that condition (a) is not equivalent to condition (c). Of course, (c) is trivially necessary for
(a) to hold. However, it is not sufficient, as the scalars (1 x 1 matrices) A = 1 and B = 0 illustrate. Clearly, A = A' and B = Bt.
Moreover, AB'A = B, although A # B. Next, we prove the following corrected version of Problem 29-9.

THEOREM. Let A, B € C™™ be nonnegative definite Hermitian matrices, and let R ( -) denote range (column space). Then the
following five conditions are equivalent:

(a) A=B; (b) A+ AA' = B+ BB'; (c) rank(A) = rank(B) and AB'A = B;

(d) rank(A) = rank(B) and 2A(A+ B)tA=4; (e) R (;) =R (i) i

PROOF. It suffices to show that each of the conditions (b)—(e) is sufficient for (a) to hold.

(b) = (a): It is well known that for any given matrix M the matrix M M is the orthogonal projector onto R{M), denoted
by Pr(ar). Therefore, if N is another matrix with R(M) = R(N), then clearly MM' = NN'. If M is a nonnegative definite
Hermitian matrix, then the orthogonal projector onto R (M), i.e., M M1, is also nonnegative definite and Hermitian. Since the range
of the sum of nonnegative definite Hermitian matrices is the sum of the ranges of the summands, clearly R(M + MM 1 = R(M).
By means of these observations it is clear that condition (b) implies R (4) = R(B) or, equivalently, AAt = BB!. Eq. A + AAt =
B + BB therefore reduces, as claimed, to A = B.

(¢) = (a): Let rank(A) = rank(B) and AB'A = B. Then evidently R(B) = R(A). Moreover, (ABT)2 = BB!. Since
BBt is idempotent, its eigenvalues are all equal to one or zero; see Lancaster (1969, Ex. 4, p. 65). Following Lancaster (1969,
Ex. 12, p. 104), AB' and A'/? B! A'/2 have the same characteristic polynomials and hence the same eigenvalues. Clearly, since
A/2Bt A1/? is a nonnegative definite Hermitian matrix, these eigenvalues are all nonnegative. From Lancaster (1969, Th. 2.5.2,
p- 64) we know that if p,, - - -, s, are the eigenvalues of any n x n matrix M and p is any scalar polynomial, then the eigenvalues
of p(M) are p(p1),-- -, p(pn). Hence by combining our observations it follows that the eigenvalues of ABT as well as those of
the matrix A'/2 Bt A}/2 are all equal to zero and one. The nonnegative definite Hermitian matrix A1/2 Bt A1/2 is then necessarily
idempotent, i.e., AY/2Bt A1/241/2Bt A1/2 — A1/2Bt A1/2 Pre- and postmultiplyingthiseq. by A'/? and A1/2 At, respectively, we
obtain ABYABYAA! = ABtAA'. But this equation readily reduces to (ABT)2 = AB!, for in view of R(A) = R(B) = R(B')
we have B AAT = Bt Pr(4) = BY. Hence, since AB! is idempotent, eq. (ABT)2 = BB becomes AB! = BB!. Postmultiplying
this equation by B results in 0 = (A — B)B' B = A — B. As desired, we thus arrive at A = B.

(d) = (a): Letrank(A) = rank(B) and 24(A+ B)' A = A. Then 4 (3(4 + B)) "A=Aor equivalently, A(A+ B}t A = LA.
Since R(A+B) = R(A)+R(B) holds for nonnegative definite Hermitian matrices A and B, it follows that (A+B)(A+B)tA = A.
Therefore B(A+ B)! A = LA = A(A+ B)! B, and hence, in view of rank(A) = rank(B), clearly R(A) = R(B) or, equivalently,
N(A) = N(B). Consequently, R(}(A + B)) = R(A) = R(((A+ B))") and N(3(A+B) = NA) = N4+ B)N,
and (%(A + B))'r is thus a reflexive g-inverse of A with the same column space and the same null space as AT. But then necessarily
A+ B))f = A" or, equivalently, 1 (A + B) = A. This in turn easily reduces to A = B.

(e) = (a): When (e) holds, there obviously exists a matrix X with B = AX and A = BX, which in turn implies R(A) = R(B).
If X is a solutionto A = BX, then X can be written as B~ A for some suitable g-inverse B~ of B. Hence B = AX = AB™ A.
Since R(A) = R(B), we have AB~ A = B for any choice of B~. Therefore, in particular, ABY A = B and so the conditions ©)
hold. Since we have already shown that (c) = (a), our proof is complete. a

A solution to the corrected Problem 29-9 was also received from the Proposer Yongge Tian,
with apologies for the error in the original statement of Problem 29-9.




IMAGE 30: April 2003 page 31

Problem 29-10: Equivalence of Three Reverse-Order Laws
Proposed by Yongge TIAN, Queen’s University, Kingston, Ontario, Canada: ytian@mast.queensu.ca

Show that (AB)! = BYAT & [(A!)*B]t = BtA* & [A(BY)* ]t = B*Al, where (-)! and (-)* denote the Moore—Penrose inverse
and the conjugate transpose, respectively.

Solution 29-10.1 by Jerzy K. BAKSALARY, Zielona Géra University, Zielona Géra, Poland: ) Baksalary@im.uz.zgora.pl

A solution will be obtained with the use of another general property of a pair of matrices satisfying the reverse order law.

LEMMA. Forany K € Crnn and L € Gy p, (KL)' = LYKt = L*L(KL)t = [K(LY*]' and (KL)'KK* = [(K1)* L]t
PROOF. Let Fy = K(L')* and G; = L*L(KL)!. Then F1G, = K(LLYL(KL)! = KL(KL)!, and hence it is clear that
G1F1G1 = Gy and F1Gy = (F1Gy)*. Since F; = KLLY(L')*, another consequence is that F;G1F; = F. Similarly, let
Fy = (KT)*L and G4 = (KL)fKI{*. Then Gy Fy = (.KL)TI{L, and hence G9F2Gy = G4 and Gy Fy = (GQFQ)*. Further, the
representation Fy = (K')*K1K L shows that F>GF> = Fy. Moreover, under the assumption (KL)t = LT K1, it follows that

‘ GiFy = 'LIYK'K(LYY = *KTK(LYY* = (L'KTKL)* = (KL)'KL @)
an

PGy = (KN LI'K'KK* = (KY)* LLTK* = (KLL'K')* = KL(KL)!. 8)

From (7) and (8) it is seen that G1 /1 = (G1F1)* and F>Gy = (FaG2)*, which completes the sets of conditions defining G; to be
the Moore-Penrose inverse of F;,i = 1, 2. (]

We note that the implication in this lemma cannot be reversed. A counterexample is provided by the orthogonal projectors
10 1/2 1/2
K = (0 0) andL = (1;2 1;2) , in which case KK* = K = (K')* and L*L = L = (L")*, thus transforming the
conditions on the right-hand side to L(K L)' = (K L)! = (K L)! K. Both these conditions are fulfilled, but (K L)t # LT K1,

On the other hand, the proof above shows that the assumption (K L)t = L' Kt was actually used only for establishing (7) and
(8). This observation leads to the remark below, in which generalized inverses of matrices are denoted according to Definition 1 in
Ben-Israel & Greville (1974, p. 8).

REMARK. Let K € Cnn and L € G, . Then, for any (KL)(1%3) and L(123), the matrix L* L(KL)(123) is a {1,2, 3}-
generalized-inverse of K (L"23))* and, for any (K L)(124) and K129, the matrix (KL)M2) K K* is a {1, 2, 4}-generalized-
inverse of (K(124))* L.

The implication in the lemma easily leads to a solution of Problem 29-10. Postmultiplying (AB)f = B'A! by AA* yields
(AB)TAA* = B'A*, while from the lemma it follows that (AB)t AA* = [(A!)*B]f, thus showing that (AB)! = BtAl =
[(A1)*B]' = BYA*. Conversely, postmultiplying the last equality by (A')* A yields [(A)*B]t(At)* At = B'A!, and from
the lemma it follows that [(A")* B]t(Af)* At = (AB)!, thus completing the proof that (AB)! = BtA! « [(A1)*B]t = Bt A*.
Similarly, premultiplying (AB)! = B A by B* B yields B* B(AB)! = B* A, while from the lemma it follows that B* B(AB)! =
[A(B")*]!. On the other hand, premultiplying [A(B')*]' = B* At by Bt(B')* yields Bt (Bt)*[A(B')*]' = Bt A, while from the
lemma it follows that BY(B1)*[A(B')"]! = (AB)!, thus completing the proof that (AB)! = Bt Al & [A(Bt)*]t = B* 4.

Solution 29-10.2 by Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznan, Poland: baxx@amu.edu.pl
and Katarzyna CHYLINSKA, Zielona Géra University, Zielona Géra, Poland: K.Chylinska@im.uz.zgora.p!

We present an elementary solution based directly on the definition of the Moore—Penrose inverse of a given complex matrix K €
G, as the unique matrix Kt € C, , satisfying the conditions K KTK = K, K1 KKt = Kt, KKt € #, and Kt K € H, where
H stands for the set of Hermitian matrices of an appropriate order. It can easily be verified that
AB(B'A")AB = AB & (A")*ATABB!(A'4)'B = (A1)*A'AB & (Ah)"B(B!'A*)(A!)*B = (41)*B,
(B'AN)AB(B'A") = B1A! < BY(A'A)*BBtATAA* = BtAtAA* & (BTA*)(A!)*B(B'A*) = Bt A*,
AB(B'AYY e # & [A(BBYA!" e & (AYY*'B(BIA*) e %,
(B'AWAB e # & B (A'A)*Be# & (BtA)(ANY*Bex,
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thus establishing that
(AB)t = BtA! o [(AN)*B]' = BTA*. ©)

Similar arguments show that (AB)" = B1A! & [A(B!)*]! = B*A". However, a solution to the problem can also be completed
by combining (9) with the observation that, in view of (K1)* = (K*)! and (K")! = K, we see that [(A1)*B]t = BtA* o
(B*AN = A(BY)* & [A(BYH)*]t = B*Al.

Solution 29-10.3 by Shizhen CHENG, Tianjin Polytechnical University, Tianjin, China: csz@mail tjpu.edu.cn

We first show that
(AB)t = [(A")*B]H (A (BY)"[A(BY)"]!. (10)

Let X = (A')*Band Y = A(B')*, and let R denote range. Then R(X*) = R(B*Al) = R(B*A*) = R[(AB)*] and R(Y) =
RIA(B')"] = R(AB). Hence XX = (AB)!(AB) and YY' = (AB)(AB)!. Thus X' (A!)* (BY)*Y" = X(A1)* BB! (Bt) v
= X'XB'(B')*'Y" = (AB)!ABB(B)*Yt = (AB)' A(BY)*Y' = (AB)'YY! = (AB)!(AB)(AB)t = (AB)t, and so (10)
holds. If (AB)! = BT A, then (BT AT)t = AB and [(A1)*(B!)*]t = B* A*. Hence [(A!)* B]t = (ABYTA(BY*[(AN*(BY)*]t =
BYAYA(BY)*B* A" = B'ATABB'A* = BYATABBYATAA* = B1A'AA" = Bt A*. This shows that (AB)! = B! A" implies
[(A1)*B]' = B'A*. By symmetry, [(A!)*B]' = B'A* also implies (AB)t = Bt A'. Thus (AB)t = Bt At and (AN Bt =
B'A* are equivalent. The equivalence of (AB)t = Bt Af and [ A(B)*]t = B* Al can be shown similarly.

Solution 29-10.4 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: werner@united.econ.uni-bonn.de

Let A and B be complex matrices such that AB exists. One of the well-known shortcomings of the Moore—Penrose inverse is that
the reverse order law does not always hold. That is, for some pairs of matrices A, B the relation (AB)t = Bt At holds, and for
others it does not. This observation suggests the question, when does (AB)! = Bt A? Arghiriade (1963) and Greville (1966) have
already given two criteria for distinguishing the cases for which (AB)! = Bt Al holds. Several other authors have also contributed
to this question and they have investigated a similar question for other (more general) special classes of generalized inverses of A
and B; see Werner (1992) for more details and a list of references. According to Greville (1966), (AB)t = Bt At holds if and
only if the conditions R(BB*A*) C R(A*) and R(A*AB) C R(B) are simultaneously satisfied; here and below we denote by
R(-) and A/ (-) the range (column space) and the null space of the matrix (-), respectively. A solution to the present problem is
found immediately just by combining Greville’s conditions for the different reverse order equations with the equivalences of the
corresponding conditions (a) and (g) in the following lemma.

LEMMA. Let M and N be any complex matrices such that the product M N exists. Then the following seven conditions are
equivalent:

(a) RIM™MN) CR(N);  (b) R(M"MN) CR(N)AR(M*); (o) (M*M)R(N) = R(N) N R(M");
(d) (M"M)[R(N)NR(M*)] =R(N) NR(M*) and R(N)=[R(N)NR(M*)] & [R(N)NN(M)];
(e) (M“M)'r [R(N)NR(M*)] = R(N)NR(M*) and R(N)=[R(N)NR(M*)]® [R(N) N N(M)];

() (M*M)'R(N) = R(N)NR(M*); (g) R(M'MI"N)C R(N).

PROOF. Since M™M is a nonnegative definite Hermitian matrix with R(M*M) = R(M*) and N (M*M) = N (M), it is not
difficult to see that (a) < (b) < (c) <> (d). That (d) is equivalent to (e) is a direct consequence of the fact that (M*M ) (M*M) =
(M"‘M)(M“M)'r is the orthogonal projector onto R(M*) along N'(M). Since (M*M)t = Mt (M1)", R(M') = R(M*) and
N(M t* ) = N (M), itis also clear that (¢) & (f) < (g), and so our proof is complete. 0O

A solution to Problem 29-10 was also received from the Proposer Yongge Tian.

N
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Problem 29-11: The Minimal Rank of a Block Matrix with Generalized Inverses
Proposed by Yongge TIAN, Queen’s University, Kingston, Ontario, Canada: ytian@mast.queensu.ca

Let (-)~ denote generalized inverse. Show that
A= C™
min  rank = max{rank(A4), rank(B)+ rank (C)}.
A-,B-,C- B~ 0

While we have received a solution from its Proposer Yongge Tian, we look forward to receiving further solutions to Problem 29-11.

Problem 29-12: Matrices Commuting with the Vector Cross Product
Proposed by Dietrich TRENKLER, Universitit Osnabriick, Osnabriick, Germany: dtrenkler@nts6.oec.uni.osnabrueck.de
and Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let a nonzero vector a € R3 be given. Find all square matrices A with real entries such that (a) for all z € R3, it follows that
ax Az = A(a x z) and (b) for all z € R, it follows that a x Az = (Aa) x z. Here x denotes the vector cross product in R3,

Solution 29-12.1 by William F. TRENCH, Woodland Park, Colorado, USA: wirench@trinity.edu

Without essential loss of generality, let ¢ = (a1 as a3 )T be a unit vector. Let b = (b by b3 )T be an arbitrary unit vector

a1 b e
perpendicularto a, c = a x b = (c; c2 c3 )T, and @ = | az bs co | .Let L be the linear transformation with matrix A
az bz c3

relative to the natural basis for R3.

(a) From the assumptions, we have (i) a x La = L{axa)=0,@i)ax Lb = L(ax b) = Le,and (iii)a x Le = L(a x ¢) = —Lb.
From (i), La = Aa for some real A. From (ii) and (iii), Le and Lb are in the plane of b and ¢; ie., Lb = p1b+ q1¢c and Lc =
p2b + gac. From (ii), pab + g2¢ = p1(a x b) 4 q1(a x ¢) = —g1b + p1c, 50 g9 = py and py = —g1. (These conclusions also follow
from (iii).) We drop the subscripts and write Lb = pb + gqc and Lc = —gb + pc. Therefore the matrix of L with respect to {a, b, c}

A0 0
isB=|0 p —g¢ |andA=QBQT. Conversely, it is straightforward to verify that any matrix A of this form has the desired
0 ¢ p

property. ,

(b) Since a x La = (La) x a = —(a x La), it follows thata x La = 0, so La = Aa for some real A. Hence a x Lb = {La)xb =
Ala xb) =Ac,and a x Le = (La) x ¢ = A(a x ¢) = —Ab so Lb is in the plane of @ and b and Lc is in the plane of @ and c; thus,
Lb = pa+rband Lec = ga+sc. Therefore Ac = a x Lb = p(ax a)+r{ax b) = rcand —Ab = ax Lc = g(axa)+s(axc) = —sb,

A

s0 Lb = pa + Ab and Lc = qa + Ac. Therefore the matrix of L with respect to {a,b,c}isC =

O >

q
0 0},and A = QCQT.
0 A
Conversely, it is straightforward to verify that any matrix A of this form has the desired property.

Solution 29-12.2 by the Proposers Dietrich TRENKLER, Universitiit Osnabriick, Germany: dtrenkler@nts6.oec.uni.osnabrueck.de
and Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

PROOF of (a). Since the cross product a x z is linear in the second component, there exists a unique matrix 7 such that T,z = a x &

O —as as
forall £ € R3 When g = (a1 as a3 )', the matrix T, is readily seen to be of the form T, = | as 0 —ay |, see Noble
—asg ay 0

(1969). Hence our problem is equivalent to the search for all matrices A commuting with 7,. By some straightforward calculations,
it follows that the characteristic polynomial P(A) of T, is P(A) = det(T, ~ AI) = —A3 — Aa’a. Hence T, is nonderogatory, i.e.,
every eigenvalue of A has geometric multiplicity 1. By Theorem 3.2.4.2 in Horn & Johnson ( 1985), A is a polynomial in 7', of degree
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at most 2. Thus we conclude A = a3+ asT, 4+ a3T?2, or equivalently, by noting that T2 = aa’ —a’alz, A = p1Ia+ Bo Ty + Bsad’,
where 1, f2, s are real constants. Observe that this class of matrices comprises the rotations by a certain angle about an axis in
R3; see Noble (1969, p. 421) or Room (1952). The above problem can be modified by setting brackets differently. Then we might
wish to identify all real square matrices A satisfying a x Az = (Aa) x z forall z € R3.

To prove (b) we find all matrices A such that T,A = T4,. Clearly, this equation has at least one solution, namely A4 = I3.
To determine all solution matrices A we compare the left-hand and right-hand sides of the above equation. Then we arrive at a
homogenous linear equation system of 9 equations with 9 unknowns. Using the Gaussian elimination method and Mathematica
we see that the solution subspace is three dimensional with a possible basis set consisting of the matrices A;, A5 and A3, where
Ay = Is. The other two basis matrices depend on the coefficients of a, as follows, and this completes our proof of (b).

a9a3 aids —aiasg 2a1as 0 —a%
(iJaz#0: Ay = 0 2asa3 —a , As = | asas aias —ajas |;
0 a3 0 a3 0 0
0 0 o —aja; a¥ 0
(ii)az3=0,a1 #0,a0#0: A2=]10 0 a3 |, A3= —ai  ajay; 0 |;
0 0 0 0 0 0
0 00 0 00 0 0 1 010
(i)az=a1=0: A2=|0 0 1},A43=1[]1 0 0]; (ivias=a2=0: A5=|0 0 0], As=]0 0 0
0 00 0 00 0 00 0 0 0

A solution to Problem 29-12 was also received from Jerzy K. Baksalary & Oskar Maria Baksalary. See also Trenkler (2001).

Problem 29-13 : Normal Matrices with Prescribed Diagonal Elements and Their Differences Elsewhere
Proposed by Lajos LASZLO, Eotvds Lordnd University, Budapest, Hungary: laszlo@numanal.inf.elte.hu

Show that there are normal matrices of any order with prescribed diagonal elements and their differences elsewhere. More precisely,
show that for any n, there exist n x n “index” matrices P and () such that the n x n matrix A = {ai; }, defined according to as; = z;
and a;; = 2zp,; — z4,; When i # j.

Solution 29-13.1 by the Proposer Lajos LASZLO, Eétvis Lordnd University, Budapest, Hungary: laszlo@numanal.inf.elte.hu

We only sketch the proof, by giving the most important observations. The key is that given a commuting family (H;)%, of Hermitian
matrices, the matrix A = 37", z; H; is normal for arbitrary complex numbers (z;)7,. Let us define first Hy, a real symmetric
tridiagonal (0,1) matrix having ones in the sub- and superdiagonal and in the (1,1) position (2n — 1 in all). We then compute
(H;)i—,, with 1 in the (%, ¢) position and 0 in all other diagonal positions, to commute with H;. For n = 3, e.g., we have

1160 0 0 1 0 -1 -1
H=1]101{,H=10 1 -1],Hs=}-1 0 0
010 1 -1 0 -1 0 1

It turns out that all the H; are (0, 1, —1) matrices. Moreover, ) -, z; H; has the desired difference form, and p; ; < ¢; ; also holds
for the off-diagonal elements. As for the characterisation of P and @, a detailed examination shows that they are sums of suitable
Hankel and Toeplitz matrices, e.g., for n = 5 we have the decompositions

112 2 3 1 0 2 0 3 010 2 0
121 3 2 0 2 030 1 01 0 2
P={2 131 4j=(2 0350 4|+}j0 101 0],
231 41 0 3 0 40 2 0101
3 24135 3 0405 02010
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0 5 5 4 4 05 0 40 0 0 5 0 4
5 0 4 5 3 5 0 4 0 3 0 00 5 0
Q=|5 403 5|{=|0 40 3 0|+{5 00 0 5
4 5 3 0 2 4 0 3 0 2 05 000
4 3 5 2 0 0 3020 4 05 00

Also, in both P and @, the diagonals parallel with the main diagonal contain arithmetic sequences with difference 0, 1 or —1. Note
finally, that ¢; ; = p; ; + n + 1 — max(, j) forall ¢ # j.
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IMAGE Problem Corner: More New Problems

Problem 30-6: A Matrix Related to an Idempotent Matrix
Proposed by Gtz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix from C**". What can be said about the matrix R = P(P + P*)~P*, where (P + P*)" isa
generalized inverse of P + P* and P* denotes the conjugate transpose of P?

Problem 30-7: A Condition for an Idempotent Matrix to be Hermitian
Proposed by G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix from C**”. Show that P is Hermitian if and only if the Moore-Penrose inverse of P(I — P*) is

idempotent, where P* denotes the conjugate transpose of P.
Problems 30-1 through 30-5 are on page 36.
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IMAGE Problem Corner: New Problems

Please submit solutions, as well as new problems, both (a) in macro-free ISIEX by e-mail to werner@united.econ.uni-bonn.de, preferably
embedded as text, and (b) with two paper copies by regular mail to Hans Joachim Werner, IMAGE Editor-in-Chief, Department of Statistics,
Faculty of Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Problems 30-6 and 30-7 are on page 35.

Problem 30-1: Star Partial Ordering, Left-star Partial Ordering, and Commutativity

Proposed by Jerzy K. BAKSALARY, Zielona Géra University, Zielona Géra, Poland: J.Baksalary@im.uz.zgora.p!
Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznar, Poland: baxx@amu.edu.pl
and Xiaoji L1u, Xidian University, Xi’an, China: xiaojiliu72@yahoo.com.cn

For any A, B € G, ,, the star partial ordering A % B, defined by A*A = A*B and AA* = BA*, clearly implies the left-star
partial ordering A *< B, defined by A*A = A*B and R(A) C R(B), where R(.) denotes the range of a given matrix. Show that
if n = n and A or B is an EP matrix, i.e,, R(A) = R(A*) or R(B) = R(B*), then the implication A *< B = AB = BA cannot

hold unless A *< B is strengthened to A % B.

Problem 30-2: Class of (0, 1)-Matrices Containing Constant Column-Sum Submatrices
Proposed by Bernardete RIBEIRO: bribeiro@dei.uc.pt and Alexander KOVACEC: kovacec@mat.uc.pt
Universidade de Coimbra, Coimbra, Portugal.

For given k1, ..., ks € [n] = {1,2,...,n} define the {0, 1}-matrix A = A(ky,..., k,) = (ai;) by putting a;; = 1iff j is one of
the first k; entries of the n—tuple (¢,i+1,...,n,1,2,...,i— 1). Show that there exists a {0, 1}—row zand a k € [n — 1] such that
zA = kl,, where 1, = (1,...,1).

Problem 30-3: Singularity of a Toeplitz Matrix
Proposed by Wiland SCHMALE, Universitiit Oldenburg, Oldenburg, Germany: schmale@uni-oldenburg.de
and Pramod K. SHARMA, Devi Ahilya University, Indore, India: pksharma1944@yahoo.com

Letn > 5, c1,...,ca—1 € C\{0}, « an indeterminate over the complex numbers C and consider the Toeplitz matrix
c2 c1 z 0 . --- 0
c3 c2 ¢ £ 0 --. 0
M :=
Cn—3 Cr—a . . . e x
Cn—2 Cp—3z - - - -+ 1
Cpn—1 Cr—2 . - . ces O3

Prove that if the determinant det M = 0 in Clz] and 5 < n < 9, then the first two columns of M are dependent. [We do not know
if the implication is true for n > 10.]

Problem 30-4: The Similarity of Two Block Matrices
Proposed by Yongge TIAN, Queen’s University, Kingston, Ontario, Canada: ytian@mast.queensu.ca

M A M 0
Let A and B be two idempotent matrices of the same size and let M := A+ B. Show that ( 0 M) is similar to ( 0 o ) .

Problem 30-5: A Range Equality for the Difference of Orthogonal Projectors

Proposed by Yongge TIAN, Queen’s University, Kingston, Ontario, Canada: ytian@mast.queensu.ca

Let A and B be two orthogonal projectors of the same size. Show that range [( A— B)! — (A~ B)] = range (AB—BA }, where
(A~ B)! is the Moore-Penrose inverse of A — B. Hence show that (A —~ B)t = A — Bifand only if AB = BA.

Problems 30-6 and 30-7 are on page 35.



