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ILAS President's and Vice President's Annual Report: April 2003

1. The following have been elected to ILAS offices with terms
that began on March 1, 2AA3:
Secretary/Treasurer: Jeff Stuart (2nd three-year term ending

February 28,2A06)
Board of Directors: Rafael Bru and Hugo Woerdeman (ttree-

year terms ending February 28,2006).
The following continue in their offices to which they were pre-
viously elected:
President: Daniel Hershkowitz (term ends February 28,2005).
vice Presidenf.' Roger A. Horn (term ends February 29,2004).
Board of Directors: Ravi Bapat (term ends February 28,2005),

Tom Markham (term ends February 29,2004),
Michael Neumann (term ends February 28, 2005), and
Daniel Szyld (term ends February 29,2004).

2. This fall there will be elections for Vice President (Roger
Horn's term as Vice President ends on February 29,2004) and
for two members of the Board of Directors (to replace retiring
members Tom Markham and Daniel Szyld). The President has
appointed Harm Bart to chair the Nominating Committee. Other
members of the committee, as selected by the Board of Direc-
tors and by the ILAS Advisory Committee, are IrRoy Beasley,
Raphael Loewy, Dale Olesky and Michael Overton.

3. Bryan L. Shader (University of wyodng, USA) has been
appointed to a three-year term (2003-2006) as an Editor-in-
Chief of tuRe E: The Bulletin of the International Linear Algebra
Society (ISSN 1533-899L) and joins Hans Joachim Werner in
that position. Bryan replaces George P. H. Styan who concludes
after almost 10 years of devoted service. We thank George for
his magnificent work that has upgraded TMAGE and raised it to
impressive heights. Under his leadership, TMAGE has become
a model for many professional newsletters. George's ongoing
initiatives have turned IMAGE into a lively and attractive journal.

4. The 10th ILAS Conference took place on June 10-13,
2002, at Auburn university, Alabama, uSA. Ttre chair of the or-
ganizing committee was Frank Uhlig. There were lszregistered
participants. Tsuyoshi Ando (Sapporo, Japan) was awarded the
Hans Schneider prize and delivered his Pnze Lecture. Michele
Benzi (Emory University) and Misha Kilmer (Tufts University)
were the SIAM SIAG/LA Speakers. Hans Schneider was the
After Dinner Speaker. The conference organizers offered an ex-
cursion consisting of a tour of Tuskegee University (Tuskegee,
Alabama) and the Carver Museum there. The tour was followed
by a trip to the Alabama Shakespeare Festival in Montgomery
for a choice of two plays. The conference was preceded by The
6th Workshop on "Numerical Ranges and Numerical Radii".

5. The following ILAS conferences are planned:
(a) The llth ILAS Conference, Coimbra portugal, summer

2004. At this conference Peter Lancaster (University of Cal-
gary, Canada) will be awarded the ILAS Hans Schneider
Pnze in Linear Algebra and will deliver his Pri ze l-ecture.

(b) The lzthILAS Conference, Regin4 Saskatchewan, Canada,
June 26-29,2005.

(c) The 13th ILAS Conference, Amsterd€un, The Netherlands,
July 19-22,2006.

(d) The 14th ILAS Conference, Shanghai, chin4 July or August
2007.

(e) The 15th ILAS conference, cancfn, Mexico, June 1G20,
2008.

6. ILAS has recently endorsed these conferences of particular
interest to ILAS members:
(a) The LZth International Workshop on Matrices and Statistics

(IWMS -2003), August 5-8, z0D3,Dortmund, Germany.
(b) International Conference on Matrix Analysis and Applica-

tions, December Ut-16, 2003, Fort Lauderdale, USA.
(c) The Two-Day Workshop on "Directions in Combinato-

rial Matrix Theory", Banff International Research Station
(BIRS), May 6-8, 2004,8anff, Alberta, Canada.

(d) The 13th International Workshop on Matrices and Statistics
(twMS -2004), Augu st 19-21, 2004, Bgdlewo, near poznafr,
Poland.

(e) The Householder Meeting on Numerical Linear Algebra:
Householder Symposium xvl, May 23-27, 200s, Seven
Springs Mountain Resort, campion, Pennsylvania, usA.

7.IJ-AS has selected Bryan L. Shader and Judi MacDonald as
the ILAS Lecturers at the 2ACf SIAM SIAG/LA Williamsburg
meeting (College of William and Mary, July 15-19,2003).

8. ILAS has continued to consider requests for the sponsor-
ship of an ILAS Ircturer at a conference which is of substantial
interest to ILAS members. ILAS is sponsoring three Lecturers
in 2003:

(a) Hans Schneider at the one-day meeting on "Matrix Analy-
sis and Applied Linear Algebra" in celebration of the 60th
birthday of Carl Dean Meyer, Jr. The meeting was held in
Raleigh, North Carolina, May 15,2003.

(b) Jerzy K. Baksal{y at The Izth International Workshop on
Matrices and Statistics ([WMS-2003), Dortmund, Germany,
August 5-8, 2003.

(c) Roger A. Horn at the Matrix Analysis and Applications
Conference, Nova S outheastern University, Fort Lauderdale,
Florida, USA, Decemb er 14-16, 2A03.

9. The Electronic Journal of Linear Algebra (ELA), ISSN
1081-3810: Volume 1, published in 1996, contained 6 papers.
Volume 2, published in 1997, contained 2 papers. Volume 3,
the Hans Schneider issue, published in 1998, contained 13 pa-
pers. Voluma 4, published in 1998 as well, contained 5 papers.
Volume 5, published in 1999, contained 8 papers. Volume 6,
Proceedings of the Eleventh Haifa Matrix Theory Conference,
published in 1999 and 2000, contained 8 papers. Volume 7,
published in 2000, contained 14 papers. Volume 8, published
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in 2001, contained 12 papers. Volume 9, published in 2002,
contained24 papers. Volume 10, is being published now; as of
June 8, 2003, Volume 10 contains 12 papers.

ELA s primary site is at the Technion. Mirror sites are located
in Temple University, in the University of Chemnitz,in the Uni-
versity of Lisbon, in The European Mathematical Information
Service (EMIS) offered by the European Mathematical Society,
and in the 36 EMIS Mirror Sites.

A complimentary copy of the CDROM for ELA (vol. 1-8,
1996-2001) was distributed to ILAS members at The 10th ILAS
Conference (Auburn University, Alabama, USA, June 10-13,
2002); a complimentary copy of this CDROM is being sent to
all other ILAS members with TMAGE 30 (April 2003).

Volumes 1-7 (1996-2000) of ELA are in print, bound as two
separate books: vol. 14 and 5-7. Copies can be ordered from
Jim Weaver: jweaver@uwf.ed u

10. ILAS-NET: As of June 9,2003, we have circulated 1282
ILAS-NET announcements. ILAS-NET currently has 496 sub-
scribers.

11. The primary site of ILAS INFORMATION CENTER
([C) is in Regina, Saskatchewan, Canada. Mirror sites are lo-
cated in the Technion, in Temple University, in the University of
Chemnitz, and in the University of Lisbon.

Daniel Hgns HKowITz, ILAS President.' hershkow@tx.technion.ac.iI
Tbchnion, Haifa, I s rael

Roger A. HonN, //,A,S Vice Presidenf.' rhorn@math.utah.edu
University of Utah, Salt l-ake City, Utah, USA

Indexing IMAGE:1-30 (1 9SS-2003)

We have started to make an index to TMAGE: 1-30 (1988-2003)
and we welcome any help readers may wish to offer.

The first issue of lruRcE (Vol. 1, No. 1, 8 pp., January 1988)
was edited by Robert C. Thompson and carried the subtitle "The
Bulletin of the International Matrix Group serving the Inter-
national Linear Algebra Community" and announced that the
International Matrix Group (IMG) was constituted in Victoria,
British Columbia, Canada, May 1987. The second issue (No. 2,
14 pp., January 1989), edited jointly by Jane M. Day & Robert
C. Thompson, catried the subtitle "The Bulletin of the Interna-
tional Linear Algebra Society (formerly the International Ma-
trix Group) serving the International Linear Algebra Commu-
nity" and announced the Inaugural Meeting of the International
Linear Algebra Society (ILAS) at Brigham Young University
(Provo, Lltah, USA, August 12-15, 1989).

The subsequent 28 issues, no. 3-30 (July 1989-April 2003),
carry the title "IMAGE: The Bulletin of the International Linear
Algebra Society, serving the International Linear Algebra Com-
munity"; from no.26 (April 2001) on, with ISSN 1533-899L.

Issues no. 3-10 (July 1989-January 1993) were edited jointly
by Steven J. Iron and R. C. Thompson and no. 11-12 (July
1993-January 1994) by S. J. Leon. These 10 issues appeared
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twice a year, each with total pagination ranging between 14 and
24 pages. Issues no. 13-18 (July 1994-winter/Spring 1997)
were edited jointly by S. J. Leon & George P. H. Styan; no. 19-
24 (Summer/Fall 1997-April 2000) by G. P. H. Styan, and no.
25-30 (October 2000-April 2003)jointly by G. P. H. Styan and
Hans Joachim Werner. Issues no. 27-30 each ran 36 pp.

our preliminary findings in making this index indicate:

o ILAS officers' reports and news items
(a) 14 President'sA/ice President's & Treasurer's reports
(b) 18ILAS news items

o Articles
(a) 23 feature articles
(b) 14 obituaries
(c) 67 short communications

o Problem Corner
(a) 88 problems with solutions
(b) 13 problems without solutions

o Conferences and workshops
(a) 139 announcements of individual forthco-ing events
(b) 79 reports on individual events already held
(c) 18 lists of forthcoming events

o New and forthcoming books
(a) 32 signed book reviews
(b) 16 lists of new and forthcoming books

o Photographs and pictures
(a) Photographs or pictures of 27 individuals
(b) Photographs of 51 groups (at meetings)
(c) 5 miscellaneous other photographs

o 14 postage stamps depicting 5 mathematicians.

The obituaries are of Patricia James Eberlein, Dennis Ray
Estes, Vlad Ionescu, John Maybee, Bill Larry Neal, Vlastimil
Ftdk, Norman J. Pullman, Arthur Asquith Rayner, Sally Rear,
Kermit Sigmon, Richard D. Sinkhorn, Robert Charles Thomp-
son, Olga Taussky Todd, and Albert William Tucker.

The photographs or pictures of individuals are of Lufs de Al-
buquergue, Tsuyoshi Ando, Jerzy K. Baksalary, Patricia James
Eberlein, Dennis Ray Estes, Feliks Ruvimovich Gantmakher,
Daniel Hershkowitz, vlad Ionescu, John Stanley Maybee, Pe-
dro Nunes, Graciano de Oliveira, Simo Puntanen, Sally Rear,
Hans Schneider, Miriam Schneider, Peter Semrl, Kermit Sig-
mon, Alexander Spotswood, William Spottiswoode, George
P. H. Styan, Olga Taussky Todd, Hiisein Tevfik Paga, Robert
Charles Thompson, Yongge Tian, olga Thussky Todd, James R.
Weaver, and Hans Joachim'Werner.

The images of postage stamps depict ThdeuszBanachiewicz,
Charles Dodgson (Lewis Carroll), Sir William Rowan Hamilton,
Gottfried Wilhelm von t,eibniz, and Takakazu Seki K6wa.

J. C. Sznuost & George P. H. SryaN: styan@math.mcgill.ca

McGill University, Montrdal (Qudbec), Canada
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New from Brooks/Cole!

A Dircet Line to Understanding
Linear Algebra: An Interactive Approach
S.K. jain, Ohio University
A.D. Gunawardena/ Carnegie Mellon University
480 pages. Casebor:nd. @2A04. ISBN: 0-53+40915-6.

This new text from Jain and Gunawardena introduces matrices as a handy
tool for solving systems of linear equations and demonstrates how the utili-
ty of matrices goes far beyond this initial application. Students discover that
hardly any area of modern mathematics exists where matrices do not have
some application. Flexible in its approactr, this book can be used in a tradi-
tional manner or in a course using technology.

I An Accompanying CD-ROM Contains the Entire Contents of the
Book Students have all of the content of the text in a searchable,
customizable format available at their fingertips, which can be
highlighted and annotated by the student, just like a print text-
book. The CD-ROM also includes MATLAB@ drills, concept
demonstrations, solutions, projects, and chapter review questions.

I A Book Companion Web Site Enriches the Learning Experience:
A Book Companion Web site linked to the CD-ROM provides
additional problems, projects, imd applications, as well as support
for Maplet and Mathematica@.

Linear Algebra: A Modern Introduction
David Poole, Trent University
763 pages. Casebound. @ 2003. ISBN: 0-534-34174-8.

In this innovative new linear algebra text, David Poole covers vectors and
vector geometry first to enable students to visualize the mathematics while
they are doing matrix operations. By seeing the mathematics and under-
standing the underlying geomelr!, students develop mathematical maturity
and learn to think abstractly. An extensive number of modern applications
represent a wide range of disciplines and allow students to apply their
knowledg..

Vectors and Vector Geometry Start in Chapter L: Chapter L is
a concrete introduction to vectors. The geometry of two- and
three-dimensional Euclidean space then motivates the need
for linear systems (Chapter 2) and matrices (Chapter 3).

Flexible Approach to Technology: Students are encouraged,
but not required, to use technology throughout the book.
Where technology can be used effectively, it is not platform-
specific. A Technolory Bytes appendix shows students how to
use Maple@, Mathematica@, and MATLAB@ to work some of the
examples in the text.

t

I

Detailed table of contents for both texts are available at our
New for 2AA4 Web site: http://wvuw.neurtexts.com

Request a review copy at 800-423-0563

THOI\/ISON
t - "a

BROOKS^/C()LE
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ItAs rreasurer's Annual Report: March 1 , 2oo2-Febru ary 28,2003
Net Account Balances on February 28r 2002

Vanguard (ST Fed. Bond Fund I I 1 1.153 Shares)
(72Vo Schneider Fund and 28Vo Todd Fund)
Checking account

1I,578.21
69,281.21 $80,859.42

General Fund
Conference Fund
ILAS/LAA Fund
Olga Taussky Todd/John Todd Fund
Frank Uhlig Education Fund
Hans Schneider Prize Fund

34,402.19
10,039.94
4,940.00
8,267.14
3,47 5.gg

19,835.18 $80,859.42

March 112002 through February 2812003

fncome: Interest
Dues
Corporate Dues
Book Sales
General Fund
Conference Fund
ILAS\LAA Fund
Taussky-Todd Fund
Uhlig Education Fund
Schneider Prize Fund

Expenses: IMAGE (2 issue)
Speakers (3)
Schneider Prize
Elsevier UW Madison Refund
Executive Board Travel
ELA Copyedit & CD
Fees
Labor - Mailin g & Conference
Postage
Supplies and Copying
Bad Checks

267.5r
6140.00
1000.00
222.00

1068.56
480.00

3000.00
530.25
210.00

rttl.37

3263.49
1800.00
1200.00
2000.00
1400.00
rr72.00

70.00
292.00
599.10
190.79
360.00

14,029.69

12,337.37

Net Account Balances on February 28r 2003
Vanguard (ST Fed. Bond Fund 1165.096 Shares)
(72Vo Schneider Fund and 28Vo Todd Fund)
Checking account
Pending checks
Pending VIS A/Nlastercard
Outstanding check to UW Madison

r2,4gg.g3
68,997.9r

940.00
2124.00

(2,000.00) $82,551.74

General Fund
Conference Fund
ILAS/LAA Fund
Olga Taussky Todd/John Todd Fund
Frank Uhlig Education Fund
Hans Schneider Prize Fund

33,962.89
10,518.94
5,840.00
8,797.39
3,685.98

1,9,746.55 $82,551.74

Jeffrey L. S run Rr, //,AS Tre as ure r : jetfrey.stu a rt@pl u.ed u

Pacific Lutheran University, Tacoma, Washington, USA
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Elementary Linear Algebra, 5/e
@20A4 . 544 pages . Hardcover
0-618-33567 -6 . Available Summer 2003

T his text offers a clear and concise
I presentation of line ar algebra,

balancing theory with examples,
applications, and geometric intuition.

. New! All real data in exercises and examples have
been updated to reflect current information. More

exercises, linked to the data sets found on the web site
and the Learning Tools CD-ROM, have been added.

. Guided proofs direct students through the logical
sequence of statements necessary to reach the correct
conclusions to theoretical proofs.

. True/False questions encourage students to think
about mathematics from different perspectives.

New! Comprehensive ancillary package for students and instructors
Snldrent tools
The Learning Tools CD-ROM accompanies the text, offering students additional practice and explclration of selected topics.

Simulations provide hands-on experimentation by allowing students
to change variables and observe the outcomes of these changes.

Hectronic data sets help students reinforce 0r broaden their
technology skills.

The Graphinx Calculator e Guide includes examnles
with step-by-step solutions, technology tips, and prograrrs for various
graphing calculators.

Matlab exercises enhance students' understanding of concepts.

Additional topics include complex vector spaces, linear
programming, and numerical methods.

Also available:
student solutions Guide (ISBN 0-618-335 68-4)

Instructor tools
HM ClassPrep with HM Testing 6.0 allows instrucrors
to access both lecture support and testing software in
one place. (ISBN 0-618-3357L-4)

HOUGHTON MIFFLIN

Instructor's Solutions Guide and Test Item File
(rsBN 0-618-335 69-2)

N?$t Wdys to Knowo 
. -., ,, .,,.; ':::' 

j ., ;

For more information on Houghton Mifflin products, services, or examination copy requests:
' Consult the College Division: catalog.collegg.hmco.oom . Contact your Houghton MiffIin sales representative
. Call or fax the Faculty Services Center

Tel 800/733-L7L7, cg'it- 4O27 . Fax 800/733-1810

4+{
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Up With Determinants!

Carry J. Tee

Determinants were applied in 1683 by the Japanese mathemati-
cian Thkakasu Seki KOwa (1642-1708) in the construction of
the resolvent of a system of polynomial equations, see Mikami
(1913, pp. l9l-199: 1977) and the IMAGE Philatelic Corner
(f MAGE 23, October 1999, page 8). Determinants were inde-
pendently invented in 1693 by Gottfried Wilhelm von Lnlbniz
(1646-1716). Sir Thomas Muir (1844-1934) gave a magiste-
rial survey of publications about determinants from 1693-1920,
published in five volumes from 1890-1930; see also the recent
article by Farebrother, Jensen & Styan (2002), which includes
a list of 131 nineteenth-century books on determinants and an
extensive biography of Muirl.

Matrices were first formalized in 1858 by Arthur Cayley
(1821-1895), but matrices remained little known until the the-
oretical physicist Werner Karl Heisenberg (1901-L976) rein-
vented matrices in 1925 for quantum physics. Most of the work
on determinants which was surveyed by Muir makes more sense
in terms of matrices than in terms of determinants. In fact Muir
himself, at the age of 87 in 193I, wrote that he "welcomed
the light matrix proofs in contrast to the heavy footed method
of thirty-five years ago" tTurnbutl ( 1934, page 79)1. Sheldon
Axler urges, in his 1995 polemic article entitled "Down with
determinants!", that linear algebra should be done without de-
terminants. He asserts that "Determinants are needed in one
place in the undergraduate mathematics curriculum: the change
of variables formula for multi-variable integrals". Accordingly,
he defines the determinant of a matrix to be the product of its
eigenvalues (counting multiplicities) and then proceeds to o'de-

rive the change-of-variables formula for multi-variable integrals
in a fashion that makes the appearance of the determinant there
seem natural".

I agree with Axler that actual numerical evaluation of the
determinant of a matrix is very rarely required. I have written
many procedures based on the ALGOL 60 procedures [Wilkin-
son & Reinsch ( 1971)l which form the basis of the NAG Library
of Mathematical Software. Several of those matrix procedures
produce the value of the determinant as a by-product, but I have
always deleted that feature from my own versions since I have
never required it.

In 1958, when I was a consultant mathematician with the
English Electric Company (at Whetstone in England), I found
that one of the computing laboratory assistants was spending a
great deal of time in punching data onto cards for an engineer.
Those data consisted of many square matrices of order 6, each
of the form A - ,\I for various values of ,\. The engineer told
me that he intended to use a subroutine in the DEUCE library

1A Special Issue of Linear Algebra and its Apptications on "Determinants
and the t egacy of Sir Thomas Muir" is in progress with Special Issue Editors:
Wayne Barrett, Samad Hedayat, Christian Krattenthaler & Raphael Inewy . -Ed.

(written mostly by James H. Wilkinson and his colleagues) to
evaluate the determinant of each of those matrices and that he
would then apply inverse interpolation to find those values of .\
for which the determinant equals zero! I explained (tactfully) to
the engineer that there are better ways of tackling that problem,
and referred him to the subroutines in the DEUCE library for
computing ei genvalues.

The Necessity of Determinants

In 1963 I attended a conference on Numerical Linear Alge-
bra at the National Physical Laboratory in England. My col-
league there, Charles G. Broyden, delivered an impassioned ap-
peal for the elimination of determinants from linear algebra, ffid
declared that he would write a text on matrix computations in
which determinants would never be mentioned. But I responded
that determinants need to be kept as a small but essential part
of linear algebra; it seems to me that any text such as his would
require at least half a page of fine print about the theory of deter-
minants. And indeed, the text by Broyden (I977)does contain a
3-page Appendix on determinants.

Only elementary algebra is needed in developing the theory
of determinants, and much of it can be understood and used by
high-school students. The only part of the standard definition of
a determinant [Aitken (1939, page 31)] which high-school stu-
dents might find difficult is the classification of permutations as
even or odd. Indeed, that was not actually proved until circa
1870, and in I 87I James Joseph Sylvester (1814-1 897) appar-
ently got highly excited about that advance in the theory.

Axler (1995) uses the language of linear operators ? on an
n-dimensional complex vector space V; but I prefer to use the
alternative language of square (n x n) matrices A, since there
are interesting relations between the elements of a matrix and its
eigenvectors and eigenvalues. For example, every eigenvalue of
A has modulus less than or equal to any noffn of A, and the row-
sum and column-sum norms of matrices are easy to compute.
And a matrix can be handled numerically directly on a com-
puter, but a linear operator has first to be converted to a matrix
representation in some chosen basis before it can be represented
on a computer. To a numerical analyst, much of the material in
Axler (1995) appears as unnecessarily abstract, since it cannot
readily be prografirmed on a computer.

In the standard definition, det(A) is computed from the ele-
ments of A by means of a finite number of multiplications, ad-
ditions and subtractions. Hence, if alt elements of A are integer
(or rational, algebraic, real, complex), then the value of det(A)
is integer (or rational, algebraic, real, complex).

In a recent text, Hoppensteadt & Peakin (2002) remark (in
Appendix A) that "The determinant is defined in a complicated
way that we do not present here, but MaTLAB can often com-
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pute it quickly"! Readers of that text should realise that numer-
ical computation of determinants is very rarely desirable.

Adiugate and lnverse Matrices

In 1750, Gabriel Cramer (1704-1752) of "Cramer's rule" used
determinants to prove a major theorem [Muir (1906, pp. 11-
14)1. In matrix notation:

A adj(A) -  adj(A)A - det(A)I,  ( l )

where the elements of the adjugate matrix adj(A) are signed de-
terminants of submatrices of A of order n - 1. Therefore, A has
the (left and right) inverse

April 2003: IMAGE 30

using polynomial factori zation, but the standard textbook proof
using the formula

det(A) - If U,, - pj)

is simpler. We note that alternant matrices have been called Van-
dermonde matrices. There is nothing corresponding to alternant
matrices in the important 1771 paper by Alexandre-Th6ophile
Vandermonde (1735-1796) on determinants [Muir (1906, pp.
17-24 & 306)1. But Abratram de Moivre ( 1667-1754)pubtished
the inverse of a general alternant matrix in 1738, and hence al-
ternant matrices could well be called de Moivre matrices [Tee
(1993,pp. 89-90)1.

From the definition of determinant, it is easy to prove that
Oet(A") = det(A), from which it readily follows that the row
rank of every (rectangular) matrix equals its column rank. Can
that important theorem be proved as simply without determi-
nants?

Eigenvectors and Eigenvalues

The problem of a nonzero vector v being an eigenvector of the
n x n matrix A (with its associated eigenvalue .\)

Av - l r , (4)

reduces (by Spottiswoode's Theorem) to the characteristic poly-
nomial equation for the eigenvalue A

d e t ( A - l I )  - 0 ;

and thus the problem of the existence of an eigenvector is equiv-
alent to the Fundamental Theorem of Algebra. That theorem is
a rather deep theorem of analysis, and hence no simpler proof of
the existence of eigenvectors and eigenvalues can be expected.
Thus, if A has complex (or real) elements then it has exactly n
complex eigenvalues, counting multiplicities.

The characteristic polynomial could actually be constructed
in terms of matrix elements, from the definition of the deter-
minant. For a matrix A of ordet n, denote the characteristic
polynomial

(2)

unless det(A) = Q and then A is not invertible.
Hence, if all elements of A are rational (or algebraic, real,

complex etc.) with det(A) + 0, then 4-t has rational (or
algebraic, real, complex etc.) elements. If A is unimodular,
i.e., det(A) - +1, then 4-t
elements of A are integers then so are the elements of A-t (Tr.
1972, tgg4).

In my opinion, the most important property of determinants
is the theorem which follows from (1), that every square matrix
A is invertible, unless its determinant equals 0 [Axler (1995, Th.
9.1)]. Every number is the determinant of some matrices - for
the determinant to have the particular value 0 is a singular oc-
currence, and hence such a matrix is aptly called singular. That
theorem was used by Seki in 1683 [Mikami (1913, pp. l9l-
r99; L977)1, but the first published proof that if det(A) = 0 then
the homogeneous equation Av = 0 has a vector solution v I 0
was given in 1851 by William Spottiswoode (1825-1383) [Muir
(1911, pp. 54-58)1. Muir described Spottiswoode's Theorem
10, proving that result, as "new but unimportant" ! For a geneal-
ogy of William Spottiswoode see Farebrother (1999) and for a
genealogy of the Spottiswoode family see Farebrother & Styan
(2000).

The explicit expression (2) for A-1 is useful for the the-
ory of matrices, but it is not an efficient method for computing
the inverse of A for latge n. Moreover, matrix inverses should
very rarely be actually computed. Matrix expressions involv-
ing inverses can be computed (in rounded arithmetic) more effi-
ciently Uy ydous other algorithms; e.g., the Schur complement
D - CA 

- 18 can be evaluated efficiently by Aitken's algorithm
[Fox (1964, pp. 75-78)].

An important class of matrices is that of alternant matrices
[Aitken (1939,p. 42)]o where

ai, j  -  t t !n- '  (1 < i , i  < n).  (3)

An important property is that the alternant matrix A is singular if
and only if two or more of the F; are equal. That can be proved

P(r)  g  det(A- I I )
-  ( - 1 ) ' ( l '  -  c1 l ' ? - ,  -  

" r ^n -z

4-r-  
#adj(A),

(5)

(6)

From this definition, it is clear that the coefficients of the char-
acteristic polynomial are composed from elements of the matrix
by multiplications, additions and subtractions. Hence, if the el-
ements of the matrix are integers, then so are the coefficients of
the monic characteristic polynomial, scaled bv (- I)^; and sim-
ilarly if the elements of the matrix are rational, algebraic, real or
complex.

A standard theorem, based on the determinantal definition
(6), gives the coefficients of the characteristic polynomial as the
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sums of determinants of principal minors of A, with the simplest
instances being that:

c1 - -trace(A) , cn - (- 1)"- l det(A) . e)

It follows immediately, from Vieta's Relations [Frangois Vieta"
Seigneur de La Bigottidre (1540-1603)l for the characteristic
polynomial, that the sum and the product of eigenvalues are
trace(A) and det(A), respectively. In this manner, all symmetric
functions of the eigenvalues can be expressed (through the co-
efficients of the characteristic polynomial) in terms of elements
of A [Tee (1994)]. For example, the simplest algorithm for con-
structing the characteristic polynomial of A is Le Verrier's 1840
algorithm [Urbain Jean Joseph I-e, Verrier (1811-1877)), see,
e.9., Faddeev & Faddeeva (1963), which is based on the well-
known result that

t race(A*)  - f .U,  (8)
f = 1

which depends upon the determinantal relation (7).
I-et ,\ be an eigenvalue of A, satisfying the determinantal

equation (5). Define

B - adj(A - lI) ,

so that it follows from (a) and (5) that

(e)

(A - . \ r )B -  o. (10)

Thus, every nonzero column v of B is an eigenvector of A, with
eigenvalue ,\. This method for constructing eigenvectors will
fail only when B = 0, i.e., when A - ,\I has rank less than n - I
(i.e., nullity greater than 1); and that can happen only when ,\
is a multiple eigenvalue of A which occurs in more than one
Jordan box in the Jordan canonical form of A.

This method is sometimes useful for giving an explicit ex-
pression for an eigenvector v with eigenvalue .\, although it is
not efficient for large n.

Axler (1995) defines eigenvalues thus: 'A complex number
,\ is called an eigenvalue of the linear operator T on I/ it T - ,\I
is not injective". And in his Theorem 2.1, he purports to prove
that: Every linear operator on afinite-dimensional complex vec-
tor space has an eigerwalue. Axler's proof is as follows: To
show that T has an eigenvalue, fix any nonzero vector u € V.
The vectors u, To, 72a2... , Tnu cannot be linearly indepen-
dent, because I/ has dimension n and we have n * 1 vectors.
Thus there exist complex numbers a0 t . . . , an, not all 0, such
that

a 1 a  *  a t T u  + . .  . *  a n - t T n - L n  *  a n T n u  -  0 .

Make the a's the coefficients of a polynomial, which can be writ-
ten in factored form as

a o  *  a L z  + . .  . *  a n z n  -  c ( z  -  1 1 )  . ( z  -  r * ) ,
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where c is a nonzero complex number, each r7 is complex, md
the equation holds for all complex z. We then have

0  -  ( o o l * a t T * . . . + a n _ r T n - l  + a , - T n ) u

c(T - r1I) .  .  .g -  rnal)o,

which means that T - r j I is not injective for at least one jr. In
other words, T has an eigenvalue.

Axler confidently declares (p. I54) that ooThe simple proof of
the existence of eigenvalues given in [his] Theorem2.l [above]
should be the one imprinted on our minds, written on our btack-
boards, ffid published in our textbooks". That proof may seem
simple to him - but it uses mathematical concepts which are
much more complicated than the high-school algebra used in the
standard proof (5) with determinants. His definition of eigen-
value is far from simple, his proof does not give any construc-
tion of the characteristic polynomial, and it is more difficult to
comprehend than the standard proof.

Moreover, it seems to be wrong!
The coefficient c equals orz, which can be zero. Foro let v

be an eigenvector of A (which does exist, by the standard de-
terminantal proof (5) above) with eigenvalue ,\, as in (4). Then
Axler's linear dependence holds with coefficients

O 0  :  - , \ ,  A 1  =  L ,  a Z  =  .  .  .  -  A , n -  0 , (1  1 )

and in particular c -- an - 0, unless n - 1. [We note thatAxler
(twice) writes rtn instead of rn - but since he says nothing
about m, it can only be regarded as a misprint.]

Axler defines a vector u € V as "an eigenvector of ? if
Tu : .\u for some eigenvalue I", and in Proposition 2.2 he
speaks of "nonzero eigenvectors". But the standard definition
of eigenvector for a square matrix A of order n is that it is a
nonzerovectorvsuchthat(a)holdsforsomescalar , \ ' I fv
0 were accepted as an eigenvector, then v _ 0 would be an
eigenvector of every matrix of order n, and every scalar would
be an eigenvalue for v - 0.

I feel that Axler's definition of the multiplicity of an eigen-
value is more complicated than the standard definition in terms
of the linear factori zation of the characteristic polynomial,
which is defined as det(A )I). If E is any rational func-
tion, then v is an eigenvector of n(A) with eigenvalue n(I),
whose multiplicity is determined from the linear factonzation
of the characteristic polynomiat of A. Is there any simple way
of doing that without determinants?

onepracticalwayofso1vingapolynomialequationq(z)
0 is to construct the companion matrix Q of q and then compute
its eigenvalues. But the proof that the characteristic polynomial
of Q is g consists of expanding det(Q - zl) by its last row and
obtaining q(r).

How would one show, in Axler's version, that every eigen-
value r has at least one eigenvector v (and hence the eigenspace
has dimension at least 1)? How would one relate the coefficients
of the characteristic polynomial to the elements of the matrix, as
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above, without determinants? How could one construct sym-
metric functions of the eigenvalues, in terms of elements of the
matrix, without determinants? It might be possible to do these
things without determinants, but I cannot see how that could be
simpler than the standard approach using determinants.

The eigenvalues of A are continuous functions of the coef-
ficients of the characteristic polynomial, which are continuous
functions of the elements of A; and hence the eigenvalues are
continuous functions of the elements of A. That continuity is
important in perturbation analysis, including round-off analy-
sis; and it is required for proving Gerschgorin's very important
l93l theorem [Semeon Aranovich Gerschgorin (1901-1933)]
that the union of k Gerschgorin disks of A (disjoint from the
other n - fr disks) contains exactly k eigenvalues of A (counting
multiplicities). With the determinant definition of characteristic
polynomial, the continuity of the eigenvalues (as A is perturbed)
follows from first-year analysis. Can it be proved as simply
without determinants?

Eigenvalues (and eigenvectors) of real symmetric A are best
computed by first applying Householder's similarity transfonna-
tion to convert A to symmetric tridiagonal form:

a1 frt

h d 2 9 z

f rz:  u:

1n-s Qn-2 frn-z

1n-z  Qn- r 0n-r

Q,Nfrn-t

Without loss of generality we can take each Bi + 0; for if any
gi - 0 then T splits (after row and column j) into a direct sum
of tridiagonal submatrices, and the eigenvalues of each of those
submatrices can be found independently of the others. Expand-
ing by row I the determinant of the submatrix of T - rI con-
sisting of rows and columns 1 to j, to obtain the characteristic
polynomial

p i@)

where po(n) = I, n@) _ a1 - n, and p^(n) is the charac-
teristic polynomial of T. This 3-term recurrence relation shows
that the sequence po(*), pt(r), ) p^(x) is a Sturm sequence,
whose sign-changes give the number of eigenvalues less than r.
Hence, the eigenvalues of T can be found by a bisection method,
and this is a reliable and practically useful method for comput-
ing eigenvalues (and eigenvectors) of a real symmetric matrix
A. Could this be proved readily without using determinants?
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Polynomial Resultants

The resultant of 2 or more polynomials (which equals 0 if and
only if the polynomials have a common zero) is most simply
represented as a determinant. For example, the two polynomials

p ( * ) -  a n 3  * b n z  * c x + d ,

q(n) -  ex4 * f*t  *  g* '  *  hn * i ,

have a common zero if and only if the resultant R(p, q)
where R(p, q) is the determinant of the matrix

0 0 0  a b c d

0 0 a, b e d 0

0 o, b c d 0 0

a b c d 0 0 0

0 0  e f  s h i

0 e f e h i 0

e f s h i 0 0

The matrix R displays a clearly comprehensible pattern;
whereas the expanded form of the determinant R(p, q) =
det(R) has hundreds of terms, with no such clear pattern. The
alternative definition of ^R(p, g) as the product of the squares of
the differences between zeros of p and of q gives no indication
of the nature of the coefficients of the expanded form of E(p , Q),
but the determinant definition shows immediately that if the co-
efficients of p and q tre integers (or real, etc.), then so are the
coefficients of R(p, g).

The Cayley-Hamilton Theorem

I-et P denote the characteristic polynomial of the square ma-
trix A. Then the well-known Cayley-Hamilton Theorem is that
P(A) : 0. Axler's proof uses a lengthy sequence of theorems
on linear operators, which many undergraduates would find
quite difficult. Butthe Cayley-Hamilton Theorem can be proved
quite simply with determinants, see, e.g., Faddeeva (1959, pp.
$+I55).We define

adj(A-r l )  ,  (12)

and so each element of B is the signed determinant of a subma-
trix (order n - 1) of A - .\I, and hence is a polynomial in ,\ of
degree n - 1 or less. And so the matrix B can be written in the
form

B  -  B , r - r  *  B , r - z l * . . . +  B o ) ' - 1 ,  ( 1 3 )

where the matrices 8,, - 1 ,
from (l),

, Bo are independent of ). Then,
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'':' 
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(a - rI)

-  (-1) ' ( I '  -  c lx""- l  -  cz\n-z - cn)| .

Equating the (matrix) coefficients of .\ on left and right (which
could be done, element by element), we get a system of n + I
matrix equations:

- 8 6  -  ( -  1 ) ' I ,

B o A  -  8 1  -  ( - 1 ) " + 1 r r f  ,

B r , - zA -Bn - r  =  ( -1 ) "+Lcn -L I ,

Br r - rA  _  ( - l ) "+ t rn [  .

Premultiplying these equations by A'-1, An-',. . . , A, I
and adding, we get the matrix polynomial equation:

0

where P is the characteristic polynomial of A, as defined by (6).

This determinantal proof of the Cayley-Hamilton Theorem
is much simpler than Axler's proof of Theorem 5.2 - it uses
only elementary algebra and does not even require the Funda-
mental Theorem of Algebra. Axler develops the theory of gener-
alized eigenvectors, minimal polynomial, Jordan canonical form
and orthonormal bases, to show that linear algebra can be done
without determinants. But various texts, including Faddeeva
(1959) and Faddeev & Faddeeva (1963), use determinants for
establishing basic results about inversion, singularity, charac-
teristic polynomial, eigenvectors, eigenvalues and the Cayley-
Hamilton Theorem as above and thereafter develop linear alge-
bra with little or no subsequent explicit use of determinants.

Even though Axler acknowledges that determinants have
their uses in mathematics at the research level, he concludes his
paper with the slogan "Down with Determinants!". But we have
shown here that several significant parts of undergraduate math-
ematics do indeed require the use of determinants. Hence we
say: Up with Determinants!
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Gottfried Wilhelm von Leib ntz: 1 G4G-17 1 G

R. William Farebrother, Ceorge P. H. Styan & Garry J. Tee

As Tee (2003) noted in his article "IJp with determinants!" in
this issue of tnl|ne E, "Determinants were applied in 1683 by the
Japanese mathematician Thkakasu Seki KOwa (1642-1708) in
the construction of the resolvent of a system of polynomial equa-
tions [but] were independently invented in 1693 by Gottfried
Wilhelm von Iribniz (164G17I6)".

In Smith (1929, pp. 267-270) there appear English transla-
tions (from the French and Latin by Thomas Freeman Cope) of
two extracts of writings by Leibni z on determinants. The first
extract, which contains the system of equations below, is from
a letter by Leibniz to Guillaume Frangois Antoine Marquis de
L H6pital (r661-1704),dated 28 April 1693, and published for
the first time in Gerhardt (1850, pp. 238-240; see also pp. 229
& 245). The second extract is from a manuscript on eliminating
unknowns, published for the first time in Gerhardt (1863, pp. 5-
6) and which "bears no date, but it was probably written before
1693 and possibly goes back to 1 67 8" . See also Muir ( 1890, pp.
G10).

In the l693letter by Leibnizto L H6pital, Iribnizexplained
that the equations

1 0 + I T r * I 2 y  -  0

2 0 + 2 I n * 2 2 y  =  0

3 0 + 3 l r * 3 2 y  -  0

have a solution because

1 0 x  2 I  x  3 2  +  1 1  x 2 2 x  3 0  +  1 2 x  2 0 x 3 1

=  1 0  x  2 2 x  3 1  +  1 1  x  2 0 x  3 2  +  L 2 x 2 I x  3 0 ,

which is exactly the condition that the coefficient matrix has de-
terminant 0.

Leibnizherc denoted general numbers by double subscripts.
In modern notation, his equations may be rewritten as the vector
equationGz = $ with a square matrix G, where

Since z { 0, it follows at once that the determinant det(G) = 0,
which is equivalent to Leibniz's condition above.

I-elbniz was born in Leipzig on I July L646. His father,
Friedrich Leibniz, was a professor of moral philosophy at the
Universit[t l-eipAg; his mother, Catharina Schmuck, was the
daughter of a lawyer and Friedrich's third wife. However,
Friedrich Leibniz died when Iribniz was only six years old and
he was brought up by his mother, who died when Leibniz was
17 .

At the age of 7, Leibniz entered the Nicolai School in
Lnipng, and at the age of I4,he entered the Universitiit l-eipzig.
He studied philosophy, which was well taught there, and math-
ematics, which was very poorly taught. Among the other topics
included in his two-year general degree course were rhetoric,
Latin, Greek and Hebrew. He graduated with a Bachelor's de-
gree in 1 663 and then "a Master's degree in philosophy for a dis-
sertation in which he combined aspects of philosophy and law;
he studied relations in these subjects with mathematical ideas.
A few days after Leibniz presented his dissertation, his mother
died" (O'Connor & Robertson 1998).

Leibniz worked on his habilitation in philosophy to be pub-
lished in 1666 as "Dissertatio de Arte Combinatoria" (Disser-
tation on the Combinatorial Art). According to O'Connor &
Robertson (1998) "In this work Leibniz armed to reduce all rea-
soning and discovery to a combination of basic elements such as
numbers, letters, sounds and colours. Despite his growing rep-
utation and acknowledged scholarship, Leibniz was refused the
doctorate in law at Leipzig!' And so Leibnizwent to the Univer-
sity of Altdorf, receiving a doctorate in law in February I 667 for
his dissertation "De Casibus Perplexis" (On Perplexing Cases).

One of Leibniz's lifelong aims was to collate all human
knowledge. MacDonald Ross (1984) noted that 'Although Leib-
niz's interests were clearly developing in a scientific direction,
he still hankered after a literary career. All his life he prided
himself on his poetry (mostly Latin), and boasted that he could
recite the bulk of Virgil's Aeneid by heart." In The Cambridge
Biographical Encyclopedia, Crystal (1994) observes that "Leib-
niz was a man of remarkable breadth of knowledge and made
original contributions to optics, mechanics, statistics, logic, and
probability theory. He conceived the idea of calculating ma-
chines and of a universal language. He wrote on history law,
and political theoryl'

Leibniz went to Paris on a diplomatic mission in the autumn
of 1672 and studied mathematics and physics under Christiaan
Huygens (1629-1695) there, see Hofmann (1978, page l2). In
Paris, Leibniz developed the basic features of his version of the
calculus. The Royal Society (of l,ondon) elected Leibniz aFel-
low on 19 April 1673. In October 1675, in the middle of a
paper about double integration, "Leibntz replaces the abbrevi-
ation onur. by the sign f (a 'long s', the initial letter of the
word summa_whose place it takes), at first writing I v where we
would set ff y.dx: all integrals are understood to be definite,
but no special notation for the limits is used. It is particularly
noted by Leibniz that the operation / raises the dimension by
one degree. Where I y - z,he puts, conversely,

v-i
(Hofmann, page I92). The notation f (n) only curme into use
around the end of the 18th century.
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By autumn 1676 Leibniz discovered the familiar d(*n) -
nnn-rdn for both integral and fractional n. "In 1684 I-eibniz
published details of his differential calculus in "Nova Metho-
dus pro Mzurimis et Minimis, itemque Thngentibus ..." in Acta
Eruditontm, a journal established in Leipng in 1682. The pa-
per contained the ramiliar d notation, the rules for computing
the derivatives of powers, products and quotients. In 1686 Leib-
niz published, also in Acta Eruditontm, a paper dealing with the
integral calculus with the first appearance in print of the / no-
tation" (O'Connor & Robertson 1998). For English translations
(from the Latin by Evelyn Walker) of Leibniz's first publications
on calculus, see Smith (1929, pp. 619-626); see also Struik
(1969,ch. V pp. 27 0-284).

According to Schaaf (1978, pp. 6546), Sir Isaac Newton
(1643-1727) and lribniz developed the calculus independently
but "Newton unhappily devised a rather clumsy notation". Both
men "were seeking general methods of finding maximum and
minimum values of a curve" and were "superb mathematicians".

The extensive survey by Sir Thomas Muir of publica-
tions about determinants starts with the item headed "I-eTbnitz
(1693)". Muir uses the spelling "Leibnitz" but the spelling
"I-eilbniz" appears on all eight postage stamps that we have
found in his honour. For publications about him, we searched
OCLC First Search (WorldCa| on 31 May 2003 to find 1781
entries with "Leibniz" in the title and 296 with "Leibnitz" in the
title. We believe that "Leibnitz" is a British spelling, but accord-
ing to Mates (1986, page l7), "For several generations before
Leibniz's father, the family spelled its name Leubnitz. Leibniz's
father Friedrich and Leibniz's half brother Johann Friedrich used
Leibniitz, Leibntiz, and l-eibnitz. Leibniz himself used Leib-
nijrtz until his mother died (in L673), then for a time Leibniiz,
and after L67I I-,eibntz. Correspondingly he shifted the Latin
form from Leibnuzius and Leibnuezius to Leibnitius. Etymo-
logically the nilme probably derives from the Slavic 'Lipnice',

which refers to a certain kind of grass that grows in river bot-
toms; variants on this appear as names of rivers and places all
over Eastern Europe." Leibni z is sometimes called "Gottfried
Wilhelm Freiherr von I-eibniz" but although he occasionally
employed this title himself, he was never officially raised to the
peerage (Mates, 1986, page l7).
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Illustrated here are eight postage stamps issued in honour of
I-elbniz. The stamps are iuranged clockwise starting with the
oldest top left. Technical details are given in the table below.
Ten colour jpeg images of all eight stamps are available on Jeff
Miller's "Images of Mathematicians on Postage Stamps" Web
site http //jefI560.tripod .com/ Colour prints of the St. Vincent
stamp [6] and the 1996 German stamp [8] are in the new book
by Wilson (2001, page 59), and colour prints of [1,3,4] are in
the book by Schaaf (1978, page 66).

year country face value series or anniversary colour Scott
catalogue

Stanley
Gibbons
catalogue

tu 1926 Germany [Deutsches Reich] 40 pfennig Ponraits of famous Germans violet 360 410

I2l 1950 German Democratic Republic 24 pfennig 25Uh anniversary of the German Academy of
Sciences in Berlin red 66 828

t3l 1966 Federal Republic of Germany 30 pfennig 25fth death anniversary black & mauve 962 r423

t4l 1966 Romania [Romana] 1.35 lei Ponraits : cultural anniversaries olive, black & blue I 855 3387

tsl 1980 Federal Republic of Germany 60 pfennig Europa multicoloured 1329 1928

t6I r99r St. Vincent $z Anniversaries and events multicoloured 1557 1758

17l r996 Albania [Shqiperia] 10 leke Famous philosophers & mathematicians multicoloured 2515 2638

t8l r996 Federal Republic of Germany 100 pfennig 350th birttr anniversary red & black t933 27 19
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In Paris in 1672, Leibni z had examined specimens of Pas-
cal's adding machine (of 1642), and he designed a much more
powerful calculating machine to perform addition, subtraction,
multiplication and division; see "LeTbniz: on his calculating
machine" translated from the Latin by Mark Kormes in Smith
(1929, pp. 173-181: a picture of the machine is on page 173).
The major feature was the moveable accumulator, such that,
with a positive integ er n in the setting register, one forward turn
of the handle would add r into the accumulator and one back-
ward turn of the handle would subtract r from the accumula-
tor, when the accumulator was in its standard position. Thus, D
turns of the handle would add nn into the accumulator, where
n is any integer. But the accumulator could be shifted past the
setting register, so that the unit digit of the setting register added
into the tens digit of the accumulator, and then one turn of the
handle added 10r into the accumulator. And with k shifts, each
turn of the handle added 10er into the accumulator. Thus, to
multiply * by a p-digit positive integer a, for each of the p digits
of y the handle is turned at most 9 times, followed by a further
shift of the accumulator. And similarly for division by y, with
the handle being turned backward.

When Leibniz first visited London in 1673 he brought with
him the first version of his calculating machine. That prototype
did not operate reliably, but the Royal Society very promptly
elected him as a Fellow. For the rest of his life, Leibniz em-
ployed the most skilled clockmakers in Europe to make suc-
cessive versions of his calculating machines. But the engi-
neering problems of "transmitting carry through successive dig-
its"2 could not then be overcoffie, and no reliably operating
Iribniz calculator was made in his lifetime. By 1877, engi-
neering technology had been advanced to the extent that the
first reliable Leibniz calculator was made by Willgodt Theophil
Odhner (1845-1905), a Swedish engineer working in Russia,
see Maistrov & Sokolov (1981). Odhner's factory in Sankt-
Peterburg (Petrograd, Leningrad) manufactured Odhner calcula-
tors from 1886 to about 1982, and in 1 892 he licensed a German
firm to manufacture them in Braunschweig, see the chapter enti-
tled "Brunsviga Calculating Machine" apparently written by the
manufacturer Grimme, Natalis & Co. Ltd. (at Braunschweig),
in Horsburgh (1914, pp. 84-91). Those Odhner and Brunsviga
calculators, based on Leibniz's design, were the machines most
used for scientific computing until about 1957.

Iribnizmtght have liked to remain in Paris at the Academy of
Sciences, but apparently further invitations to "foreigners" were
not forthcoming. And so Leibniz accepted the position from the
Duke of Hannover, Johann Friedrich, of Head Librarian and of
Court Councillor in Hannover. Interestingly, the 1991stamp [6]

2"Transmiuing carry through successive digits" is a standard phrase in ac-
counts of calculating machinery. It is simple to design a machine which will add
(say) 26+54 to give 80. But, engineering had to be developed over 2 centuries
(from l-eibniz's first calculator) before general integers (of l0 or more digits)
could be mechanically added reliably, rapidly and repeatedly. Slowly turn the
handle of an Odhner calculator as it adds I to 9999999999999999,and we see
the carry being transmitted, converting each successive 9 to 0 with carry to the
next 9.
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from St. Vincent has the inscription: "Gottfried Wilhelm Leib-
niz, Head librarian for the electors of Hannover (& co-inventor
of the calculus): 750th Anniversary of Hannover".

From December 1 676 until his death in 1716, Lribniz lived in
Hannover although he travelled frequently. His duties at Han-
nover "... as librarian were onerous, but fairly mundane: gen-
eral administration, purchase of new books and second-hand li-
braries, and conventional cataloguing" (MacDonald Ross 1984).
In 1700 l-elbniz founded the "Deutsche Akademie der Wis-
senschaften zu Berlin" and became its first President; to mark
its 250th anniversary in 1950, the German Democratic Republic
issued a postage stamp [2] depicting I-eibniz.

According to Aiton (1985, page ix) "the townspeople of Han-
nover ... erected a circular temple with a bust in white marble
and the simple inscription 'Genio Leibnitii'. The Leibniztempel
was established by Hofrat Johann Daniel Ramberg in the Water-
looplatzin 1790 but was moved in 1934 to the Georgengarten in
Hannover's Nordstadt; the Georgengarten is one of four gardens
in the Herrenhiiuser Giirten, which were laid out in the LTthcen-
tury. A picture of the Leibniztempel appears in the background
of the St. Vincent stamp [6] and on the Web site www.nordstadt-
online.de/info/sights/eibnitz.htm where it is noted that the dome
is supported by twelve Ionian colufitns. The bust of Leibniz was
created by the Irish sculptor Christopher Hewetson (1739-1798)
from Carrara marble and is now in the Iribnizhaus in the Holz-
markt; the Leibnizhaus is the Conference Centre and Guest Res-
idence for Visiting Scientists of the Universities and Academies
in Hannover.

In the Encyclopaedia Britannica, Lelbniz is described as
'A man of medium height with a stoop, broad-shouldered but
bandy-legged, &s capable of thinking for several days sitting in
the same chair as of travelling the roads of Europe summer and
winter. He was an indefatigable worker, a universal letter writer
(he had more than 600 correspondents), a patriot and cosmopoli-
tan, a great scientist, and one of the most powerful spirits of
Western civilisation." Mates (1986, page 33) notes that "Leib-
niz rcmained a bachelor all his life. Once, in his 50th year, he
was eager to get married. But the intended person asked for time
to think it over, and meanwhile he lost the inclination. He some-
times said that he had always thought there was plenty of time,
but one day he realized that now it was too late."

Aclcnowledgements. Much of the information about Leibniz is ex-
ffacted from the excellent article on the Web by O'Connor & Robertson
(1998), which includes 229 references and 8 jpeg images of Leibniz;
see also Aiton (1985, page facing the title page), and Smith (lgzg,page
facing page 619). We are also very grateful to Gotz Trenkler for inffo-
ducing us to, and for providing us with a copy of, the 1996 German
stamp [8]. Many thanks to Monty Strauss for supplying us with a jpeg
image of the stamps [5] and [6] and to Jeff Miller for allowing us to
reproduce his jpeg image of the stamp [2].
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Defining the Determinant

What is your favorite definition of determinant? The custom-
ary one springs like Athena from the head of Zr,as with no mo-
tivation visible till later. - Go the volume route? Define as
a multiplicative homomo{phism to the base field? Product of
eigenvalues? Bi-linear map? . . .? Ken Ireland, a colleague now
deceased, told me Gauss said something like: First find a proof;
then find the right proof. - I am still looking for the right defi-
nition of determinants.

*urru
University of New Brunswick, Fredericton, New Brunswick, Canada
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Another Matrix Representation of Quaternions

Irt a,b,c,d bereal numbers and leti = 18. Then it is well
known that the complex numbers a * ib and c * id may be
represented by the 2 x 2 matrices

( ' ) a n d ( ' ) 1

\ -b  a l  \ -a  'J
respectively. 

'Whence 
we may deduce that the second repre-

sentation in Farebrother (2002) of a typical quaternion q =
a * bh + cj + dk by the 4 x 4 real matrix

may be replaced by the 2 x 2 complex matrix

That is, as P - o,I +bL + cM + dN where / is the 2 x 2 identity
matrix and

Clearly these 2 x 2 matrices satisfy the Hamiltonian conditions

L 2 - m 2 : N 2 - - I  ,
LM - ,n f  _  -ML ,  MN -  L  -  -NM,  I { L  -  M=  -L I {  .

A similar representation of the first expression in Farebrother
(2002) may be achieved by interchanging the third and fourth
rows and the third and fourth columns of the 4 x 4 matrix p.

Finally, as Hawkins (1972, page 245) has pointed out, this
complex representation of Hamilton's quaternions was sug-
gested by Cayley (1858, page 31), although he did not specify
the matrices involved; for related work on the origins of group
theory see Hawkins (1971).
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Forthcoming Conferences and workshops in Linear Algebra

Fields lnstitute Special Session on Matrices and Statistics

Halifax, Nova Scotia: 10 f une 2003

The 2003 annual meeting of the Statistical Society of Canada
was held at Dalhousie University in Halifax, Nova Scotia,
Canada, June 8-1 I, 2003. A Special Session on Matrices and
Statistics, sponsored by The Institute for Research in Mathemat-
ical Sciences (Toronto) and organized by George P. H. Styan,
was held on June 10, 2A03, and featured three invited speakers:

Jerzy K. Baksdary (Zielona G6ra, Poland): A revisitation of
formulae for the Moore-Penrose inverse of modified matrices
(oint work with oskar Maria Baksal ary & G6tz Trenkler),

Simo Puntanen (Thmpere, Finland): Matrix tricks for teach-
ing linear statistical models-Our personal Top Ten (oint work
with George P. H. Styan), and

Hans Joachim werner (Bonn, Germany): In the year of
the Matrix: Prediction techniques in the general GauB-Markov
model.

12th International Workshop on Matrices and Statistics

Dortmund, Germany: 5-B August 2003

The l2th International Workshop on Matrices and Statistics
GWMS -2003) will be held at the UniversitAt Dortmund (Dorr-
mund, Germany), 5-8 August 2003, during the week immedi-
ately before the 54th Biennial Session of the International Sta-
tistical Institute (ISD in Berlin. Dortmund is a city of over half a
million inhabitants in the Ruhr Valley; it is an ancient walled city
first mentioned c. 885 AD as 'orhrotmannia"; in the l2thcentury
it became "Tremonia" as a member of the Hanseatic League,
and later ""Trutmunia", "Trutmenni", and "Dorpmunde". The
nearest major airport is Dtisseldorf (DUS), with a direct train
connection from DUS to Dortmund of about 45 minutes.

This Workshop, which will be hosted by the Department of
Statistics at the Universitiit Dortmund, is cosponsored by the
Bernoulli Society as an ISI satellite meeting, and is endorsed
by the International Linear Algebra Society (ILAS).

Jerry K. Baksalary (zielona G6ra, Poland) will be the
ILAS kcturer. Other invited speakers include Adi Ben-Israel,
Narasanga Rao Chaganty, Ludwig Elsner, Bjarne Kjar Ersboll,
R. William Farebrother, Patrick Groenen, Stephen Pollock, Jtilia
Volaufov6, and Roman ZmySlony.

A special series of invited lectures in celebration of Gdtz
Trenkler's 60th birthday will be held in the afternoon of Mon-
day, 4 August 2003; those invited include lerzy K. Baksalary,
Herbert Biining, Iris Pigeot, Bernhard Schipp, Peter Statrlecker,
and George P. H. Styan.

The International Organiang Committee for this Work-
shop comprises R. William Farebrother, Simo puntanen,

George P. H. Styan (vice-chair), and Hans Joachim Werner
(chair). The Local Organinng Committee at the University
of Dortmund consists of Jtirgen GroB, Gotz Trenkler (chair),
and Claus Weihs. The Workshop Secretary is Eva Brune:
iwm s2 00 3 @stati sti k. u n i -do rtm u n d .d e For up-to-date information
on this Workshop please visit the Web site www.statistik.uni-
dortm u nd.deltWMS/ma i n . htm I

This Workshop will include the presentation of both invited
and contributed papers on matrices and statistics. We also plan
to have a special session for papers presented by graduate stu-
dents as well as a session of lectures for students. It is expected
that many of these papers will be published, after refereeing, in a
Special Issue on Linear Algebra and Statistics of Linear Algebra
and lts Applications.

on Wednesday, 6 August 2003, there will be an excursion
to the Mining Museum Bochum, followed in the evening by the
Workshop Dinner at Hdvels Brauhaus in downtown Dortmund.

From W to right: Jochenweme4 Jery Baksalnry, George styan, yongge TIan, and sinn puntanen"
puttingthefinaltoucheson IMAGE 30 inHalifax,Tuesday, 10hne2003. PhoagraphbyoslcarMariaBaksalary.
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Special Meeting on Linear Algebra and Applications

caparica, near Lisbon, Portugal: 8-10 september 2003

A Special Meeting on Linear Algebra and Applications (Encon-
tro de Algebra Linear e Aplicug*' EALA -2003) will be held
from 8 to 10 September 2003 on the occasion of Graciano de
Oliveira's 65th birthday. This Meeting will take place on the
campus of the Faculdade de Ci0ncias e Tecnologia da Universi-
dade Nova de Lisboa, which is located at Caparica on the south
side of the Thgus river near Lisbon and the Atlantic Ocean. It is
being organized by the Centro de Estruturas Lineares e Com-
binat6rias and follows the one held in Sevilla, Spain (lC-r2
September 1997), in a series of joint Portuguese-Spanish con-
ferences.

Confirmed invited speakers include Itziar Baragafa (Univer-
sidad del Pais Vasco, Spain), Wayne Barrett (Brigham young
University, USA), Cristina Caldeira (Universidade de Coimbra,
Portugal), Purificag6o Coelho (Universidade de Lisboa, Portu-
gal), Ant6nio Leal Duarte (Universidade de Coimbra, Portugal),
Susana Furtado (Universidade do Porto, Portugal), Vakhtang
[,omadze (Institute of Mathematics, Republic of Georgia), Al-
berto Mdrquez (Universidad de Sevilla, Spain), Juan Manuel
Pefn (Universidad deZaragoza, Spain), ffid Xavier puerta (Uni-
versidad Politdcnica de Valencia, Spain).

The Scientific Committee comprises Isabel Cabral (Univer-
sidade Nova de Lisboa, Portugal), Juan Miguel Gracia (Univer-
sidad del Pafs Vasco, Spain), Fernando Puerta (Universidad de
Barcelona, Spain), JoSo Filipe Queir6 (Universidade de Coim-
bra, Portugal), Fernando C. Silva (Universidade de Lisboa, Por-
tugal), J. A. Dias da Silva (Universidade de Lisboa, Portugal),
Ana Urbano (Universidad de Valencia, Spain), ild Ion Zaballa
(Universidad del Pais Vasco, Spain). The Organizing Commit-
tee comprises Isabel Cabral (Universidade Nova de Lisboa, Por-
tugal), Cecflia Perdigdo (Universidade Nova de Lisbo4 Portu-
gal), Carlos Saiago (Universidade Nova de Lisboa, Portugal),
and Fernando C. Silva (Universidade de Lisboa, Portugal).

For further details contact Isabel Cabral by e-mail at
ice@fct.unl.pt or please visit the Web site http l/hermite.cii.fc.ul.
pt/eala03/

I nternational Conference on
Matrix Analysis and Applications

Fort Lauderdale, Florida:. 14-16 December 2003

An International Conference on Matrix Analysis and Applica-
tions will be held at Nova Southeastern University, Fort Laud-
erdale, Florida, USA, 14-16 December 2003. The aim of this
mathematical meeting is to stimulate research and interaction
of researchers interested in all aspects of linear and multilinear
algebra, matrix analysis and applications and to provide an op-
portunity for researchers to exchange ideas and recent develop-
ments on these subjects. The conference is sponsored by Nova
Southeastern University and endorsed by the International Lin-
ear Algebra Society (ILAS).
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The organizing committee consists of Tsuyoshi Ando (Sap-
poro, Japan), Chi-Kwong Li (College of William and Mary,
usA), George P. H. Styan (McGill university, canada), Hugo
Woerdeman (College of William and Mary, USA), and Fuzhen
Zhang (Nova Southeastern University, USA).

Roger A. Horn (university of Utatr, usA) will be the ILAS
Lecturer. Confirmed speakers and participants include (in addi-
tion to the organizers): Rafig Agaev, Koenraad Auden aert, Jas-
pal Singh Aujla, Jerzy K. Baksal ffiy, oskar Maria Baksal ary,
Ham Bart, Nati{lia Bebiano, Man-Duen Choi, Chandler Davis,
Luz Maria DeAlba, Mingzhou Ding, Dragomir Z. Djokovil,
Driss Drissi, Hossein Teimoori Faan, Shaun Fallat, Thkayuki
Furuta, Armenak Gasparyan, Frank Hall, Matthew He, Daniel
Hershkowitz, Jinchuan Hou, Emiong Jiang, Sang-Gu Lee, Wen
Li, zhongshan Li, Niloufer Mackey, Tom D. Morley, Hiroshi
Nakazato, Peter Nylen, Vadim Olshevsky, Leiba Rodman, Man-
deep Singh, Jai N. Singh, Mohammad Shakil, Ilya Spitkovsky,
Tin-Yau Thm, Michael Tsatsomeros, wiliam Watkins, Hans
Joachim Werner, Changqing Xu, and Masalriro yanagida.

We expect that many of the papers presented at this
conference will be published, after refereeing, in a Spe-
cial Issue of Linear Algebra and lts Applications associ-
ated with this conference. A reception and a pool party
will take place in the evenings of Saturday 13 December
and Monday 15 December 2003, respectively. There will
be no registration fee. The conference hotel is Best West-
ern Rolling Hills Resort: www.bestwestern .com/rol I i ngh i | | s resort
which is within walking distance to the conference site at
Nova Southeastern University: www.nova.edu To register, con-
tact Chi-Kwong Li: ckli@math.wm.edu For local informa-
tion, contact Fuzhen Zhang: zhang@nova.edu The Web site is
www. res n et.wm .ed u/ -ck I ixxlnova0 3 . htm I

The Many Facets of Linear Algebra and Matrix Theory

Bangalore, lndia: 17-20 December 2003

The first joint meeting of the American Mathematical Society
(AMS) and Indian mathematicians will take place in Bangalore,
India, on December l7-2A, 2003. Plenary lectures at this in-
augural meeting will be given by Professors Balasubramanian,
Papanicolaou, Raghunathan, Sarnak, Sinh4 and Voevodsky.

At this meeting there will be a special l0-hour session on
"The Many Facets of Linear Algebra and Matrix Theory" or-
ganrtzed by Rajendra Bhatia and Richard Brualdi. We hope to
showcase the broad and important contributions that have been
made and are being made to linear algebra and matrix theory
and their key role in applications.

V/e have assembled a distinguished, eclectic, and interna-
tional group to accomplish this. They are: Ravi Bapat, Adi
Ben-Israel, Tirthankar Bhattacharyya, Francesco Brenti, Biswa
Datta, Jose Dias da Silva, Anne Greenbaum, Ravi Kannan, Fuad
Kittaneh, Tom Laffey, Raphi Loewy, Michael overton, Dijen
Ray-Chaudhuri, Peter Semrl, Stefano Sera, and Pei yuan wu.
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The l0-hour session will be divided into four sessions:
1. '_Algebraic Linear Algebra": Bapat, Dias da Silva Laffey,

Semrl

2. "Analytic Linear Algebra": Bhattachutyya Kittaneh, Serra,
Wu

3. 'Applied & Computational Linear Algebra": Ben-Israel,
Datta, Greenbaum, Overton.

4. "Combinatorial Linear Algebra": Brenti, Kannan, Loewy,
Ray-Chaudhuri.

We hope that other ILAS members will
this special meeting. The AMS Web site
h ttp / /www. a m s .orgl ams mtgs/i nte rn mtg s . htm I
dated over the next several months.
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Institute (sydney, Australia 5-12 April 2005). This workshop
will be hosted by the Institute of Information and Mathem atical
Sciences at Massey University and will be cosponsored by the
New kaland Statistical Association.

The t ocal Organidng Committee will be chaired by Jeffrey
J. Hunter (Massey university): J.Hunter@massey.a c.nz The In-
ternational Organizing Committee comprises Simo Rrntanen,
George P. H. Styan (chair) and Hans Joachim werner.

Eigenvalues and Latent Roots

Following the comments in |MAGE by Farebrother (lggg),
Schneider (2000) and Searle (2000), we note that although
"eigenvalue" and "eigenvector" are to be reprobated as unfortu-
nate hybrid words, the same criticism is valid for such familiar
words as "automobile", "television" and "velodrome".

Schneider (2000) noted that 'oThe obsolete German root wurz
occurs in modern German as wurzel (root) and wiirze (spice)."
Indeed, Wiirze (spice) occurs in the Alsatian grape variety
"Gewiitztrartrner" and Wurzel (root) occurs in the English word
"mangelwurzel": large white or yellow swollen roots3 devel-
oped in the 1700s for feeding livestock; Wurzel is also used
to indicate a rustic yokel as in "Wurzel Gummidge" (a BBC
children's television character) and in '"The Wurzels" (a popular
singing group).

In view of the comments by Schneider (2000) and Searle
(2000), it is clear that I should have continued my quotation
from Grattan-Guinness & kdermann (lgg4,page 795) in Fare-
brother (1999) to include two more sentences: "The properly
English phrases 'latent root' and 'latent vector' have been em-
ployed in this article. The former was introduced in Sylvester
(1883), a charming phrase: Latent roots of a matrix - latent in
a somewhat similar sense as a vapour may be said to be latent in
water or smoke in a tobacco leaf."
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13th lnternational Workshop on Matrices and Statistics

Bgdlewo, near Pozn d6, Poland z 19-21 August 2004

The 13th International Workshop on Matrices and Statistics
([WMS -20Aq, in Celebration of Ingram Olkin's 80th birthday,
will be held in Bgdlewo, about 30 km. (1S miles) south of poz-
trd, Poland, from 19 to 21 August 2004. Bgdlewo is the Mathe-
matical Research and Conference Center of the Polish Academy
of Sciences; the setting is similar to Oberwolfach, with accom-
modation on site. For pictures of the Bgdlewo Center visit the
Web site www.impan.gov.pllBedlewo/ Poznafi is one of the old-
est cities in Poland and has over half a million inhabitants; it is
located about 300 km. (185 miles) west of Warsaw and about
halfway between Warsaw and Berlin. It was here in Poznaf that
the first Polish state was created about a thousand years ago.

The Local OrganizingCommittee comprises Jan Hauke, Au-
gustyn Markiewicz (chair): amark@owl .au.poznan.pl, Tomasz
Szulc, and Waldemar Wolyriski; the International Organiz-
ing Committee for this Workshop comprises R. William Fare-
brother, Simo Puntanen (chair), George P. H. Styan (vice-chair),
and Hans Joachim Werner.

This Workshop will include both invited and contributed pa-
pers on matrices and statistics. Also a special session for grad-
uate students will be arranged. It is expected that many of these
papers will be published, after refereeing, in a Special Issue on
Linear Algebra and Statistics of Linear Algebra and its Applica-
tions- Invited speakers include Rafael Bru, Carles M. Cuadras,
Pierre Druilhet, Ludwig Elsner, Jtirgen GroB, Joachim Kunert,
Erkki P. Liski, Richard J. Martin, Volker Mehrmann, Joao Tiago
Mexia, Herve Monod, PSSNVp Rao, waldemar Ratajczak, Di-
etrich von Rosen, Bikas K. Sinha, and Haruo yanai.

74th lnternational Workshop on Matrices and Statistics

Aucklatrd, New Zealan dz 2g March-l April 2005

The l4th International Workshop on Matrices and Statistics
(rwMS-2005) will be held at Massey University (Albany cam-
pus), Auckland, New zealand, 29 March to 1 April 2005,just
before the 55th Biennial Session of the International Statistical
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IMAGE Problem Corner: old Problems, Many with Solutions
we present solutions to IMAGE Problems 29-1, 29-2, 29-5 through 29-lo, 29-12 and,29-13 IMAGE 2g (october 2oo2), pp.36 & 351 and a
corrected venion of Solution 28-2.2; allreferences cited in these solutions are collected together on page 35. hoblems Zg-l,ig-2,294 and29-ll
are repeated below without solutions; we are still hoping to receive further solutions to these problems (we do have solutions from the proposers
of Problems 29-3, 29-4 and 29-ll). We introduce 7 new problems on pp. 36 & 35 and invite readers to submit solutions to these problems as
well as new problems for publication in IMAGE. Please submit all material both (a) in macro-free IryK by e-mail, preferably embedded as text, to
werner@united.econ.uni-bonn.de and (b) two paper copies (nicely printed please) by classical p-mail to Hans Joachim Werner, IMAGE Edior-
in-Chief, Departrnent of Statistics, Faculty of Economics, University of Bonn, Adenauerallee 2442,D-53113 Bonn, Germany. please make sure
that your name as well as your e-mail and classical p-mail addresses (in full) are included in both (a) and O)!

Problem 28-2: Linear Combinations of lmaginary Units
Proposed by Richard William FenEnnorHER, Bayston Hill, Shrewsbury England, UK; R.W.Farebrother@man.ac.uk

LPt i, j, /s denote the imaginary units of the algebra of quaternions. Then, it is well known that these units satisff the conditions
i2 = i2 = k2 =iik - -I.L€todenotetheSxlmatrixofimaginaryunitso = li jkl',andletp, g, rbearbitraryBxlrealmatrices.
Findcondit ionssuchthatthel inearcombinat ions' i ,o=t 'a, jo=gta,ko=r,usat isfythecondit ionsi?=j3=k2,=iojoko-- '1, .

Corrected Solution 28-2.2 by Oskar Maria BerseteRy, Adam Mickiewicz University, Poznart, Poland: baxx@main.amu.edu.pl

Aclotowledgement. I am very grateful to Richard William Farebrother, the Proposer of this problem, for correcting my original
solution IIMAGE 29 (October 2002),page26l.

The solution is presented in the following forrn.

Pnoposlrlon.Izti,i,kdenotetheimaginaryunitsofthealgebraof quaternions. Furthe4letu- (i,j,k),,letp- (n,pz,p"),,
Q=(h ,q2 ,qB) ' ,andr=( r t , rz , rs ) tbeSx l req lm,a t r i ces ,qnd le t i s=p 'u ,  jo=qta ,andko=r 'u .Then

i 'o:  - I ,  i 'o :  - I ,  k 'o = -1, iojoko = -1

if and only if the matrix

q - (2)

lwving 1 , qt, and rt as its successive rows, is orthogonal, i.e., SS' - Is, and the determinant det(S) = 1.

P R o o F .  S i n c e i , j , f t s a t i s f y i j = k = - j i , i k = - i - - k i ,  j k = i = - k j , i t f o l l o w s t h a t t h e f i r s t t h r e e c o n d i t i o n s i n ( 1 ) a r e
equivalent to

p'p = l ,  qtq = L, r ' r  = r .

From (1) it also follows that r6js = lco, ioko = - jo, joko = fs. It is straightforward to verify that

iojo - -p'q* ftr i * Rzi + Rsk,

where R- denotes the cofactor of r* in the matrix ,9 of the form (2), rn - 1, 2, 3. Hence the equality lo jo = fto implies y'g = 0, and
similar arguments lead to prr = 0 and q'r = 0. Combining these observations with (3) shows that ^9 must be orthogonal. Moreover,
inv iewof  (4)andptq = 0,weseethat io joko-  - ( r tRt  * rzBz+ref is)  - ( rzRs-rsRz) i . * ( r rEs-  rsBi j -?rBr-r2B)k.
It is clear that r1ft1 + rznz + r3rR3 = det(^9) and hence the additional conditionis det(S) = 1.

Conversely, the orthogonality of ^9 implies the conditions in (3), as well u p'q = 0, d, 
- 0, and g,r = 0. Consequently, in view

of det(S) = 1 and the representation of fs jslcs given above, it remains to show that

rzBz - rs&2, r1R3 = r1[rt r1R2 - r2R1.

The first equality in (5) follows by noting that

rzRs - rsB2 = rz(pflz - prC) + ry(p;q1 - ps1i = pr(q2r2 + gar3) - 8t(p2r2 * psre) = pr(-qtt) - {r (-p1r1) = g,

and the remaining two are obtained similarly.

(1 )

(ll :':,1 )
(3)

(4)

(5)
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Problem 28-3: Ranks of Nonzero Linear Combinations of Certain Matrices.
Proposed by Shmuel FRIEDLAND, University of Illinois at Chicago, Chicago,Illinois, USA..friedlan@uic.edu
and Raphael LoEwY, Tbchnion-Israel Institute of Tbchnology, Haifa, IsraeL' loewy@technunix.technion.ac.il

Let

B r :

0 0

0 1

1 t

1 0

,  B q :

0 0

t 1

t 0

0  - 1ij Bz:(; iil' ) B:fi i1:')
Show that any nonzero real linear combination of these four matrices has rank at least 3.

The Proposers of Problem 28-3 and the Editors of IMAGE are still looking forward to receiving a solution to this problem;
the Prcposers prefer a solutionwhich does not depend on the use of a computer package such as MApLB.

Problem 29-1: A Condition for an EP Matrix to be Hermitian
Proposed by lerzy K. BexsA'I-eR\, Zielona G6ra University, Zielona G6ra, Poland: J.Baksalary@im.uz.zgora.pl

and Oskar Maria BAKSAL /.nv, Adam Mickiewicz University, Poznarl, Poland: baxx@main.amu.edu.pl

I-et A be an EP matrix , i.e., R(A) = R(A*), where ,4,* nd R(A) denote the conjugate transpose and range of ,4. Show that ,,4 is
Hermitian if and only if there exists a matrix B having a generalized inverse B- (i.e., a solution to BB- B = B), for which both
B- and(B-)* arealsogeneralizedinversesof,4,i.e., AB-A = Aand A(B-).A= A. Fromthispropertyitfollows,inparticular,
that every EP matrix which is a predecessor of a Hermitian matrix with respect to the minus partial ordering is necessarily Hernritian.

Sof ution 29'7.1 by N6stor THOME, Universid.o.d Politdcnica de Valencia, Valencia, Spain: njthome@mat.upv.es

Necessityfollowsby setting B :- A = A*.Infact, fromthedefinitionof ageneralizedinversewehave AB- A= AA- A= A and
A(B-).A = (1*)*((4.)-)-(,4-). = (A.(A.)-A*)* = (1*)* = A. SufficiencyfollowsfromaresultbyKatz(1965)statingthat
a square matrix ,4 is an EP matrix if and only if there exists a matrix Y such that L* - Y A, see also Ben-Israel and Greville (1924,
p .  166 ) .  ThenA*B-A-YAB-A=YA= A* ,andhenceA  =  (A .B -A ) .  -  A . (B - ) *A=yA(B- ) *A  =  yA=  A* .

Solution 29'1.2 by WilliamF. TRENCH, WoodlandParlc, Colorado, USA: wtrench@trinity.edu
and the Proposers Jerzy K. BersaLany and Oskar Maria B,crser,Any.

If AisHermitian,thentheMoore-Penroseinverse AI of Asatisfies (,4t)- - (r4.)t = Al ,andtherefore B = AwithB- =,4t
has the desired properties. For the converse, it suffices to show thatitB(A) = R.(A*), i.e., AAI = Al A, and if there is a matrix
G such that AGA: ,4 and A* GA* = ,4*, then ,,{ is Hermitian. Since these equalities are clearly equivalent 6 At AG AAt - At
andAAtGAIA= (At)*,itfollowsthat,4t = (A*)t,andhence,byuniquenessof theMoore-penroseinverse, A= A*. Sincethe
minusorder A <- B maybecharacterized by ABIA = A, BBIA=,4., and ABtA = A,itfollowsthatif B isHermitian,then
Bt satisfies A(Bt).A= Ainadditionto AB'tA= A,thusforcingtheEpmatrix.Atobe Hermitian.

Solution 29'7,3 by Hans Joachim WERNER, Universitiit Bonn, Bonn, Germnny: werner@united.econ.uni-bonn.de

We prove the following slightly more informative theorem.

THsonpil{. I-et A e Vxn be an Ep matrix. Then:
(i) A is Hermitian if and only if there exists a Hermitian matix B such that ABA - A.

(ii) ,4 is nonnegative definite Hermitian if and only if there arists a nonnegative definite Hermitian B such that ABA = A.

Pnoop. If ,4 is Hermitian, then /t, the Moore-Penrose inverse of ,4., is also Hermitian. Since AAt A = A, necessity follows. To
prove sufficiency,let A be EP and let B be a Hermitian matrix with ABA = A. Let r denote the rank of .,4. Since ,4 is Ep, .A can
bewr i t tenas,4=UCt l* forsomenonsingularrxrmatr ixCandsomecolumn-uni tarynxrmatr ixU,see(5.11.15) inMeyer
(2000,p.408).FromU*U=I,,theequationABA=,4.reducestoC= Ctl*BUCor,equivalently,toU+BUbeingnonsingular
andC= (U.Af11-r.SinceBisHermitian,sois(t/*Btl)-l,whichcompletestheproofof(i).Toprove(ii), if,4,isHermitianand
nonnegative definite, so is At. Since ,4,4t,4 = ,4, necessity is shown. Sufficiency follows along similar lines as that of (i). D
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The result in Problem 29-1 follows at once from (i) of our Theorem in that the matrix H := lB- + (8-).112 is Hermitian with
AHA = ,4.. From part (ii) of our Theorem it follows, in particular, that every EP matrix which is a predecessor of a nonnegative
definite Hermitian matrix with respect to the minus partiat ordering is necessarily nonnegative definite Hermitian.

Problem 29-2: Triangle with Vertices Circumscribing an Ellipse
Proposed by S. W. DRURY, McGill University, Montrdal (Qudbec), Canada: drury@math.mcgill.ca

I-et Abe a2 x 2 complex matix which is not normal. Then, it is well known that the numerical rangeW(A) of -4 is a solid ellipse.
l-El zy, zz, zs € C. Show that a necessary and sufficient condition for,,4 to possess a 3 x 3 normal dilation with eigenvalues zr, 22, za
is that the triangle with vertices zr,22, zs circumscribe the ellipse.

Sof ution 29-2.1 by Bernardete RIsEtno: bribeiro@dei.uc.pt and Alexander Kovedpc: kovacec@mat.uc.pt
Universidnde de Coimbra" Coimbrq, Portugal.

PRooF oF NECESSITY. L€t 14. possess a nonnal dilation N with eigenvalues zr, 22, zB. We assume w.l.o.g. that (in MATLAB-
notation) ,4 = nf(l ; 2,1 : 2).By well-known properties of the numerical range, see Horn & Johnson (1991, p.9), we can
assume, i f  necessarymul t ip ly ingN wi thasui table e ie, thatzL = a l ib1,  z2 = a+ib2for  someo,b1,b2 € IR.  Thereisa
unitary U such that N = U* diag(a ! i.b1, a ! ib2,4)U, and consequently A = t/* (1 : 2,:)drag(a * 'ibr, a * ib2,4)U(:,1 : 2).
I t i seasy tosee tha t the re i sanc  €  CP  w i th  c *c  =  l  such tha tu  =  U ( ; , 1  : 2 )o  has i t s th i rdcomponen tws  =  0 .Hence
f f i ( e - , 4 . c )  =D( (a t i , b ) lw l2 * (a * i b2 ) lw2 l2 )=o .S inceW(A)gW(N) -co l z1 , zz , zs \=Lz rzzze ,seeHorn&Johnson

(1991, p. 13), it follows that the ellipse is necessarily tangent to the line through 21, 22. Analogous reasoning for the other sides zyzs

md z2zs of A proves necessity.

PRooF oF SuFFIcIENcy. I€t L, = Lzrzzz3 be the triangle spanned by given three noncolinear complex numbers and let the

ellipse € = W(A) be inscribed in A. Irt ?j denote the point at which t touches the side opposed to zi. There are reals ai, oi so

that f i  =  erzz*  a\z l ,Tz = azzs* qLztTz = azzt*  aLzz,a;*  a l ;  = l ,Qi ,aI  > 0.  SinceA andf ,  canbeviewed as a

projection of another triangle with an inscribed circle, the cevians T;z; pass through the so-called Gergonne point (but aliases are

also found); see, e. g.o Berger (1987, p. 330). So by Ceva's theorem, see Berger (1987 , p. 64), alat2all (a1a2as) = 1. It follows

that the points p1 - (0, Jqr, r/4), p, - 
6/4,0, JdU, pz = (rF,O,-l-ai) lie coplanar with the origin O of lR3 on a unit

circle. Irt Ouabe an orthonormal frame in that plane and let [/ be an orthogonal matrix having u, u as the first two columns. There

arerealsc; ,6;  sothatc;u*s io = p; ,  and c |  + s !  -  1 ,  for  i  =  l ,2 ,3.Thenormalmatr ixNt  = U*diag(r r , rz ,z3)U sat is f ies

W(N ' )  =  A  and  fo r  A t  =  N ( l : 2 ,1  : 2 ) ,  we f i nd tha t  l c ; , s ; )A t l c ; , " r ] t  =  [ c ; , s ; ]U* ( l  : 2 , : ) d rag (z1 ,z2 ,zs )U( : , I : 2 ) l c ; , " r ] t  =

p;drag(z1,zz,zz)i{ - ?i. This shows thatthe points?j are in the numerical range of A'and W(A') : t = W(A). Fromthe

discussion leading to Theorem 1.3.6 in Horn & Johnson (1991, p. 23) it follows that there is a2 x2 unitary V such that,4 = V* A'V.

Thus ,l[ - (y. O [l]).Af'(y O [1]) is a normal dilation for A as desired.

Solution 29-2.2 by the Proposer S. W. Dnunl McGill University, Montrdal (Qudbec), Canada: drury@math.mcgill.ca

If z4 possesses such a normal dilation N, then it is easy to prove that W (A) lies in the convex hull of the points z1 , z2 , 23. Now, the

direct sum of the eigenspaces of trf corresponding to z2 and z3 has dimension 2 and therefore meets the linear span of the first two

coordinate vectors in a subspace of dimension at least 1. Thus, there is a vector o such that t)* Aa is a convex combination of z2 and

23. So, a point of t,I/ (A) meets the line segment joining zz to 4. Cyclically permuting the eigenvalues shows that the triangle with

vertices zr , 22, zB circumscribes W (A) .
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In the other direction, we observe first that the problem is unaffected by translation and rescaling. Thus, we can assume without
loss of generality that the points z1 , zz, zs lie on the unit circle. Next, using barycentric coordinates, we may write ,4 = ztAr *
z2A2t 4As, where,47 are nonnegative definite 2 x2 matices with.I = At* A2a,,43, Bhatia (I996,p.25). Now let to be the point
of contact of the line segment joinin9 22 to z3 with the ellipse W(A) nd let u be a unit vector such tu = a* Aa and therefore also
6 = a* A* u. Substituting into Bhatia's definition of ,4'1 , we find that a* ALa = 0, and it follows that l'1 (and similarly A2 md As)
haverankone.So,wewr i tez4l -w*&wffor /c- l ,2 ,3.Next ,wedef ineal inearmapKlomCPtoCg^byK*" j -wi ,whereei
denotesthe jthcoordinatevectorinC9. Wehave A* = w*Ourf; = K*e1,@e'l^K andl = Di=, 1o = Di=, K*e-k@ei-K : K*K
sothatK is anisometry. Wefurtherobtainthat,4 = Xi=, z1sAs = f<" (Di=, zkek &"t) * : K*NK,where.l{isnormalwith
eigenvalues 21, z2 {rd 23, ari re.Quired.

Problem 29-3: lsometric Realization of a Finite Metric Space
Proposed by S. W. DRURY, McGill University, Montrdal (Qudbec), Canada: drury@math.mcgill.ca

Show that every finite metric space can be realized isometrically as a subset of a normed vector space.

While we have received a solutionfrom its Propose4 we lookforward to receiving funher solutions to problem 29-3.

Problem 29-4: Normal Matrix and a Commutator
Proposed by S. W Dnunv: drury@math.mcgill.ca and George P. H. SryaN: styan@math.mcgill.ca

M cGill University, M ontrdal ( Qudbec ), Canada.

Showthatevery n x ncomplexmatrix,4.canbewrittenintheform.4 = N* [ff,N],where Nisnormaland I/isHermitian,and
thecommutator [f1, N] = HN - NH.

While we have received a solutionfrom its Proposers, we lookforward to receiving furfher solutions to Problem 29-4.

Problem 29-5: Product of Two Hermitian Nonnegative Definite Matrices
Proposed by Jiirgen GnoB: gross@statistik.uni-dortmund.de and Giitz TRENKLER: trenkler@statistik.uni-dortmund.de

U n iv e r s it iit D o rtmund, D o rtmund, G e rmany.

I-et A and B be two Hermitian nonnegative definite matrices of the same order. Show that the column space R(AB) and the nult
space,A/(.4,B) of the product AB are complementary subspaces.

Solution 29'5.7 byJerzyK. BerseleRY,ZielonaG6ra(Jniversity,ZielonaGdra, poland: J.Baksalary@i m.uz.zgora.pl
and Oskar Maria Bnrsnl lP(v, Adam Mickiewicz (Jniversity, Poount, Poland: baxx@main.amu.edu.pl

We will show that Problem 29-5 is a corollary to a more general result. In what follows, Q,,* denotes the set of rn x n complex
matrices, and K*, R(K), N(K), and rank(K) denote the conjugate transpos€, range (column space), null spacg and rank of a
given K €Qn,n,respectively. We have thefollowinglemma.

LEMMA. Let K e C.n,n. Then

G.,r = R(r{)o N(K) <+ R(,r()n.Ar(K) = {0} <+ dim[R(K)+,,\r(K)] = D € index(K) ( 1, (6)

where the lnst conditionmcqns thrltra\k(/{) = rank(K2).
PRooF. This lemma includes the part (b) <+ (c) <+ (d) of Exercise 5.10.12 in Meyer (2000). The first two equivalences
in the kmma are immediate consequences of the rank-plus-nullity theorem stating that dimR(K; + ai-,,ff1k; = ni
see (4'4.15) in Meyer (2000)' It follows that for any choice of generalized inverse K- of K, i.e., for any K: satisfying
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KK-K = K, see (2.30)and(2.35)inMarsagl ia&Styan (1,974),dim[R(K) +//(r{) ]  = dim[R(K) +nU*- K-K)]  =
rank((K : In- K-K)) - rank(/* - K-f) *rank(K-K') = n -rank(K)+rank(r-'rl). Consequenfly, since
rank(K2) = rank(KK-K2) < nnk(K-Kz) < rank(K2), it follows that dim[R,(K) + N(K)i = n ii and only if
rank(K) - rank(K2), which concludes the proof of the lemma. tr

WenowobservethatifAandBareHermitiannonnegativedefinitematrices,i.e.,ifA=,g.g*andB:TT*forsomes€G,e
and? € G,,n,thenrank[(,4,B)2] = rank[,9S*?(S*T)*S*TT*] : rank(^9*T) = rank(.g,9*??*) = rank(,4fi), see (2.12)and
(2.13) in Marsaglia & Styan (I974,Th. 2). This shows that the product of any two nonnegative definite Hermitian matrices is of
index 0 or 1, and therefore K - AB satisfies the first equality in (6), as claimed in problem 29-5.

Solution 29'5.2 by Roger A. HoRN, University of Utah, Salt l-qle City, Utah, USA.. rhorn@math.utah.edu

It is known that the product of two positive semidefinite matrices is diagonalizable and has nonnegative eigenvalues; see Hong &
Horn (1991, Corollary 2.3)' The range and nullspace of.any diagonalizablematrix are complementary subspaces, so the assertion
follows. Thematrices o= (: l) *o 

" 
= (? ]) rno*thattheassertionneednotbecorrectfortheproductof apositive\0  0 /  \ r  0J

semidefinite matix A and a Hermitian matrix B. However, the nilpotent Jordan blocks of such a product are at most 2 x 2, so (AB),
is diagonalizable and hence its range and null space are complementary subspaces; see Hong & Horn (1991, prop. 3.3).

Sof ution 29'5.3 by Denis SERRE, Ecole Normale Supdrieure de Lyon, Lyon, France.. sere@umpa.ens-lyon.fr

I,et c belong to R(AB) n ker(/B). Irt also ̂ 9 be a nonnegative square root of ,4.. Then ̂ 9Bc € n(S) O ker,9, hence ,gBc = 0.
Butc € R(A) = r?(^9),say x - Sy.ThusSB,gy = 0,whichimplies (Sy).B(Sy) = 0. SinceBisnonnegative,thismeans
BSy - 0, that is Bc = 0. Actually, the assumption is c - ABz, and so BABz = 0, which implies (Bz)-A(Bz) = 0.
Again, this means AB z = 0 since ,,4 is nonnegative. Since the sum of dimensions is n, this yields ,R(AB) n ker(,,{B) - {0}, or
C^ = R(AB) e ker(,48), as desired.

Sofution 29-5.4 by Hans Joachim WERNen, Universitiit Bonn, Bonn, Germany: werner@united.econ.uni-bonn.de

Our elementary proof is based on the following well-known result.

THEOREM. kt H e Cn'^ be q Hermitiannonnegative definite metrix, and let M be a linear subspace of C". Then (HM) n
ML = {0}, with ML denoting the orthogonal complement of M with respect to the usual standard inner product in V" .
PRooF. IetHrlz denotethesquarerootof .[/. Then (nttz!. - Htlz and,foreachc € Cf, c*Hx = r*pL/211r12, -

l lF r /zx l l z .There fore ,  c*Hc=0+Hr lzo  =0+ Hn- } .S inceyVr  ={y lyo€M:  y*e=0} , the  theoremisproved.  r l

Irt r^f(') and 7?(.) denote the null space and the column space (range), respectively, of the matrix (.). Since R(qL : N(B),
according to our Theorerq tAR(B)l n N(B) = {0}. Likewise R(A)t = N(A) ndlBR(A)l n nf(A) = {0}, and so, in view
ot R(AB) g R(A), in particular IBR(AB)I n N(A) = {0}. Combining all these observations resulrs in ABABv = 0 =+
BABv = 0 + ABc - 0or,equivalently,R(AB) n,,\/(AB) = {0}. Sinceforanarbitrarymatrix C €(J",n wealsohave
dim ,A/(C) - n - rank(C), itis now clear thatR(AB) nd N(AB) are complementary subspaces.

Solution 29-5.5 by Fuztren ZHANG, Nova Southeastern (Jniversity, Fort Lauderdate, tlSA: zhang@nova.edu

It is sufficient to show thatR(AB) n N(AB) = {0}. I*t y be in the intersection and wite y = (AB)c for some c. Then
(AB)V = (AB)2 x = 0. We clarm (AB)o = 0 as follows:

(AB)zn=0 +  (ABAB)n=0 +  (c .B) (ABAB)c=Q a '  @*aABt /21(Br l2ABt ) -0  +  (BL l2AB)o-0

:+ gr lz lBr lzAB), -  (BAB)o = 0 + @. adrl2)( luz Br) = 0 =+ (Arl2 a)x = 0 :+ (AB)c = 0.

Solutions to Problem 29-5 were also received fumWilliarnF. Trench andfrom the Proposers Jiirgen GroB & Gcitz Trenkler.
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Problem 29-6: Product of Companion Matrices
Proposed by Eric S. KEv, University of Wisconsin-Milwqulee,Wisconsin, USA.' ericskey@csd.uwm.edu

I*tA1, . . ., A* be n x n companionmatrices withcommon eigenvalue a. Showthat oft is an eigenvalueof theproduct.4tAz. ..Ax.

Sof ution 29-6.1 by Bernardete RBeIno: bribeiro@dei.uc.pt and Alexander Kovaeec: kovacec@mat.uc.pt

Universi.da.de de Coimbra, Coimbra, Porrugal.

LEMMA. If A is an n x n companion matrtx and Ac = ax, then c = rr(I, a, a2, . . ., on-r)T .

Pnoo r .F romHunger fod (1974 ,p .359 ) ,wesee tha tA=(a ; i )  sa t i s f i es  a ; j =6 ;+ r , j , i , =1 ,2 , . . . , n -L .Le tc  = (c r , . . . , on )T .

Then (,4 - al)n = 0yields0 = f1(d;+r,i - a6;,i)xi = rl i*l - aai,fori = I,2,...,tu- l,andthelemmaisproved. tr

Applying the lemma inductively yields 41,,42 . . .Axn = ak r.

Solution 29-6.2 by Iwona WR6seL, Warsaw tJniversity of Tbchnology, Warsawa, Poland: wrubelki@wp.pl

Thecompanionmatr ixof  amonicpolynomialp(z\=zn *cnzo-r  +. . .+ czz+qisdef inedby

( -,"

II'
c(p) = | 0

I'
\ 0

- C n - L  - C 2  - C 1

0 0 0

1 0 0
' o

: :

0 1 0

I t isknownthat i fo isaneigenvalueofanxncompanionmatr ix , thereexis tsacorrespondingeigenvectorofafonnc=
(on- t ,en-2, . . . ,o ,1)7.  Byassumpt ion,a isacommoneigenvalueofmatr ices At ,Az, . . . ,A* .  Socistheeigenvectorofeach
mat r i x14 .6 , i . e . ,A ; c=ax fo r i - 1 , . . . , k . [ - e tAdeno te thep roduc t r4 . l  .A2 . . . . . , 4 . ; r .ThenAc=At . . . . .A *s t -A1 . . . . .A1 r -1ac=

aAr ' . . . 'A * - t c -a2A t . . . . .A * - zo=aka .Thuso* i sane igenva lueo f ,4 .ands i sane igenvec to rassoc ia tedw i tha* .

Solutions to Problem 29-6 were also received fromDerus Serre and frcm thc Proposer Eric S. Key; see also Y:ey (1934).

Prcblem 29-7: Complementary Principal Submatrices and Their Eigenvalues
Proposed by Chi-KwongLr,The College of Williamand Mary Williamsburg,Vrginia, USA.'ckli@math.wm.edu

Int n = 2k and let A be a real symmetric or complex Hermitian idempotent matrix (i.e., A2 - ,4) of rank &. If the leading /c x /c
principalsubmatrixhas eigenvalues art. . .sa1r, showthatthecomplementaryprincipal submatrixhas eigenvalues 1-ar, . . .,!-a*.

Sof ution 29-7.1 by Jerzy K. BAKSALAlrY , Zielona G6ra University, Zielona G6ra, Poland: J.Baksalary@im.uz.zgora.pl
and RogerA. HoRN, University of Utah, Salt Lalce City, Utah, USA.. rhorn@math.utah.edu

I-et Abe an n x n complex idempotent matrix of rank r, so ,4.2 = A and,  is diagonalizable; r of the eigenvalues of ,4 are one and
n- rurezero.  Supposel1p (  g < nandp*q = n,andpart i t ion Aasa2 x 2blockmatr ix  e=IA; i l? , i=,  inwhichAl l  is
p x p and 422 is q x g. There are three cases:

(a) I f r !p , thenforsome{rr , . . . ,v , }CCtheeigenvaluesofAl l  areuL, . . . ,u , ,andOwithmul t ip l ic i typ-r ; theeigenvalues
of A22 are 1 - ur, ...,I - v,, urd 0 with multiplicity g - r.

O) If p 1 r I q and the eigenvalues of Al are )1, ...,1o, then the eigenvaluesof A22 are 1 - )r, ..., 1 - ^p,L withmultiplicity
r - p, and 0 with multiplicity g - r.

(c) If q ! r, then for some {rt,...,un-r} C C the eigenvalues of A11 are t/Lt...,t,n_r and 1, with multiplicity r - g; the
eigenvalues of Azz are 1 - r,tr, ...,1- r/n-r, and 1 with multiplicity r - p.
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Wewri te-4=.SA^9- l , inwhichA=1"O0*-r ,S= (Sr ,  Sz) isnonsingular ,  t r=  ( ! , ) t r r r * r ,  S-r  = ( t : - : l t ) , " r .-  \v /  \ l s - ' ) r / '
pxr ,Y  isgxr ,  (S- t ) ,  =  [ I  O] is rxn , I i s rxp ,andOis  rxq . l " l tenAr r  =  X I ,  Azz= YO,and l "  =  ( ,9 -1) ,  j ,  =  i ' k+Of .
Denote the eigenvalues of ,411 by {lr, ..., \o}, those of Azz by {pr, ...,pn}, those of IX by {tr, ...,.f,}, and those of OY by
{q2 , . . . ,4 " } .  S ince@Y = L- lX ,weknowthat {21 , . . . , \ , }  =  {1 -1r , . . . ,1 -1 , } .Wea lsoknowthat thee igenva luesof  X I
and lX are essentially the same: the eigenvalues of the larger matrix are just the eigenvalues of the smaller one, together with 0
with multiplicity lr - pl; the eigenvalues of the larger of YO and OY are just the eigenvalues of the smaller, together with 0 with
multiplicity lr - Cl.See Horn & Johnson (1985, Th. L.3.20).In (a), the eigenvalues of All = XI are {?r, . . . , % } U {p - , zeros}.
T h e e i g e n v a l u e s o f A 2 2  -  y O t r e { ? r , . . . , T , }  U { C - r z e r o s }  =  { 1 - , I r t . . . t  1 - 1 , } U { C - r z e r o s } . I n ( b ) , { 7 1 , . . . , . 1 r }
= { 1 r , . . . , , \ o } U { r - p z e r o s } , a n d { p r , . . . , l t s } = { r 1 r , . . . , q , } U { q - r z e r o s } . T h u s , { ; r 1 , . . . , p s }  = { l - , y r , . . . , 1 - 7 " } U

{c - , zeros] = {l - )r, . . . , 1 - }e } U {r - p ones} U {c - r zeros} . Case (c) follows by applying case (a) to the idempotent
matrixl-A.Theoriginalproblemisthespecialcaser=p=gwiththeadditionalassumptionthat-4isHermitian. Inthiscase,
Cauchy's Interlacing Theorem ensures that all of the parameters v;, ),;, lt;, j;, and rft are real and in the interval [0, 1].

Solution 29-7.2 by William F. TRENcH, Woodland Parls Colorado, USA.' wtrench@trinity.edu

The assumptions imply that A = If=r $;$i, where {h, . .., dl} is an orthonormal basis for the range of A. Let $; : (I)
where u; and u; are rb-vectors, anddenote U = (ut, . . . ,uk),V :  (at , . . . ,ak).Thenr4

I/V* have the same eigenvalues as U*U andV*V respectively md U*U + V*V = (uiui
conclusionfollows. Moreover, sinceUU* andVV* arebothpositivesemidefinite,0 ( a; (

(uu. ur. \= 
["u. vv. )

* uioi)T,i=t = @id
1 ,  1S i1n .

Since U U* and

: .[, the

Solutions to Problem 29-7 were also received frcm
Bernardete Ribeiro & Alexander Kovadec, Denis Serre, Alicja Smoktunowicz, andfrom Fuzhen Zhrrg.

Problem 29-8: A Range Equality Involving an ldempotent Matrix
Proposed by Yongge TIAN, Queen's University, Kingston, Ontario, Cano.da: ytian@mast.queensu.ca

SupposethatthematrixP of order rn satisfies Pz = P. Showthatrange( I^ - PP* ) 
- range( 2I^- P - P* ), where P* isthe

conjugate transpose of P.

Sof ution 29-8.7 by Jerzy K. BerselaRY, Zielona G6ra (Jniversity, Zielona G6ra, Poland: J.Baksalary@im.uz.zgora.pl
and Xiaoji Ltu, Xidian University, Xian, China: xiaojiliuT 2@yahoo.com.cn

If P = 0, then the solution is trivial. Fot P f 0, we offer an elementary proof based on Schur's unitary triangularizationtheorem;
see, e.g., Horn & Johnson (1985, Theorem 2.3.1). Since the only nonsingular idempotent matrix of order m is I^, in which case the
equality in question is trivial, we assume that rank(P) = r < rn. This means that P = P2 has r eigenvalues equal to one and rn - r

eigenvalues equal to z.ero, andthus may be represented in the form P = U (T f- ) U-, where [/ is a unitary matrix of order rn,
\ 0  N /

and?andtry' areuppertriangularmatricesof order r andm - rwiththediagonalelements t;; = l, '- I,...,r,and nii = 0,
j =t,...,tu- r,respectively. Sincetheidempotencyof P furtherimpliesT2 = ?andN2 = If,andhence?- I, andtrf = 0,it
follows that

rn - pp* - u (-i"'- :_,) 
u. and

Then it can easily be verified that, with X+ denoting the Moore-Penrose inverse of X,

i)?,i =t

( 2 r , - -P -P . )U ( " :
\x .

-(x+ ).  \

LQ" -r - x+ 
")) 

Li* - I* - P P* and

2 r * -P -P* -U (  
o  - x  \

\ -x* 2I*-, ) 
'.

( r * -  PP. )u(  
o  (x+) . )  ( r *

\ -x.  2I^- ,  )
- 2 l n r - P - P *

This shows, with 7?(.) denotingrangethatB(I*- PP.) 9R(21^-P-P.) andB(2[^- P - P.) gRQ^- PP*),respectively,
thus leading to the required equality R(/* - P P.) = R(21^ - P - P.).
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Solution 29-8.2 by Giitz TRENKLER, Universitiit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

SinceP -  P2,wemaywr i teP =u( ' :  f )u . ,whereUisanrnxrnun i ta rymat r ix ,  l , i s the ident i t ymak ixo forder-  
\ 0  0 )

r = rank(P)andKis rx(m-r);seeHanwig&Loewy ( lgg2).HenceI^-PP* =IJ (-*: .  ,o )  u.  *o 2Im-p-p* -
\  U  l ^ - r , /

- - /  0  - K  \ - -  _  /  0  K t *  \
U l  l U . . I t t h e n f o l l o w s t h a t 2 l ^ - P - P ' = ( I ^ - P P . ) U (  : - _  _ - :  ) U . a n O t h e r e f o r e l m - P P * -\ -K. 2I^-, / _ 

'- 
\ -K* 2I^_, ,/

.  /  21, -Kt* \
(21^-P-P*)U | ,.'* 

I r/*,whereKt istheMoor+PenroseinverseofK. Theassertedidentityisestablished.
\ l r-  \ ( t^- ,  -  Kt K) )  "

Solution 29-8.3 by Hans Joachim WERNER, Universitiit Bonn, Bonn, Germany: werner@united.econ.uni-bonn.de

The claim is an immediate consequence of the following more informative theorem.

TneonBu. I'et P be an idempotent matrix of order m, and let R(.) and N (-) denote the range and null space, respectively. Then:

(a) N(P+P.) = r1l(p)nrtr(P-), (b),^/(r-P+ I-P*) =R(P)nr"(p-), (") N(r-pp-) = N(r-p* p) =R(p)na(p.).

Pnoop: If P = 0, then the theorem is trivial. Therefore, let P I 0. According to the singular value decomposition, p can then
bewr i t tenasP=S1D6T[*S1D{ i *S2D2T| ,where^9- ( ,9o ,Sr , ,Sz)and?=(Ts ,T1,T2)areun i ta ry rnxrnmat r ices
(i.e.' S*^9 - 1- and T*T = 1*) composed of left and right singular vectors of P, and where D = diag(De, D1 , D2) is an
accordingly partitioned nonnegative diagonal matrix consisting of the associated singular values of P. lVittrout loss of generaliry
we assume that D6 = 0, Dr = 1, and all the diagonal elements of D2 we different from zero and unity. If some of the blocks in
D do not exist, we interpret the corresponding summands and tenns in the decomposition P = SoDoTi * &D{i * S2D2T},
and in expressions which follow as absent. It is well known that the singular values of P are the nonnegative square roots of
the eigenvalues of PP* and that the nonnegative definite Hermitian matrices PP* and P* P have the same eigenvalues with the
same (algebraic) multiplicities. Clearly, {rZT + S2D2T; is a full rank factorization of P, and so P is idempotent if and only if
/ t  o \ / r i \ , ^  d \  ( t  o \
[O or ) \ r ;  ) l s t  

s ' r )  =  
[0  ] ) * ,  

equ iva len t lv , i f  andon lv i f  ? f^gr  =  I ,T lSz  =0 ,T iS t  =0 ,T iSz  =  Dzr . rn

v iewofT |TL=Iand,Sf .9 r= f ,wethere foreget ( "1  - .9 r ) . ( " r -^9r )  =T iT t -?TSI -S i " r+S i ,g r=0or ,equ iva len t ly ,
Sr = ?r provided ̂ 9r and ?r exist.

(a ) :  Wenote tha t (P+P. ) (P+P-)  -  P+p*+pp*+p*p  isanonnegat ivedef in i teHermi t ianmat r ix .  S incepp*
and P* P are also nonnegative definite Hermitian matrices, it follows that,,1/(p + p-) = N((p + p.)r) g N(pp. + p- p) -
N(PP.) n //(P-P) = .A/(P-) n,^/(P) g N(p + p*), and so (a) is estabtished.

(b): Since amatrix M isidempotentif andonlyif I - M isidempotenr, (b) followsfrom(a) since,A/(I - M) =R(M).
(c): Clearly,0I n e N(I - PP*)if andonlyif o belongstotheeigenspaceof theeigenvalue L of PP*. Thiseigenspaceis

spannedbythecolumnsofSrandistriviallycontainedintherangeofp.Likewise,0lc€N(I-p.p)ifandonlyifnefc(T1),
which is the eigenspace of the eigenvalue I of P*P which is contained in R,(P.). In which case 51 - Tr, and so it is clear that in
any case N(I - P P.) - N(I - P*P) and N(I - PP.) g ft.(P) n ne.). The converse inclusion is trivial. n

Solutions to Prcblem 29-8 were also receivedy'un Johanns de Andrade Bezerra and fiom the Prcposer Yongge Tian.

Prcblem 29-9: Equality of Two Nonnegative Definite Matrices
Proposed by Yongge TIAN, Queen's (Jniversity, Kingston, Ontarto, Canada: ytian@mast.queensu.ca

L€t A and B be two nonnegative definite Hermitian matrices of the same order, and let (.)t det ote the Moore-Penrose inverse of the
matrix (.). Show that the following five statements are equivalent:

( u ) A -  B ,  ( b )  A + A A I  -  B + B B t ,

(d) rank(A) - rank(B) and 2A(A+ B)t A - A, (")

( c )  AB tA :  B ,

ranse ( ; )  
- rans .  

( : )
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Sof ution 29'9.1 by Jerry K. BAKSALAFtY, Ziclona G6ra University, Zielona G6ra, poland: J.Baksalary@im.uz.zgora.pl
and Jan HAUKE, Adam Mickiewicz university, poznari, poland: jhauke@amu.edu.pl

The first observation is that the condition Ant A =..B alone, as giyen in (c), is in general not suffficient to entail A = B. A simple

example isprovidedbythematr ic"" '+= ( r  
l )  *o B = (1 

: ) . I tbecomessuf f ic ient ,however,whenaccompaniedby\o  L l  \o  o l ' '
its counterpart BAt B = .,{ or by the range equality n(A) = R(B). The lemma below reveals relationships between these three
conditions themselves and the condition (e). They are established under the assumption that the matrices involved are Ep, which is
obviously weaker than the requirement that they are Hermitian nonnegative definite.

Leurue. Let A, B € A^," be EP matrices, i.e., R(A) : R(A.) and R(B) = R(B*\ Then any mo of the following three
conditions: (, ABt A - B, (ii) BAt B = A, (iii) R(A) = n@), imply the third. Moreover the three con"ditions together are
equivalmt to R((A.,  B*)*)  = R((B*, A.)*) .

PRooF. The part "(i), (ii) + (iii)" is obvious. Further, it ABt A = B holds along with R(B) g R(A) 1111d7'(A.) g R(B*),
whichfollowfrom(iii)andtheassumptionthat,4andBareEPmatrices, thenBAtB = ABIAATB - ABtB - C. Similarly,
c o m b i n i n g B A I B = A w i t h ? ! ( A ) g R ( B ) e f r l d & ( B . ) g R @ . ) y i e t d s A A t e - B A t B B t A = B A t A = B . M o r e o v e r , t h e
subspacesR((A. ,B*).)an!A((B- ,,4*)*)areidenticalif andonly itA- BK andB = AK forsome K €C^,^. Weseethat
bothK = AtBandK = BtAaresuitablechoicesof K. ontheotherhand,if ,,4 = BK andB = AK,thenfc,/.) =R@)nd
hence the assumption that.4 and B areEP leads to R(A.) tR(B.), which entails ABI A - ABt BK = AK = B. tr

In Propositions I and 2 below it is shown that the equality,,4 = B is implied by conditions (d) and (b) proposed in problem 29_9
within wider classes of matrices than Hermitian nonnegative definite ones.

PRoPosIrIoNI. ForanyparallelsummablematrtcesA,B eA-",",if 2A(A+ B)te=Aandrank(A) =rank(B), thmA- B.
PRooF. Itis clearthat it2A(A+B)t A = A,then2(A+B)@+qt l-2g(Aaa)t a = A = 2A(A+B)t (A+B)-2A(A+ayt g.
ImmediateconsequencesoftheinclusionsR(,,4) !R(A+B)andA(A-) qR(A.+B*),whichaccordingtoRao&Mitra(1971,
p. 189)constitutethedefinitionof parallelsummabiliryaretheequalities (A+ B)(A+ B)tA= A= A(A+ B)t(A*B), and
thusit fol lowsthat2B(A+ B)tA= A=2A(A+ B)tn.ThisshowsthatR(,,{)  tR(B) andR(,4-) g.R(B.),andcombining
these condit ionswithrank(f)  = rank(B) yieldsTt(,A) =R(B) =R(A*B) andR(A.) =R(8.) =R(A* aB*).  Hence
AtA(A+B)t = @+ nlt = (A+ B)tnnt, andthuspremultiplyingandpostmultiplying 2A(A+ B)tA= Aby Ai leadsto
2(A+ B)t = At. Consequently,inviewof theuniquenessof theMoore-Penroseinverse, A+ B =2A,i.e.,A= B. tr

We note that the assumption of parallel summability of A and B in Proposition 1 entails the possibility of replacing the Moore-
Penrose inverse (A + A1t in the expression,,{(A + $t aby any generalized inverse of ,4 * B. We see immediately that condition
(b)implies A= B whenever AandB arenonsingular.

Another class of matrices having the desired property is revealed in the following proposition.
Pnopostrton2. Foranynormalmatrices A,B € G,* notcontaining-Lintheirspectra,if A+AAt - B* BBl ,thenA= B.
PRooF. According to Theorem 2.5.4 in Horn & Johnson (1985), a matrix is normal if and only if it is unitarily diagonalizable.
Consequent ly, i f ,4 isofranko,say,thenA=UD(J*,whereU€C-,osat isf ies(J*(J=.IoandDisanaxodiagonalmatr ix,with
diagonalelementsdi*0andd;{- '1, , i -L, . . . ,d.ThenD*/oisnonsingular,andtherefore?c(A+AAt)=RIU(D+Io)U*l=
R ( V ) = R ( A ) . S i m i l a r l y , R ( B + B B t ) = R ( B ) a f i , c o n s e q u e n t l y , A + A A t - B + B B t i m p l i e s 7 ' ( A ) = R ( B ) . t t e n c e
AAt - BBt, thus leading to A= B. tr

It is interesting to notice that the result of Proposition 2 is not valid within the set of all normal, or even within the set of all

Hermi t ian ,mat r ices .  Forexample ,  oo= ( :  l ) *o t  =  ( ]  o , ) , * "n  
A+AAt  =  B+BBt ,bu tA+ B.Wi th in the-  

\0  0 /  \o  - t ) '
sameset, alsothepairof equalinesABtA = B and BAIB = A (whichconstituteacorrectedversionof (c)equivalentto(e))is
notsuff ic ienttoimplyA=B.Atr iv ialexampleisprovidedbyA=(1)andB=(- l) .Theassumptionconcerningmatr ices
involved in this part of our solution to Problem 29-9 is as in its original formulation.

Pnopostt toN3.ForanyHermit iannonnegat ivedef ini tematr icesA,B€C,^,*, i fABtA=BandBAtB=A,thenA=8.
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PRooF. From our lrmma and with the use of the notation C = (Bt)rl2A(Bt)'/', th" equation l,At I = B takes the form
C2 = BBt. Hence, if a spectral decompositionof C is C = (JD(J*, then in view of R(C) = R(B), which is equivalentto
B Bt = cct - (J(J*, itfollows that D2 - 1o, thus leading to C = [/u*. consequently, (Bt)t/2 A(Bt)uz = (Bt)tlz glBt)rlz,
and hence, in view of the equality R"(A) = R(B), by premultiplying and postmultiplyingby Brlz we arrive at the conclusion that
A =  B .  t r

Solution 29-9.2 by Hans Joachim WERNER, Universitiit Bonn, Bonn, Germany: werner@united.econ.uni-bonn.de

Problem 29-9 was not correctly stated, in that condition (a) is not equivalent to condition (c). Of course, (c) is trivially necessary for
(a)tohold.However, i t isnotsuff ic ient,asthescalars(1 xlmatr ices),4.=landB=0i l lustrate.Cleady,A=AtandB=Bt.
Moreover, ABt A = B, although A + B. Next, we prove the followingcorrected version of Problem 29-9.

Tneonr'rra. Izt A, B e C"'* be nonnegative definite Hermitian mntrices, and let R(.) denote range (column space). Then the
following five conditions are equivalent :

(a )  A= B;  (b ) ,4+  AAt  -  B+AAI ;  (c )  rank(za)  = rank(B)  andABIA= B;

(d) rank(/)  = rank(B) o,nd2A(A+ B)t A - A; ( .)  'R

PRooF. It suffices to show that each of the conditions (b)-(e) is sufficient for (a) to hold.
(b) + (a): It is well known that for any given matrix M the matrix MMt is the orthogonal projector ontoa(M), denoted

by Pn@r). Therefore, if tr/ is another matrix with R(M) = R(tf ), then clearly M Mt - IfA/t. If M is anonnegative definite
Hermitian matrix, then the orthogonal projector onto R(M), i.e., M Ml , is also nonnegative definite and Hermitian. Since the range
of the sum of nonnegative definite Hermitian matrices is the sum of the ranges of the sumrnands, clearly R(M + M Mt) = R(M).
By means of these observations it is clear that condition (b) implies R (A) = R(B) or, equivalently, AAI = B Bt . Eq. ,4 + AAt -
B + B BI therefore reduces, as claimed, to A - B.

(c)+(a): Irtrank(/) = rank(B) andABtA = B. Thenevidently?c(B) =R(A). Moreover, (eat\" = BBt. Since
BBI is idempotent, its eigenvalues are all equal to one or zero; see Lancaster (1969, ErL 4, p. 65). Following l,ancaster (1969,
Ex..L2, P. !O+), ABt and Arl2 Bt ALl2 have the same characteristic polynomials and hence the same eigenvalues. Clearly, since
nr/z gt 4r/z is a nonnegative definite Hermitian matrix, these eigenvalues are all nonnegative. From Lancaster (1969,T1r. 2.5.2,
p' 64)weknowthatif pt,' ' 'tFn?ItE theeigenvaluesof anyn x nmatrix M andpisanyscalarpolynomial,thentheeigenvalues
of p(M) re p.(ttt),' ' ' ,p1t"). Hence by combining our observations it follows that the eigenvalues of ABt as well as those of
the matrix atlz gt Lr/z are all equal to zuro and 9ne. The nonnegative definite Hermitian matrix nr/z gt nr/z is then necessarily
idempotent, i. e., Ar 12 Bt Ar /2 AL 12 BI Ar lz - nr / z gt Ar 12 . Pre- and postmultip^lying this eq . by AL lz and AL /2 AI ,respectively, we
obtunABIABtAAt - ABlAAt. Butthisequationreadilyreducesto (eAt)z - ABt,forinview otfc(A) =R(B) =R(Bt)
wehave BtAAt - BtP7"Gq)=Bt.Hence,since,4Btisidempotent,eg.(ABt)z =BBt becomes ABt =BBt.postmultiplying
this equation by B results in 0 = (/ - B)Bt B - A -8. As desired, we thus arrive at A : B.

(d)+(a):  I r t rank(, ,  )  =rank(B) arf i2A(A+B)t,q= A.Then.,{(*(a+ q)t  A= Aor,equivalent ly, .4(A+A1tA= *A.
SinceR(.4+ B) = R(A)+R(8) holdsfornonnegative definiteHermitianmatrices Aand B,it followsthat (A+$(e+'$t I = l.
Therefore B(A+ B)t A = IA = A(A+ B)t n, and hence, in view of rank(,4) - rank(B), clearly R(A) = R(B) or,equivalently,
N(A) = N(B).Consequently, R(+(A+ B)) = R(A) = n(+@+ B))t) ano,,V(|(A + B)) = N(A) = N((+(A+ B))t),
ana (|(a + B))t is thus areflexive g-inverse of ,4 withthe same column space and the same null space as ,4t. But then necessarily

Gfe + a))t = ,4t or, equivalently, |(a + B) - .,4. This in turn easily reduces to,4 - B.
(e) =+ (a): When (e) holds, there obviously exists a matrix X with B = AX and A = BX, which in turn implies R (A) = R(B).

If XisasolutiontoA- BX,thenXcanbewritten acB-Aforsomesuitableg-inverse B- ofB. Hence B = AX = AB-A.
SinceR(A) =R(B), wehave AB-A = B foranychoiceof B-. Therefore, inparticular, ABIA= B and sotheconditions(c)
hold. Since we have already shown that (c) + (a), our proof is complete. tr

A solution to the corrected Prcblern 29-9 was also received from the Proposer Yongge Tian,
with apologiesfor the error in the original statement of problem 29-9.
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Probfem 29-7O: Equivalence of Three Reverse-Onder Laws
Proposed by Yongge TLAN, Queen's University, Kingston, Ontario, Canada: ytian@mast.queensu.ca

Showthat@AIt -  BtAt <+[(At)-B]t  -  gIn* <+[,4(Bt). ] I  =B*At,where(.) tand(.) .denotetheMoore-penroseinverse
and the conjugate transpose, respectively.

Sof ution 29'70.7 by Jerzy K. BAKSALAIY, Zielona G6ra University, Zielona G6ra, Poland: J.Baksalary@im.uz.zgora.pl

A solution will be obtained with the use of another general property of a pair of matrices satisfying the reverse order law.

LEMMA. ForanyK eqn,^andL€C,",p,(KL)I  -  LtKt + L*L(KL)I  = [K(I , t )* ] t  and(t<t1t/ i 'O* = [(Kt)*r ] t .
Pnoor'. I-et Ft = K(Lr)* and Gr = L* L(KL)I. Then F1G1 = K(LLi). L(KL)| = KL(KL)I , and hence it is clear that
GJrGt = Gr and F1G1 = (tr'rGr)-. Since Fr = Z'1,trt(lt)*, anotherconsequence is that FrGrFr = Fr. Similarly, let
F2=(Kt ) .LandGz={KL) tyy* .ThenG2F2=(X l \ t6 t ,andhenceGzFzGz=GzandGzFz=(GzFz) . .Fur ther , the
representation F2 = (Kt)- Kt K L shows that FzGzFz - F2. Moreover, under the assumptio n (K L)t - Lt Kt ,it follows that

and 
G1F1= L. LLI Kt K(Lt)* = L. Kt K(LI) .  -  (Lt  Kt KL).  = (Nt)t  61 (7)

F2G2 = (KI).  LLt Kt KK* = (Kt)* LLt K. -  (KLLtKt)* -  KL(KDi .  (8)
From (7) and (8) it is seen that GrFr = (GrFr)- and FzGz - (F2G2)* , which completes the sets of conditions defining G6 to be
the Moore-Penrose inverse of F;, i = !,2. tr

We note that the implication in this lemma cannot be reversed. A counterexample is provided by the orthogonal projectors

x = ( t  o)  
^ar,  = (r /2 1/2\  : - . ' ,1

\ 0 0 ) = ( ' i , | , / 2 ) , i n w h i c h c a s e K K * = K = ( K t ) - a n d L * L : L _ ( L t 7 * , t h u s t r a n s f o r m i n g t h e
conditions on the right-hand side to L(K L)t = (X t)t = (K t )t 6 . Both these conditions are tulfilled, but (/<2,; t + Lt Kt .

On the other hand, the proof above shows that the assumption (X t 1t 
- Lt Kt was actually used only for establishing (7) and

(8). This observation leads to the remark below, in which generalized inverses of matrices are denoted according to Definition 1 in
Ben-Israel & Greville (I974,p. 8).

RpuaRK. Let K € Qn,n and L € Q,o. Then, for any
generalized-inverse of K(L(1'2'3);+ ffid, for any (K L)(1,2,4)
inverse of ( KG,2,4)). L.

The implication in the lemma easily leads to a solution of Problem 29-10. Postmultiplying (Aqt - Bt At by ,4,4* yields
(AA1t nO. - Bt A*, while from the lemma it follows that (e91t nA- - [(1t)-B]t, thus showing that (AA1t - nt At +
[(1t).8]t = Bt A* . Conversely, postmultiplying the last equality by (At)-at yields [(At)- B)t (At). At 

'= 
fit nt , and from

thelemmaitfollowsthat [(At)-A]t(,4t)-,4t = (AB)t,thuscompletingtheproof that(AB)t - BtAt <+,[(, t)-B]t = BIA*.
Similarly,premultiplying@A\t - BIAtbyB*B yieldsB*B(AB)I = B*At,whilefromthelemmaitfollowsthat B.B(AB)I =
[, (Bt).]t. Ontheotherhand,premultiplyinC[, (Bt).]t = B*At byatlAt;- yieldsBt(at).[a1At;-1t - fitnt,whilefromthe
lemmaitfollowsl6dgt(3t).[,4(Bt)-]t = (AB)t,thuscompletingtheproof that(AB)t - Bt At {+ [,A(Bt)-]t = B*At.

Sof ution 29'70.2 by Oskar Maria BersatARY, Adam Mickiewicz University, Poznart, Poland: baxx@amu.edu.pl
and Katarzyna Cnvltfisr e,, Zielona G6ra University, Zielona G6rq, Poland: K.Chylinska@im.uz.zgora.pl

We present an elementary solution based directly on the definition of the Moore-Penrose inverse of a given complex matrix K €
Q,,' astheuniquematrix Kt eA-^,^ satisfyingtheconditionsKKlK - K,KtKKl - Kt,KKt e?I,andKtK e?{,where
?l stands for the set of Hermitian matrices of an appropriate order. It can easily be verified that

AB(B| A\AB = AB e (At).  At ABB| (AI A).  B = (At).  At AB <+ (at) .  B@I A.)(A|)*B = (At).  B,

@t A\AB(BI, I) - Bt At c BI(AI A). BBt At AA* - Bt At AA* <+ (8t,4-)(it). B(Bt A*) - Bt A* ,
AB@tAt) e?t € IA@Bt)Atl* e?{ e 11'11.a1nIt*) e?t,

latet lea eH e BI(AIA).8 e ?t  € @tA.)(At) .8 €7{,

(KL)(1 '2 '3)  and LJ,2,3) ,  the matr ix  L*  L(KL)(1,2,3)  is  a { I ,Z,  B}-
and I{Q,2,4), the matrix (K L)(1,2,4) K K* is a {r,2,4}-generalized-



page 32 April 2003: IMAGE 30

thus establishing that

@a\t - BtAt e [(/t)-B]t = BtA*. (9)
Similar arguments show that @A)t - At At <+ [,A(Bt)-]t = B* At . However, a solution to the problem can also be completed
by combining (9) with the observation that, in view of (ft;- = (K*)t and (Kt)t = K, we see that [(At).3]t = Bt A* <+
(r-at;t  = A(Bt)* <+ [,4(Bt)-]t  - B*At.

Sof ution 29-10.3 by Shizhen CHENG, Tianjin Po$technical University, Ttanjin, China: csz@mail.tjpu.edu.cn

We first show that

@qI -  [ (At ) .  B 1t1at ) . (Bt ) . [ , ,4  @t ) .  ] t (10)

LetX = (At).8 andY = A(At1.,andlet?denoterange. Then n(X.) =R(B.At) =R(B*A*) =f<l(AB).landR(y) =
RIA(.BI).1=R(AB). Hence.xtX = (aB)t(AB)andYvt = (AB)(AB)I.rhorxt(At)*(Bt)*yt - lsi let j ;natlr i ; .vt
- ytyst(Bt.)*yt - (AQtnsst(Bt).yt = (AB)tA(Bt).yt - (Aaltyyt = (AB)t '(AirQqqt = (A'B)t,andso(10)
ho.ldl If (eA1t = Bt,At,.ttren (BtAt)t = AB and [(At)-(Bt).]t - p*A*. Hence [(At)-B]t'= fiAlt'e1Bt;.11at)-1at;-1i =
BI At A(Bl)* B* A* = 3t nt n33t n* - Bt At ABB| At AA* - pt nt an* = BI A* . Ttris shows lcrrat (ABi 

'= 
nt )t impties

[ (At ) -B] t  =BtA*.  Bysymmetry, [ ( ,  t ) -B] t  =BIA* a lso impl ies(Anyt  -BtAt .Thus(AA)t  =nte i  and[(et ; .a j t=
Bt A* are equivalent. The equivalence of (AB)t - Bt At and [,4(Bt). ]t = B*,4t can be shown similarly.

Solution 29'10.4 by Hans Joachim WERNER, Universitdt Bonn, Bonn, Germany: werner@united.econ.uni-bonn.de

Let A and B be complex matrices such that ,48 exists. One of the well-known shortcomings of the Moore-Penrose inverse is that
the reverse order law does not always hold. That is, for some pairs of matri ces A, B the relation @A1t = gt nI holds, and for
others it does not. This observation suggests the question, when does @A1t = pt ntt Arghiriade (1963) and Greville (1966) have
already given two criteria for distinguishing the cases for which @A1t 

- Bt At holds. Several other authors have also contributed
to this question and they have investigated a similar question for other (more general) special classes of generalized inverses of A
and B; see Werner (1992) for more details and a list of references. According to Greville (1966), @n\t 

- Bt At holds if and
only if the conditions R(BB. A.) g R(A.) and R(A. AB) g R(B) are simultaneously satisfied; here and below we denote by
A(') and "A/(') the range (column space) and the null space of the matrix (.), respectively. A solution to the present problem is
found immediately just by combining Greville's conditions for the different reverse order equations with the equivalences of the
corresponding conditions (a) and (g) in the following lemma.

LsI\4N'Ia. I'et M and N be any complu matrices such that the product MN exists. Then the following seven conditions are
equivalent:

(u)  R(M. MN) e R(n) ; (b)  R(M.Mrv)  gt / ' ( f f )  .R(M.) ; ( . )  (M.M)R(ff)  - l i - ( I r)  )R(M.);

(d) (M. M) tR(n) n"-(M.)l=R(N) nR(M.) and R(N) = [R(n) n""(M.)]o tR(nr) nN(u)l;

(e) (v.u1t t?'(N) nR(M.)l = R(lr) nfG(M.) and R(N) = [R(n) nfc(M.)]o [ft'(N) nN(M)];

(f) (M*u1t a(,^r) = ??(,^r)n R(M.); G) R(Mt MI-JV) g R(n).

PRooF. since M* M is a nonnegative definite Hermitian matrix with&(M. M) = R(M.) and N(M. M) = N(M), it is not
difficult to see that (a) <+' (b) <+' (c) <+ (d). That (d) is equivalent to (e) is a direct consequence of the fact that (M. M)t 1ltt. ltt) =
(M. M)(M.M)I it the orthogonal projector onto 73(M*) along If(M). Since (m. U1t = 1,41(tutt).,R(lrtt1 ='R(M*) and
N 1ut. 1 : N (M), it is also clear that (e) <+ (D <+ G), and so our proof is complete tr

A solution to Problem 29-10 was also received from the Proposer Yongge Tian.
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Probfem 29-11: The Minimal Rank of a Block Matrix with Generalized Inverses
Proposed by Yongge TLAN, Queen's University, Kingston, Ontario, Canada: ytian@mast.queensu.ca

I€t (.)- denote generalized inverse. Show that

page 33

* rank (C) ).

Whilewe have received a solutionfrom its Proposer Yongge Tian,we lookforward to receiving further solutions to prcblem 2g-I j.

Prcblem 29'122 Matrices commuting with the Vector cross product
Proposed by Dietrich TnnNrLpn, Universitiit Osnabriiclg Omabriich Germany: dtrenkler@nts6.oec.uni.osnabrueck.de

and GOtz TRENKLER, Universitiit Dofimund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

[,et a nonzero vector o € R3 be given. Find all square matrices ,4 with real entries such that (a) for all c € ]R3, it follows that
ax Ao - A(o x c)and(b)forallc €lRs,itfollowsthata x As =(Aa) x c. Here x denotesthevectorcrossproductinlRs.

Solution 29'72.7 byWlliamF. TRENCH, WoodlandParh Colorado, USA.- wtrench@trinity.edu

Without essential loss of generality, let o = (ot a2 o")' b9a unit vector. Irt b : ( b1 bz D3 )" be an arbitrary unit vector
/ " t  fu  " t \perpendicular to Q,, c = o x D = ( cr cz ca )", and Q = 
| 

o, bz ,, 
| 

. .;cr.L be the linear transformation with matrix ,4

relative to the natural basis for IR3. 
\ ot bs 

"" /

( a )F romtheassumpt ions ,wehave ( i ) axLa=L(axa )  =0 , ( i i ) ax  Lb=L (axb ) -  Lc ,and ( i i i ) ax  Lc=L (axc ) -_Lb .
From (i), La = \a for some real ). From (ii) and (iii), Lc and Lb are in the plane of b and c; i.e., Lb - pft * qp and Lc =
pzbt qzc. From(ii), pzb*qzc = pr(a x D) * qr(a x c) = -q1b4 pp,so {2 = rneurdpz= -qt. (Theseconclusionsalsofollow
from (iii)) We drop the subscripts and write Lb : pb * gc and Lc = -Qb * pc. Therefore the matrix of .[ with respect to {a,b, c}

( ^  0  0  \
isB= 

f 
0 p -c 

f 
anaA=QBQ".Conversely,itisstraightforwardtoverifythatanymatrix,4ofthisformhasthedesired

\o  c  p l
property.

(b)Since axLa = (La)  *  o = - (o xLa) , i t fo l lowsthat  ax La = 0,  so La = ) ,aforsomereal) .  Hence ax Lb -  (La)xb =
,\(o x 6) = )c, and a x Lc = (La) x c - .\(o x c) = -)D so trbisintheplaneof a and band Lcisintheplaneof c andc;thus,
L b = p a l r b a n d L c - q a l s c .  T h e r e f o r e ) , c = a x L b = p ( a x a ) + r ( a x b )  - r c a n d - . \ b  = a x L c - q ( a x a ) + s ( a x c )  = _ s [ ,

( ^  P  c \
so , tb -pa* \bmdLc=qa+ . \ c .The re fo re themat r i xo f ,Dw i th respec t to {o ,b , c } i sC=  

l0  ^  0 l , andA=eCeT.

\o o ^J
Conversely, it is straightforward to verify that any matrix A of this form has the desired property.

Solution 29'72.2 by the Proposers Dietrich TneNKLen, Universitiit Osnabriick Germany: dtrenkler@nr6.oec.uni.osnabrueck.de
and Gtitz TRENKLER, Universitat Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Pnoorof (a). Sincethecrossproductaxxislinearinthesecondcomponent,thereexistsauniquematrixe such thatToc = axc
( 0  - a B  o r \

f o ra l l c€ lRs .Whena=(a1  a2  a3 ) ' , t hema t r i xQ is read i l yseen tobeo f the fo rm? ;= l  aB  0  -a r f  , seeNob le

(1969). Hence our problem is equivalent to the search for all matrices ,4. commuting with To.By-\;3'."*ii,orr*o-iatculations,
it follows that the characteristic polynomial P(,\) of ?i is P(,\) - det(", - .\f) = -lB - .\aro. Hence e is nonderogatory i.e.,
every eigenvalue of L has geometric multiplicity 1.. By Theorem 3.2.4.2in Horn & Johnson (1985),,4 is apolynomialin ?o of degree

lA-
min rank IA - , 8 - , c -  

\ a _

C - \

I = max{ rank(A), rank(B)
o/
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atmost2. ThusweconcludeA = orle*azTo*ezTl,orequivalently,bynotingthatf! - aar-ataI3,A= fuIstB2TolB3aat,
where B1 , Fz, 9s are real constants. Observe that this class of matrices comprises the rotations by a certain angle about an axis in
IR3; see Noble (1969, p. 421) or Room (1952). The above problem can be modified by setting brackets differently. Then we might
wishto ident i fya l l realsquarematr ices,4sat is fy ingaxAc=(Aa)xcfora l ls€1R3.

To prove (b) we find all matrices A such thatToA = TAo. Clearly, this equation has at least one solution, namely A = Is.
To determine all solution matrices ,4. we compare the left-hand and right-hand sides of the above equation. Then we arrive at a
homogenous linear equation system of 9 equations with 9 unknowns. Using the Gaussian elimination method and Mathemntica
we see that the solution subspace is three dimensional with a possible basis set consisting of the matrices Ay A2 and 24.3, where
Ar = Is. The other two basis matrices depend on the coefficients of o, as follows, and this completes our proof of (b).

( i )  o r  +0

CIIaB -  CIL az

2a2as -a? As --(

2a1as 0

a 7 a g  a t a y

0

- a L a z

-azz

0

1:,) ;
"::, l) ;
fiti)

a3

l) 
A3:

a ? 0

( 0  0

Az-lr  o
\o  o

0  0 \

o ol'
0 0 l

(o  o  o \  (o

l t  
o l l ,As=lt

\o  o o l  \o

/  o 'o t
I

:  Az_  
|  

o

\0

( i i )  c a - 0 , c 1  + 0 , a 2 { 0 :

( i i i )  a B - a L  - 0 :  A z - ( i " )  a B : a z : 0 :  A z = ,  A 3 :

A solutionto Prcblem 29-12 was also received frcm leruy K. Baksalary & Oskar Maria Baksalary. See alsoTre*Ler (2001).

Problem 29-73 : Normal Matrices with Prescribed Diagonal Elements and Their Differences Elsewhere
Proposed by Lajos L(szt6, Eatuiis Inrdnd University, Budapest, Hungary: laszlo@numanal.inf.elte.hu

Show that there are normal matrices of any order with prescribed diagonal elements and their differences elsewhere. More precisely,
showthatforany n, thereexistn x n "index"matrices PandQ suchthatthen x nmatrix A= {o;j},definedaccording toa;; = 2;
and a;i = zp;j - znro when i f j.

Sof ution 29'13.7 by the Proposer Lajos L(szr6, E\tvds Lordnd University, Budapest, Hungary: Iaszlo@numanal.inf.elte.hu

We only sketch the proof, by giving the most important observations. The key is that given a commuting family (I{;)i=r of Hermitian
matrices, the matrix A = Di=, z;H; is normal for arbitrary complex numbers (ri)T=t.I,et us define first f11, a real symmetric
tridiagonal (0,1) matrix having ones in the sub- and superdiagonal and in the (1,1) position (2n - I in all). We then compute
(H;)T=2, with 1 in the (f , f) position and 0 in all other diagonal positions, to commute with I/r. For n = 3, e.g., we have

It turns out that all the I* are (0, 1, -1) matrices. Moreover, D!=r z;H; has the desired difference form, and p;,i 1 q;,i also holds
for the off-diagonal elements. As for the characterisation of P md Q, a detailed exarrination shows that they are srns of suitable
Hankel and Toeplitz matrices, e.g., for n = 5 we have the decompositions

fiit)

H1:(: iil H2:

[i ll] [Itl l] [;lll]
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a-

5 5  4

0 4 5

4 0 3

5 3 0

3 5  2 llllIllI
5 0  4

0 4 0

4 0 3

0 3 0

3 0  2

0 5 0

0 0  5

0 0 0

5 0 0

0 5 0

Also, in both P and 8, the diagonals parallel with the main diagonal contain arithmetic sequences with difference 0, I or -1. Note
f inal ly ,  thatq; , i :  k1 *n l l -  max( i ,  j ) fora l l i  I  j .
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IMAGE Problem Corner: More New Problems

Problem 3O-6: A Matrix Related to an ldempotent Matrix
Proposed by Gdtz TRENKLER, Universiffit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix from Clx'. What can be said about the matrix R = P(P + P')- P*, where (P a
generalized inverse of P * P* and P* denotes the conjugate transpose of P?

Problem 3O-7: A Condition for an ldempotent Matrix to be Hermitian
Proposed by Gdtz TRENKLER, Universitiit Dortmund, Dor"ttnund, Germany: trenkler@statistik.uni-dortmund.de

i s a

L,et P be an idempotent matrix from ffx". Show that P is Hermitian if and only if the Moore-Penrose inverse of P(/ - P.) is
idempotent' where P* denotes the conjugate transpose of P' 

prcbtems 30-I through 30-5 are on page 36.
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IMAGE Problem Corner: New Problems
Please submit solutions, as well as new problems, both (a) in macro-free IAI$ by e-mail to werner@united.econ.uni-bonn.de, preferably
embedded as text, and O) with two paper copies by regular mail to Hans Joachim Wemer, IMAGE Editor-in-Chief, Department of Satistics,
Faculty of Economics, Univenity of Bonn, Adenauerallee 2442,D-53113 Bonn, Germany. Probtems 30-6 and 30-7 are on page 35.

Problem 30-1: Star Partial Ordering, Left-star Partial Ordering and Commutativity
Proposed by Jerzy K. BnrseleRY , Zielona G6ra University, Zielona G6ra, Poland: J.Baksalary@im.uz.zgora.pl

Oskar Maria BAKSALARY, Adam Mickiewicz University, Poawrt, Polnnd: baxx@amu.edu.pl
and Xiaoji Lrv, Xidian University, Xi'an, Chinq: xiaojiliuT2@yahoo.com.cn

Forany A,B eG,,,n, thestarpart ialordering l2 A,def inedbyA*A= A*BandAA* - BA*,clear ly impl iestheleft-star
partialordering A +1B,definedby A*A= A*B and".(.4) ?R(B),whereR'(.)denotestherangeof agivenmatrix. Showthat
if m: n and A orB is an EPmatrix,i.e.,R(A) =R(A.) orR(B) =R(B*),thentheimplication,4 +( B * AB - BAcannot
holdunless A +1 B is strengthened to A 1 B.

Problem 30-2: Class of (0, 1)-Matrices Containing Constant Column-Sum Submatrices
Proposed by Bernardete RIBEIRo: bribeiro@dei.uc.pt and Alexander Koveiec: kovacec@mat.uc.pt

Universida.de de Coimbrq Coimbra, Portugal.

Forg iven k r , . . . , f r "  e  [n ]  -  1 r ,2 , . . . ,n ]de f ine the{0 , l } -mat r i x  A= A(h , . . . ,& , )  =  (q i )byput t ing  a ; j  = r i t r j i soneof
the f rs t ;  en t r ieso f  then- tup le ( i , i * ! , . . . , f , ! ,2 , . . . , i -L ) .Showthat thereex is tsa{0 ,  1 } - rowoanda & e  [n -  1 ]  suchtha t
nA - kln, where 1, - (1, . . ., 1).

Problem 3O-3: Singularity of a Toeplitz Matrix
Proposed by Wiland Scuunle, Universitdt Oldenburg, Oldenburg, Germnny: schmale@uni-oldenburg.de

and Pramod K. SHARue, Devi Ahilya University, Indore, India: pksharma1944@yahoo.com

I-etn) 5, cr,.. .tcn-r € C\{0}, e anindeterminateoverthecomplexnumbers C andconsidertheToeplitzmatrix

C2

Cs

C 1

CZ

n 0 0

cr fi 0 0

M : :

Cn-3  Cn-4  f i

C n - 2  C n - B  C 1

C n - t  C n - 2  C 2

Provethatif thedeterminantdet M =0 inA[c] and5 ( n Sg,thenthefirsttwocolumns of M aredependent. [Wedonotknow
if theimplicationistrue forn ) 10.1

Problem 30-4: The Similarity of Two Block Matrices
Proposed by Yongge TIAN, Queen's University, Kingston, Ontario, Canadn: ytian@mast.queensu.ca

I * tAandBbetwo idempotentmat r icesof thesames izeand le tM:=A+B.Showrhn(M ' ) t . s im i la r to (M O 
) .

\ 0  - M /  \ o  - M )

Problem 3O-5: A Range Equality for the Difference of Orthogonal projectors

Proposed by Yongge TIAN, Queen's University, Kingston, Ontaio, Canada: ytian@mast.queensu.ca

Irt,4andBbetwoorthogonalprojectorsofthesamesize. Showthatrange[(,4-B)t- (A-B )]- ra,nge (AB-BA), where
(A -B ) t i s th "Moore -Pen rose inve rseo f  A -B .Henceshowtha t (A -B ) t=A-B i fandon l y l f  AB=BA.

Problems 30-6 and 30-7 are on page 35.


