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SIAG LA Prize Winners Speed up 
the QR Algorithm

by Nicholas J. Higham*

Karen Braman (University of Kansas), Ralph Byers 
(University of Kansas), and Roy Mathias (College of 
William and Mary) received the 2003 SIAM Activity Group 
on Linear Algebra Prize for their paper “The multishift QR 
algorithm. Part II: Aggressive early defl ation” [1] at the 
SIAM Conference on Applied Linear Algebra, held at the 
The College of William and Mary, Williamsburg, July 15-
19, 2003. The citation of the Prize Committee, comprising 
Ludwig Elsner (University of Bielefeld), Anne Greenbaum 
(University of Washington, Seattle), Bo Kagstrom (Umeå 
University), Nick Trefethen (University of Oxford), and chair 
Steve Vavasis (Cornell University), reads “This elegant paper 
on solution of large dense eigenvalue problems blends theory 
and computational experiments to signifi cantly improve one 
of the best established numerical algorithms.”

The QR algorithm for solving the nonsymmetric 
eigenvalue problem is one of the jewels in the crown of 
matrix computations. Nominated by Jack Dongarra and 
Francis Sullivan [2] as one of the “10 algorithms with the 
greatest infl uence on the development and practice of science 
and engineering in the 20th century,” the QR algorithm has 
allowed routine solution of the eigenvalue problem since its 
invention in the early 1960s.  As Beresford Parlett [3] points 
out, the QR algorithm’s eminence stems from the fact that 
it is a “genuinely new contribution to the fi eld of numerical 
analysis and not just a refi nement of ideas given by Newton, 
Gauss, Hadamard, or Schur.”

Anyone who computes eigenvalues by typing “eig(A)” 
in MATLAB is invoking the QR algorithm, or more precisely 
the LAPACK implementation, and for matrices up to 300-
by-300 they will obtain the result within less than a second 
on a fast modern workstation.  Dense eigenvalue problems 
of much larger sizes arise in various applications, and for 
dimensions up to 10,000 or so the QR algorithm is still 
the method of choice for computing all the eigenvalues. 
Unfortunately, since the number of fl oating point operations 
is proportional to the cube of the dimension, execution times 
for matrices at the upper end of this range are measured in 
hours. But thanks to recent work by Braman, Byers, and 
Mathias, execution times of the QR algorithm for matrices 
of dimension a few hundred upwards are set to decrease 
substantially.

Since the QR algorithm was fi rst developed it has been 
understood that defl ation is essential to its success. Defl ation 
is the process of splitting the problem into smaller pieces 
during QR iterations on the upper Hessenberg matrix. (For 
effi ciency, a full matrix is reduced to Hessenberg form 

before carrying out the QR iteration.) Previously, defl ation was 
accomplished by zeroing tiny elements on the subdiagonal. 
The key idea in this new work is to introduce carefully chosen 
perturbations to reveal defl ations that are not yet evident on the 
subdiagonal. Braman, Byers and Mathias have developed clever 
analysis and algorithmics to understand and make practical this 
idea. Important to the success is strategically expending some 
computational effort to look for early defl ations and carefully 
exploiting modern computer architectures in the implementation. 
Their well-designed numerical experiments present convincing 
evidence of the improvements that aggressive early defl ation 
can bring. In extreme cases, the cost of the QR algorithm on a 
matrix of size 10,000 already in Hessenberg form is reduced by 
two orders of magnitude.

The three prizewinners gave a joint presentation on their 
work at the conference.  Organized by a committee co-chaired 
by Roy Mathias and Hugo Woerdeman (College of William and 
Mary), and in cooperation with the International Linear Algebra 
Society, the conference was the eighth in a successful series of 
meetings that began in Raleigh, N.C. in 1982.

The next SIAM Conference on Applied Linear Algebra 
will take place in 2006 in Germany in collaboration with 
Gesellschaft für Angewandte Mathematik und Mechanik 
(GAMM).
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ILAS INFORMATION CENTER

The electronic ILAS INFORMATION CENTER (IIC) provides 
current information on international conferences in linear 
algebra, other linear algebra activities, linear algebra journals, 
and ILAS-NET notices. The primary website can be found at 
http://www.ilasic.math.uregina.ca/iic/index1.html. Mirror sites 
are located at:

htpp://www.math.technion.ac.il/iic/index1.html
htpp://wftp.tu-chemnitz.de/pub/iic/index1.html
htpp://hermite.cii.fc.ul.pt/iic/index1.html
htpp://www.math.temple.edu/iic/index1.thml

The website is managed by Shaun Fallat (shaun@math.uregina.edu).
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Prelude 

When fi rst approached to write an article for IMAGE about 
the REU program at William and Mary, I wasn’t sure there 
was anything new for me to say, as the paper [JL] already 
clearly described the program. But then, Hurricane Isabel 
hit Virginia. The College was closed and computer systems 
were down. This gave me some more time to think about 
the project. I came up with the idea to focus the article on 
some of my personal experience in doing research with 
undergraduates. In the last 14 years, I have worked with 24 
undergraduate students on a number of research projects; see 
the reference list. For whatever it is worth, here is my story.

What types of undergraduate research programs have I 
participated in?

I have participated in several different types of undergraduate 
research programs including: National Science Foundation 
(NSF) Research Experiences for Undergraduate (REU) 
programs conducted in the summer, NSF supplementary 
REU programs conducted during the academic year, 
Honors projects for mathematics majors and the Wilson 
Interdisciplinary research program at William and Mary. 
Accordingly, I selected students or was selected by students 
in a variety of ways.

For each of the summer NSF REU programs, eight to 
nine students were recruited from different institutions. In the 
fi rst two days of the eight-week program, several potential 
advisors would present their research projects. Students 
would then have a meeting among themselves to determine 
a matching between advisors and advisees. It is amazing that 
it always worked well with students spread rather evenly 
among the advisors.

The NSF supplementary REU opportunities were 
limited to William and Mary students. Sometimes I invited 
outstanding students who were taking my courses to 
participate, and other times I offered the vacancies to good 
students who inquired about possible research opportunities. 
The latter approach is the standard way to get students for 
Honors projects and other research programs at our College.  
Knowing that I am interested in advising Honors projects and 
other undergraduate research projects, students would talk to 
me about such possibilities. Usually, they were encouraged to 
talk to other potential advisors as well. In any event, I did get 
a number of good students working with me in this way. 

Research Experiences with Undergraduates
by

Chi-Kwong Li
Department of Mathematics
College of William & Mary

What kind of research have I done with students? 

It is not hard for readers, especially for those who know me, to 
guess the answer: matrix analysis! Instead of boring the readers 
with the technical details of various students’ projects, I will 
only touch upon some of them later when I discuss why I think 
that matrix analysis is a good theme for undergraduate research.  
Here let me mention the few exceptional cases, that is, those 
research projects with undergraduates with topics other than 
matrix analysis.

In [LN], a student and I studied coding theory related to the 
familiar Tower of Hanoi puzzle. This was actually an extension 
of the student’s summer REU project at another university. 
When I fi lled out the recommendation form of the other 
university’s REU program for the student, one of the questions 
was whether a faculty member at the student’s home university 
would continue to work with the student after the summer if 
the student would be interested in doing so.  I said yes to the 
question and the student was admitted to the REU program. 
After she came back to William and Mary, she expressed 
interest in continuing the research.  So, I kept my promise, and 
worked with her in the following academic year. The research 
led to [LN], which contains a short proof of the result and the 
answer to an open problem posed in a paper of the student and 
her REU advisor.

In the spring of 1997, I taught a course in applied abstract 
algebra covering topics including some coding theory and 
cryptology. A student in my class was a double mathematics and 
computer science major. The student was concurrently enrolled 
in a computer science class concerning the implementation of 
crypto systems. He was very interested in both the theoretical 
and practical aspects of cryptology, and ended up doing an 
Honors project on cryptology under the joint supervision of a 
colleague in the computer science department and me. When he 
graduated, he was hired by a software security company—of 
course, with a salary much higher than mine. He later learned 
that he was selected over many applicants with Masters degrees 
because of his course work and research in cryptology. Two 
years later, he and his colleagues made CNN news for cracking 
an online casino by showing that the pseudo-random number 
generator used to deal the poker game was very insecure. 
They illustrated how one could predict the poker hands after 
observing the game for an hour or so. This remains  one of my 
favorite stories for those abstract algebra students who do not 
fi nd abstract algebra interesting and useful!

Cont’d on page 5
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The next case is just half exceptional because the story 
started with chaos and ended in matrices. In the spring 
of 1996, an economics student approached me about the 
possibility of doing a Wilson interdisciplinary research 
project in the following summer. Based on a Time magazine 
article that had piqued her interest, she wanted to work on 
chaos theory and economics. I frankly told her that I knew 
nothing about chaos, but I was willing to learn some chaos 
theory with her in addition to learning some economics 
theory from her! She obviously realized that it would be 
too heavy a burden for both of us. So, she looked into other 
possibilities, and found another article about game theory and 
auctions in Forbes magazine. When she asked me about that, 
I told her that at least I knew matrix games.  So, we ended 
up doing a project in game theory and economics. In fact, 
I was so fond of the subject that I taught a topics course in 
game theory in the following semester in which I discussed 
some applications of game theory in biology. Some results 
obtained in that summer and the following semester led to 
[LNa].  It was quite an educational experience for the student 
as well as myself.

Why is matrix analysis a good theme for undergraduate 
research? 

In my opinion, matrix analysis is an excellent topic 
for undergraduate research. It does not require a lot of 
background to understand some research questions, yet it 
is linked to different topics such as group theory, operator 
theory, operator algebras, and numerical analysis, and it offers 
endless opportunities for further research.  In fact, the many 
different aspects of matrix analysis can attract students with 
different backgrounds. In my work, for students with strong 
abstract algebra background, we studied homomorphisms or 
linear/additive maps that leave invariant symmetric groups, 
alternating groups, semi-groups of stochastic matrices, and 
other related nonnegative matrix sets [AM,ChL1,ChL2]; 
for students interested in complex analysis and functional 
analysis, we studied numerical range [LMR2,LSS] or 
isometry problems [CL2,Cet,KL,LM];  for students interested 
in combinatorics, we studied topics in combinatorial matrix 
theory [CP,LLR,SS]; for students interested in convex 
analysis, we studied geometrical structure of matrix sets 
[HL];  and for students with a computer science background, 
we used scientifi c computation to study matrix problems 
[CL1,CP,He]. In fact, advising undergraduate research 
projects in matrix analysis well manifests the theory of 
Confucius that “students should be educated and trained 
according to their strength”. (This is truly from Confucius 
and not from a fortune cookie!)  

According to the nature of the research problems, 
students may need to use or develop techniques in group 
theory, combinatorial theory, functional analysis or scientifi c 

computation, in the matrix analysis research projects. This 
exposed students to different research areas in addition to 
matrix analysis, and might infl uence their future choices of 
research topics in graduate studies. Moreover, the techniques 
acquired in the projects might be useful in their future research 
in mathematics or other subjects. For example, the matrix 
techniques developed in [LNa] were later used in the graduate 
study in economics by the student (see [Na]).

What have students and I gained by doing undergraduate 
research projects? 

Students received stipends for their summer research, and 
Honors project students graduated with honors. Students 
acquired some experience in mathematical research and got a 
glimpse of how professional mathematicians work.  In some 
cases, the research led to the excitement of their fi rst publication.  
In any event, students at least learned some mathematics that 
might be useful for their future study.  On the one hand, I am 
glad to see that most of my undergraduate research students 
have gone on to graduate school to study mathematics and 
related subjects. On the other hand, as long as the students have 
seen a real picture of what mathematical research is about, I do 
not have any problem of seeing them pursue directions other 
than mathematics.

I received a stipend for doing the summer REU projects. 
Other projects had no fi nancial compensation. Nevertheless, 
successful research projects led to research papers, a better CV 
for tenure, promotion, and even for faculty award nominations. 
Similar to my other research projects, it was most enjoyable 
to develop with collaborators new ideas to solve problems. 
Moreover, I have acquired a lot of knowledge through studying 
new topics with students or through consultation with colleagues 
on problems arising in the research. All of these are good. But 
there is a more primitive motivation for me to do research with 
undergraduates.  Researchers, educators, and grant agencies 
may emphasize that undergraduate experiences can help train 
young scientists. In comparison, I have a more elementary goal: 
to let more young people know what mathematics research is 
about. 

I like mathematics, I like mathematics research, I like 
to share my research experiences with others, and I feel that 
appreciating mathematics should not be restricted to a small 
group of people. Not everyone has to be a musician, but many 
people can appreciate good music. Similarly, I would like to see 
that more people can appreciate mathematics and mathematical 
research work—though not every one has to be a research 
mathematician!

Research Experiences, cont’d from page  3

Cont’d on page 7
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Cont’d on page 10

Twelfth International
Workshop on

Matrices and Statistics
IWMS-2003

Dortmund, Germany: 5–8 August 2003

Report by Hans Joachim Werner

The Twelfth International Workshop on Matrices and 
Statistics (IWMS-2003) was held at the University of 
Dortmund (Dortmund, Germany), 5–8 August 2003, during 
the week immediately before the 54th Biennial Session of 
the International Statistical Institute (ISI) in Berlin. This 
Workshop, which was hosted by the Department of Statistics 
at the University of Dortmund, had been cosponsored by the 
Bernoulli Society as an ISI satellite meeting, and had been 
endorsed by the International Linear Algebra Society (ILAS).

The International Organizing Committee for this workshop 
consisted of R. William Farebrother (Shrewsbury, England), 
Simo Puntanen (University of Tampere, Finland), George 
P. H. Styan (McGill University, Montréal, Québec, Canada; 
vice-chair), and Hans Joachim Werner (University of Bonn, 
Germany; chair). The Local Organizing Committee (LOC) 
at the University of Dortmund comprised Jürgen Groß, Götz 
Trenkler (chair) and Claus Weihs. The Workshop Secretary was 
Eva Brune.

The purpose of the workshop was to stimulate research and, 
in an informal setting, to foster the interaction of researchers in 
the interface between matrix theory and statistics. More than 45 
participants from 15 different countries joined this workshop. 
The Workshop was opened by Professor Dr. Eberhard Becker, 
Rector of the University of Dortmund. This was followed 
by plenary sessions of invited, short course and contributed 
papers. The invited and short course speakers were Jerzy K. 
Baksalary, Adi Ben-Israel, N. Rao Chaganty, Ludwig Elsner, 
Bjarne Kjær Ersbøll, Richard William Farebrother, Patrick 
J. F. Groenen, Alexander Guterman, Stephen Pollock, Simo 
Puntanen, George P. H. Styan, Júlia Volaufová and Roman 
Zmyślony. The ILAS-Lecturer was Jerzy K. Baksalary. Another 
25 papers were presented in several contributed paper sessions, 
and 3 further papers were presented just by title. It is expected 
that many of these papers will be published, after refereeing, 
in Linear Algebra and Its Applications. The Workshop 
Programme can still be downloaded from the Workshop 
website: www.statistik.uni-dortmund.de/IWMS/main.html.

On Wednesday, August 6, there was an Afternoon Outing 
to Bochum which is a neighboring city of Dortmund. There, 

The Eighth SIAM Conference on 
Applied Linear Algebra

Williamsburg, VA: 15-19 July 2003

The 8th SIAM Conference on Applied Linear Algebra 
was held July 15-19, 2003, at the College of William and 
Mary, Williamsburg, VA, USA. There were 246 registered 
participants from academia, government laboratories and 
industry. Geographically, the participants were from North 
America, Europe and Asia. The co-chairs of the meeting were 
Roy Mathias and Hugo Woerdeman.

The keynote speakers (including two ILAS speakers) 
were George Cybenko (Dartmouth College), Heike 
Fassbender (TU Braunschweig), Andreas Frommer 
(Bergische Universität-Gesamthochschule Wuppertal), Rich 
Lehoucq (Sandia National Laboratories), Judith McDonald 
(Washington State University; ILAS Speaker), James G. 
Nagy (Emory University), Michael Overton (New York 
University), Bryan Shader (University of Wyoming; ILAS 
Speaker), G. W. (Pete) Stewart (University of Maryland), and 
Gilles Villard (CNRS/EcoleNormale Superieure de Lyon).

In addition there were 26 minisymposia with a wide 
range of topics, including Combinatorics in Linear Algebra, 
Linear Algebra in Computational Biomedicine, Matrix 
Inequalities and Applications, Recent Developments in 
Sparse Matrix Algorithms, Indefi nite Inner Products and 
Applications, Linear Algebra in Data Mining and Information 
Retrieval. The wide variety of topics and the wide variety of 
backgrounds of the participants resulted in a scientifi cally 
exciting atmosphere.

The SIAM Activity Group on Linear Algebra (SIAG 
LA) Prize was awarded to the paper by K. Braman, R. 
Byers, and R. Mathias, “The multishift QR algorithm. II. 
Aggressive early defl ation.”  SIAM J. Matrix Anal. Appl.  23  
(2002), 948--973. The three authors gave an excellent joint 
presentation on their awarded work.

The SIAG LA business meeting was held over lunch and 
was attended by approximately 40% of the participants, which 
led to some lively discussions. The business meeting featured 
also Junping Wang, NSF, Computational Mathematics and 
Applied Mathematics.

The social events included a welcome reception and a 
banquet featuring Roger Horn. Roger did an excellent job 
of entertaining the crowd and made thankful use of some of 
the snafus in the organization, which included having two 
keynote presentations with the same title.

For the fi rst time in this series of conferences, the 
proceedings were published online http://www.siam.org/
meetings/la03/proceedings/.

The next SIAM Conference on Applied Linear Algebra 
will be held in Düsseldorf, Germany, in 2006. It will be the 
fi rst time the meeting will be held outside of the US.
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Workshop on Matrices and Stastics , cont’d from page 9

visiting the famous Mining Museum Bochum, we had a few 
hours to imagine the hard work of coal miners. We started our 
visit with an excellent guided tour down in a mine, followed 
by some free time to walk on our own through the many 
exhibition halls of this museum and to climb up a winding 
tower. Up to the mid 1970’s the Ruhr region, Dortmund 
lies on the north-west edge of the Ruhr, was one-sidedly 
characterized by mining, steel and iron-making industries. In 
the evening of the same day there was a Beer Taste and Test 
at Hövels Brewery in downtown Dortmund. Afterwards a 
delicious Workshop Dinner was served at the same place. Like 
our Workshop in Lyngby (Denmark) last year, this Workshop 

Photo of Participants in the 2003 Workshop on Matrices and Statistics

in Dortmund again provided an extremely good atmosphere to 
stimulate contacts and exchange ideas.

The 13th International Workshop on Matrices and Statistics 
(IWMS-2004), in Celebration of Ingram Olkin’s 80th Birthday, 
will be held at Będlewo, about 30 km (18 miles) south of 
Poznán, Poland, from 18 to 21 August 2004. For further details 
visit http://matrix04.amu.edu.pl.

The 14th International Workshop on Matrices and Statistics 
(IWMS-2005) will be held at Massey University (Albany 
Campus), Auckland, New Zealand, 29 March to 1 April 2005, 
just before the 55th Biennial Session of the International 
Statistical Institute (Sydney, Australia, 5–12 April 2005).

Photo by N. Rao Chaganty
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John William Strutt 
and the Rayleigh Quotient

by Richard William Farebrother

The name of Lord Rayleigh, although frequently misspelled, 
is well-known to computational linear algebraists for the 
Rayleigh quotient. In his contribution to a panel discussion 
at the 1995 AMS-SIAM Summer Seminar in Applied 
Mathematics, Beresford Parlett (1995) noted that Lord 
Rayleigh made this discovery when working on the fi rst draft 
of his Theory of Sound (1877-78) during a six-month trip to 
Egypt in 1872-73. However, Parlett also noted that:

“There is an interation called the Raleigh 
quotient interation but I don’t think he 
[Lord Rayleigh] ever used it. He did use 
a Raleigh quotient and he did do inverse 
interation with a Raleigh quotient shift for 
the fi rst time.”

[I have retained the AMS-SIAM secretary’s misspellings of  
`interaction’ and `Rayleigh’].

John William Strutt was born in Langford Grove, 
Malden, Essex, England on 12 November 1842, he succeeded 
his father as the third Baron Rayleigh in June 1873, and died 
at his home Terling Place, Witham, Essex, England on 30 
June 1919. Because of his social background, he was not 
able to follow a conventional academic career, but undertook 
numerous scientifi c experiments in a private laboratory 
at Terling Place. He accepted the posts of Professor of 
Experimental Physics at the University of Cambridge from 
1879 to 1884 and that of Professor of Natural Philosophy 
at the Royal Institution in London in 1887. He was elected 
President of the Royal Society in 1905 and Chancellor of the 
University of Cambridge in 1908. Rayleigh was a member of 
all the leading scientifi c societies and received many awards. 
In particular, he was a founding member of the (British) 
Order of Merit in 1902 and he and Sir William Ramsay were 
awarded a Nobel Prize in 1904 for their discovery of the inert 
gas argon.

As noted above, Lord Rayleigh’s title is sometimes 
misspelled. For myself, I cannot recollect having had any 
trouble with the spelling of his name—all of the milk 
delivered to my parents’ home during the fi rst 25 years of 
my life was supplied by the local branch of Lord Rayleigh’s 
Dairies.

In 1885 Lord Rayleigh’s younger brother Edward 
Strutt went into partnership with his friend Charles Parker 
to found a farm management and land agent company that 
still continues today. In 1886 the Strutt brothers set up Lord 
Rayleigh’s Farms. In 1887, they bought a London retail outlet 
that formed the nucleus of Lord Rayleigh’s Dairies. Lord

Rayleigh’s Farms continued as an independent concern until 
1996 when it became part of Mejeriselsk and Danmark Foods, 
and in June 2000 they, in turn, merged with the Swedish-based 
Arla Group.

For those interested in such matters, the glass milk bottles 
of my childhood were marked with the words “Lord Rayleigh’s 
Dairies” set one above another and enclosed in a truncated 
rhombus. By contrast, the logo on the waxed cardboard milk 
carton illustrated in anonymous (1986) consists of the words 
“Lord Rayleigh’s Farms” set one above the other but without 
a surround.

For further details of Lord Rayleigh’s life, see the (British) 
Dictionary of National Biography, the Dictionary of Scientifi c 
Biography, or “The MacTutor: History of Mathematics 
Archive” website: wwwhistory.mcs.standrews.ac.uk/History/
Mathematicians/Rayleigh.html. For further details of the 
history of Lord Rayleigh’s Farms and Lord Rayleigh’s Dairies, 
see Anonymous (1986) and Wormall (1999, pp. 111-119). See 
Wilkinson (1965) for a discussion of the Rayleigh quotient.

Acknowledgement: I am indebted to Margaret Irvine for 
downloading some of the material cited above, and to Richard 
Shackle, the Local Studies Librarian at Colchester Library, for 
identifying and supplying copies of Anonymous (1986) and 
Chapter 19 of Wormall (1999).
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Math Books Published in 2003

As a service to IMAGE readers, below is a listing of 
mathematics books published in 2003.  The list was complied 
from the Mathematics Online Bookshelf™. Additional 
information about these books is available online at 

http://www.mathbookshelf.com. 

The titles are sorted by subject.

Applied Math
Theory of Scheduling. Conway,. R.; Maxwell, W.; Miller, L., 
Dover 2003, 0-486-42817-6.

Finite Element Methods for Structures with Large Stochastic 
Variations.  Elishakoff, I., Oxford University Press 2003, 0-19-
852631-8.

The Universality of the Radon Transform, Ehrenpreis, Leon, 
Oxford University Press 2003, 0-19-850978-2, 860 pp. 

The Lanczos Method: Evolution and Application. Komzsik, L., 
SIAM 2003, 0-89871-537-7.

Chaos
Chaos: A Mathematical Introduction. Banks, J., Cambridge 
University Press, 2003, 0-521-53104-7.

Collected Works
The Collected Papers of William Burnside. Neumann, Peter, 
Oxford University Press, 2003, 0-19-850585-X.

Combinatorics
Surveys in Combinatorics 2003, Wensley, C., Cambridge 
University Press 2003, 0-521-54012-7. 

Discrete Convex Analysis. Murota, Kazuo. SIAM 2003, 
0-89871-540-7, 389 pp.

Discrete Mathematics: Elementary and Beyond. Lovasz, 
Laszlo; Pelikan, Jozsef; Vesztergombi, Katalin L., Springer 
2003, 0-387-95585-2, 296 pp.

Automatic Sequences. Haeseler, Friedrich von, Walter de 
Gruyter 2003, 3-11-015629-6, 191 pp.

Combinatorics. Merris, R., John Wiley. 2 ed., 2003, 
0-471-26296-X.

Complex Analysis
Complex Variables: Introduction and Applications. Ablowitz, 
M.; Fokas, A., Cambridge University Press.

 Book Review

Developments and Applications of Block Toeplitz Iterative 
Solvers by Xiao-Qing Jin, Science Press (Beijing-New York) 
& Kluwer Academic Publishers (Dordrecht-Boston-London), 
2002,   Series on Combinatorics and Computer Science, Vol. 
2, ISBN 7-03-010719-5 (Science Press, Beijing) ISBN 1-
4020-0830-9 (Kluwer Academic Publishers), US $103 or 
EUR $105,  xiii+218 pp., hard cover.

Reviewed by Yimin Wei

This book includes the latest developments on iterative 
methods for solving block Toeplitz systems. Such systems 
have been widely used in the field of image processing, 
numerical differential equations and integral equations, time-
series analysis and control theory. Iterative methods make it 
possible to solve a large class of mn-by-mn block Toeplitz 
systems in O(mn log (mn)) operations.
     The book is divided into twelve chapters.  Chapter 1 
introduces some basics about matrix computations and 
some good circulant preconditioners for solving Toeplitz 
systems. Chapter 2 studies block circulant preconditioners 
and their use in solving systems block Tmnu=b,  where Tmn 
is an m-by-m block Toeplitz matrix with n-by-n  blocks, via 
the preconditioned conjugate gradient method. Chapter 3 
discusses obtaining block circulant preconditioners for block 
Toeplitz systems from the viewpoint of kernels. Chapter 
4 proposes a fast algorithm with two preconditioners  to 
solve block Toeplitz systems with tensor structure and 
gives an application to the inverse heat problem. Chapters 
5 and 6 discuss the constrained and weighted Toeplitz least 
squares problem, and ill-conditioned block Toeplitz systems, 
respectively. Non-circulant preconditioners are studied in 
Chapter 7 and multigrid methods are used for solving block 
Toeplitz systems in Chapter 8. Chapters 9, 10 and 11 propose 
some block preconditioners for  partial differential equations 
and ordinary differential equations with Krylov subspace 
methods. Both theoretical analysis and numerical results are 
given. Chapter 12 applies the preconditioning technique to 
image restoration problems. Finally, the Bibliography of the 
book contains many recent papers in the related area.
     This book is the first on Toeplitz iterative solvers. Since 
the book contains current developments and applications, it 
should be of benefit to anybody with research interests in 
block Toeplitz systems. Overall, I really enjoy this book and 
I am sure that it will be useful to students and researchers 
alike for many years to come.

Yimin Wei: ymwei@fudan.edu.cn
Department of Mathematics
Fudan University, Shanghai, China.

Cont’d on page 13
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Complex Analysis.  Kodaira, Kunihiko, Cambridge 
University Press 2003, 0-521-80937-1.

Complex Analysis. Stein, E., Princeton University Press 
2003, 0-691-11385-8, 392 pp.

Control Theory
Adaptive Control Design and Analysis. Tao, G., John Wiley
2003, 0-471-27452-6.

Real-Time Optimization by Extreme-Seeking Control. Ariyur, 
K.;  Krstic, M., John Wiley 2003, 0-471-46859-2.

Differential Equations
Differential Equations. King, A. C., Cambridge University 
Press 2003, 0-521-81658-0, 500 pp.

Numerical Methods for Delay Differential Equations.
Bellen, A.;  Zennaro, M., Oxford University Press 2003, 
0-19-850654-6.

Differential Geometry
Introduction to Mobius Differential Geometry.
Hertrich-Jeromin, U., Cambridge University Press 2003, 
0-521-53569-7.

Abstract Algebra
An Introduction to Abstract Algebra. Robinson, D., Walter de 
Gruyter, 2003, 3-11-017544-4, 282 pp.

Galois Groups and Fundamental Groups. Schneps, L., 
Cambridge University Press 2003, 0-521-80831-6, 470 pp.

Finance
Financial Markets in Continuous Time. Dana, Rose-Anne; 
Jeanblanc-Picque, Monique, Springer 2003, 3-540-43403-8, 
330 pp.

Weak Convergence of Financial Markets. Prigent, J.-L.,
Springer 2003, 3-540-42333-8.

The Statistical Mechanics of Financial Markets. Voit, J.,
Springer 2 ed., 2003, 3-540-00978-7.

Fluid Dynamics
Generalized Riemann Problems in Computational Fluid 
Dynamics. Ben-Artzi, M., Cambridge University Press 2003, 
0-521-77296-6, 392 pp.

Fourier Analysis
Fourier Analysis: An Introduction. Stein, E., Princeton 
University Press 2003, 0-691-11384-X, 320 pp.

Cont’d on page 14

Books, cont’d from page 12

Functional Analysis
An Introduction to the Theory of Operator Spaces. Pisier, Gilles,  
Cambridge University Press 2003, 0-521-81165-1, 300 pp.

Geometry
The Changing Shape of Geometry. Pritchard, C., Cambridge 
University Press 2003, 0-521-53162-4, 550 pp.

Dissections: Plane & Fancy. Frederickson, G., Cambridge 
University Press 2003, 0-521-52582-9.

Graph Theory
Random Geometric Graphs. Penrose, M., Oxford University 
Press 2003, 0-19-850626-0.

Four Colors Suffi ce: How the Map Problem Was Solved. 
Wilson, Robin, Princeton University Press 2003, 0-691-11533-
8, 280 pp.

Group theory
Elementary Number Theory, Group Theory, and Ramanujan 
Graphs. Davidoff, G., Cambridge University Press 2003, 
0-521-53143-8.

Finite Structures with Few Types. Cherlin, Gregory; 
Hrushovski, Ehud, Princeton University Press 2003, 0-691-
11332-7, 192 pp.

Information theory
Information Theory, Inference and Learning Algorithms.
MacKay, David, Cambridge University Press, 2003, 0-521-
64444-5, 550 pp.

Linear Algebra/Matrix Theory
Iterative Krylov Methods for Large Linear Systems.Vorst, H., 
Cambridge University Press 2003, 0-521-81828-1.

Linear Algebra and Geometry: A Second Course. Kaplansky, I.. 
Dover 2003, 0-486-43233-5, 146 pp.

Iterative Solution of Large Linear Systems.Young, D., Dover 
2003, 0-486-42548-7, 570 pp.

Fast Algorithms for Structured Matrices: Theory and 
Applications.  Olshevsky, Vadim, SIAM 2003, 0-89871-543-1, 
433 pp.

Iterative Methods for Sparse Linear Systems. Saad, Yousef,
SIAM 2 ed., 2003, 0-89871-534-2, 528 pp.
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Mathematical Physics
Perturbation Techniques in Mathematics, Engineering and 
Physics. Bellman, R., Dover 2003, 0-486-43258-0, 118 pp. 

The Theory of Relativity. Pathria, R., Dover 2003, 
0-486-42819-2.

Topics in Quantum Mechanics. Williams, Floyd, Springer
2003, 0-8176-4311-7,  416 pp.

Miscellaneous
Mathematical Constants, Finch, S., Cambridge University 
Press 2003, 0-521-81805-2.

Number Theory
The Riemann Zeta-Function: Theory and Applications. 
Ivic, A., Dover 2003, 0-486-42813-3.

The Art of the Infinite. Kaplan, Robert, Oxford University 
Press.

Numerical Analysis
Practical Extrapolation Methods. Sidi, Avram, Cambridge 
University Press 2003, 0-521-66159-5.

Optimization
Real-Time Optimization by Extreme-Seeking Control. Ariyur, 
K.; Krstic, M., John Wiley 2003, 0-471-46859-2.

PDE’s
Soliton Equations and their Alegbro-Geometric Solutions.  
Gesztesy, F.; Holden, H., Cambridge University Press
2003, 0-521-75307-4.

A Tutorial on Elliptic PDE Solvers and Their Parallelization. 
Douglas, Craig, SIAM 2003, 0-89871-541-5, 135 pp.

Probability
Probability Theory. Jaynes, E. T., Cambridge University 
Press, 2003, 0-521-59271-2, 650 pp.

Real Analysis
A Course in Modern Analysis and its Applications. Cohen, G. 
Cambridge University Press 2003, 0-521-52627-2.

Counterexamples in Analysis. Gelbaum, B.; Olmsted, H.
Dover 2003, 0-486-42875-3.

A Concise Approach to Mathematical Analysis. Robdera,
M.A., Springer 2003, 1-85233-552-1, 374 pp.

Statistics
Data Analysis and Graphics Using R: An Example-Based 
Approach. Maindonald, J.; Braun, J.,  Cambridge University 
Press 2003, 0-521-81336-0.

Statistical Models. Davison, A. C., Cambridge University Press 
2003, 0-521-77339-3, 680 pp.

Radial Basis Functions. Buhmann, M., Cambridge University 
Press 2003, 0-521-63338-9.

Statistical Inference. Rohatgi, V., Dover 2003, 0-486-42812-5, 
948 pp.

Bayesian Statistics 7. Bernardo, J., Oxford University Press
2003, 0-19-852615-6, 768 pp.

Statistical Thought: A Perspective and History.  Chatterjee, S., 
Oxford University Press 2003,  0-19-852531-1.

Proceedings of the Third SIAM International Conference on 
Data Mining. Barbará, Daniel, SIAM 2003, 0-89871-545-8, 
347 pp.

Mathematical Statistics. Shao, Jun, Springer 2 ed., 2003, 
0-387-95382-5.

Statistical Methods for Rates and Proportions. Fleiss, J.
John Wiley 2003, 0-471-52629-0.

Quantitative Methods in Population Health: Extensions of 
Ordinary Regression. Palta, M., John Wiley 2003, 
0-471-45505-9.

A Primer on Statistical Distributions. Balakrishnan, N; 
Nevzorov, V., John Wiley 2003, 0-471-42798-5.

Order Statistics. David, H.; Nagaraja, H., John Wiley 3 ed., 
2003, 0-471-38926-9.

An Introduction to Multivariate Statistical Analysis.
Anderson, T., John Wiley, 3 ed., 2003, 0-471-36091-0.

Probability and Statistics for Computer Science, Johnson, J.,
John Wiley, 2003, 0-471-32672-0.

Statistical Size Distributions in Economics and Actuarial 
Sciences., Kleiber, C.; Kotz, S., John Wiley 2003, 
0-471-15064-9.
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Forthcoming Conferences and Workshops in Linear Algebra

The SVG Meeting: A Celebration

Stanford University
9-10 January, 2004

Alan George, Michael Saunders, and Jim Varah are turning 
60 between July 2003 and January 2004. During the mid- 
and late 1960s, these three young men decided to pursue 
their doctoral studies in scientifi c computing at Stanford 
University. In the approximately π decades that followed 
(up to a modest rounding error), they have become close 
colleagues and are well-established individuals in the fi eld 
of numerical computing. Alan is well known for his work on 
sparse matrix computation, much of which is fundamental 
in the area. Mike is one of the leading experts in large-scale 
numerical optimization. Jim’s work has covered a wide 
spectrum of numerical analysis and scientifi c computing. 

A two-day workshop will take place at Stanford 
University on January 9-10, 2004 to celebrate their birthdays 
and accomplishments. Students, friends, and colleagues 
are welcome to attend. Additional information about the 
workshop is available at http://sccm.stanford.edu/svg/. If 
you have any questions, comments, or suggestions about the 
workshop, please feel free to contact one of the organizers. 
In particular, if you would like to speak about our three 
prospective senior citizens, feel free to volunteer; talks as 
well as personal observations are equally welcome! 

Also, we would like to fi ll a photo page with 
remembrances of the honorees; we welcome the entire 
gamut, from toddler to graduation days to the present. Please 
send hard copies (we’ll be sure to return them!) or JPEGs, 
etc, to Michael Friedlander. 

The organizing committee is Gene Golub, Stanford 
University (golub@sccm.stanford.edu), Michael Friedlander, 
Argonne National Laboratory (michael@mcs.anl.gov), Chen 
Greif, University of British Columbia (greif@cs.ubc.ca), and 
Esmond G. Ng, Lawrence Berkeley National Laboratory 
(egng@lbl.gov).

SIAM Workshop on Combinatorial Scientifi c 
Computing (CSC04)

San Francisco, CA
27-28 February, 2004

Combinatorial algorithms play a key, supporting role in many 
aspects of scientifi c computing. Examples include orderings 
for sparse direct methods, graph coloring and partitioning for 
parallel computing, geometric algorithms in mesh generation 
and string algorithms in computational biology. The enabling 

importance of combinatorial algorithms in scientifi c computing 
is often overlooked, and sub-communities of researchers with 
overlapping interests are often unaware of each other. To 
address this fragmentation and to strengthen the ties between 
the scientifi c computing and discrete algorithms communities, 
SIAM is sponsoring a workshop on Combinatorial Scientifi c 
Computing (CSC04).

CSC04 will be organized following the 11th SIAM 
Conference on Parallel Processing for Scientifi c Computing 
(PP04) on February 27 and 28, 2004. The workshop aims 
to bring together researchers interested in applications of 
combinatorial mathematics and algorithms to scientifi c 
computing.

Plenary speakers include Richard Brualdi (University 
of Wisconsin, Madison), Shang-hua Teng (University of 
Illinois, Champaign-Urbana), and Dan Gusfi eld (University of 
California, Davis). 

Funds have been requested to provide partial travel support 
for graduate students, post-doctoral fellows, and faculty in the 
early stages of their careers. Further details are available at 
www.siam.org/meetings/pp04/cscworkshop.htm

The organizing committee is comprised of John Gilbert 
(University of California, Santa Barbara), Bruce Hendrickson 
(Sandia National Laboratories), Alex Pothen (Old Dominion 
University), Horst Simon (Lawrence Berkeley National 
Laboratory), and Sivan Toledo (Tel-Aviv University).

Directions in Combinatorial Matrix Theory

Banff International Research Station 
Banff, Alberta, Canada

 6-8 May, 2004

A two-day workshop Directions in Combinatorial Matrix 
Theory will be held May 6-8, 2004 at the recently opened Banff 
International Research Station (BIRS). This Oberwolfach-style 
workshop, participation in which is by invitation only, will 
include up to 40 researchers whose interests lie at the interface 
of combinatorics and matrix theory. 

 The workshop will provide researchers working in 
combinatorial matrix theory an opportunity to present 
accounts of their current research, to identify challenges for 
the discipline to undertake, and to suggest new approaches to 
explore. A refereed proceedings of the workshop will appear 
in the Electronic Journal of Linear Algebra. The organizers of 
the workshop hope that Directions in Combinatorial Matrix 
Theory will serve to establish connections between both 
individual researchers and between research areas, and so will 
also promote collaboration and new research in this exciting 
discipline. 

Cont’d on page 16
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The organizing committee for this workshop comprises 
Shaun Fallat (University of Regina), Hadi Kharaghani 
(University of Lethbridge), Steve Kirkland (University of 
Regina), Bryan Shader  (University of Wyoming), Michael 
Tsatsomeros (Washington State University), and Pauline van 
den Driessche (University of Victoria). 

Directions in Combinatorial Matrix Theory, cont’d from page 15

International Algebraic Conference

Moscow, Russia
26 May-2 June, 2004

Moscow State University was founded by M.V. Lomonosov 
on January 25, 1755. The Department of Algebra in the 
Moscow State University was founded in 1929 by Professor 
Otto Yu. Schmidt.  In connection with these events the 
Department of Algebra of Moscow State University is 
organizing an International Algebraic Conference.  The 
conference will be held in the Main Building of Moscow State 
University on Vorobievy Hills, Moscow, Russia from May 26 
till June 2, 2004. The campus of Moscow State University 
is located on the southwest of Moscow in one of the best 
regions of the city. It can be reached from the international 
airport Sheremetyevo-2 by taxi in less than an hour. 

The topics of the conference are: 
rings and modules, homological algebra, K-theory; 
quantum groups and Hopf algebras;
group theory; 
computer algebra; 
invariants and algebraic transformation groups; 
algebraic geometry; 
commutative algebra and algebraic number theory; 
linear algebra; 
general algebraic systems.

If you plan to attend the conference, please send an e-mail 
with the following information

   1. Full name
   2. Title
   3. Affi liation
   4. Mailing address
   5. e-mail address
   6. Title of your talk
   7. Necessity of Russian visa

to artamon@mech.math.msu.su. 

If you plan to give a talk, please also send by e-mail the 
LATEX2e fi le of your abstract (up to 1 page).   

Deadline for submission of an abstract is January 15, 2004. 
Deadline for registration is February 15, 2004.

All information is also available at :
http://mech.math.msu.su/department/algebra/IAC04

The participants of the conference can stay at the Hotel of 
Moscow University. The price at the moment is 10–25 USD per 
night. There are also some hotels close to the university campus. 
We regret that travel and daily expenses cannot be paid by the 
organizing committee. The registration fee is 100 USD.

The organizing committee consists of: co-chairs V. N. 
Latyshev, A. V. Mikhalev, E. B. Vinber, and V. A. Iskovskih; 
vice-chairs M. V. Zaicev and  A. A. Mikhalev; members  Yu. A. 
Bahturin, K. Brown, A. Facchini, E. S. Golod, A. Giambruno, 
V. A. Iskovskih, V. V. Kirichenko, S. Liu, R. McKenzie, A. 
Yu. Olshansky, F. V. Oystaeyen, B. Plotkin, C. Ringel, A. V. 
Yakovlev, V. I. Yanchevski,  and R. Wisbauer. 

The program committee consists of: co-chairs V. A. 
Artamonov and A. L. Shmelkin; members J. Alev, L. Avramov, 
A. Bak, L. B. Beasley, L. A. Bokut, R. A. Brualdi, A. Conte, 
C. DeConcini, V. Dlab, K. Denecke, K. Goodearl, J. Kollar, O. 
Kraft, Yu. I. Manin, V. T. Makrov, A. A. Nechaev, C. Procesi, 
Yu. P. Rasmyslov, A. Roiter, V. N. Remeslennikov, P. Šemrl, G. 
B. Shabat, and I. P. Shestakov.

11th ILAS Conference

Coimbra, Portugal
19-22 July, 2004

The 11th Conference of the International Linear Algebra Society 
will be held at the University of Coimbra, Portugal, July 19–22, 
2004.  The conference is dedicated to Richard Brualdi in honor 
of his 65th birthday and his numerous contributions to Linear 
Algebra, ILAS, and Mathematics. 

The members of the organizing committee are: Danny 
Hershkowitz (ILAS President), Hans Schneider, Thomas 
Laffey, Raphael Loewy, Ion Zaballa, Bryan Shader, Graciano 
de Oliveira, José Dias da Silva, Eduardo Marques de Sá and 
João Filipe Queiró (Chair).

The members of the local organizing committee are A. P. 
Santana, A. L. Duarte, C. Caldeira, J. C. Gallardo, O. Azenhas 
and J. F. Queiró.

The plenary speakers are: Rajendra Bhatia (Indian 
Statistical Institute New Delhi), Hal Caswell (Woods Hole 
Oceanographic Institution), George Cybenko (Dartmouth 
College), Erik Elmroth (Umeå University), Shmuel Friedland 
(University of Illinois, Chicago), Peter Gritzmann (Technical 
University Munich), Robert Guralnick (University of Southern 

Cont’d on page 17



Page 16 October 2003: IMAGE 31 Page 17IMAGE 31: October 2003

11th ILAS Conference, cont’d from page 16

Cont’d on Page 19

California), Uwe Helmke (Würzburg University), 
William Helton (University of California-San Diego), 
Christian Krattenthaler (Université Claude Bernard 
Lyon), Matjaz Omladic (University of Ljubljana), 
Xavier Puerta (Polytechnic University Catalonia), Arun 
Ram (University of Wisconsin-Madison), Joachim 
Rosenthal (Notre Dame University), Siegfried Rump 
(Technical University Hamburg-Harburg), Fernando 
Silva (Lisbon University).

In addition there will be special lectures by 
the Hans Schneider Prize winner Peter Lancaster 
(University of Calgary), the SIAG LA speakers Beatrice 
Meini (University of Pisa) and Julio Moro (Carlos III 
University Madrid), and the Taussky-Todd speaker 
Peter Šemrl (University of Ljubljana).

The following mini-symposia will take place: 
Group representations, organized by Ana Paula Santana 
and Carlos André; Combinatorial Matrix Theory, 
organized by Bryan Shader; Markov methods for search 
engines, organized by Ilse Ipsen and Steve Kirkland; 
and Non-negative matrices, organized by Thomas J. 
Laffey.

The organizing committee will consider additional 
suggestions for mini-symposia, as the scheduling 
constraints allow. 

The deadline for submission of contributed papers 
is April 30, 2004. The pre-registration deadline is May 
31, 2004. Information concerning accommodation, 
abstract submission and registration will be posted at a 
later stage at the site http://www.mat.uc.pt/ilas2004 and  

COMPSTAT 2004
16th Symp. of IASC

Prague, Czech Republic
23-27 August, 2004

Statistical computing provides the link between statistical 
theory and applied statistics. As at previous COMPSTATs, the 
scientifi c program will cover all aspects of this link, from the 
development and implementation of new statistical ideas to 
user experiences and software evaluation. The program should 
appeal to anyone working in statistics and using computers, 
whether in universities, industrial companies, government 
agencies, research institutes or as software developers. A brief 
synopsis of the scientifi c program for COMPSTAT 2004 is as 
follows.

The Keynote Lectures are: S. Van Huffel (Katholieke 
Universiteit Leuven) Bridging the gap between statistics, 
computational mathematics and engineering; A. Barron (Yale 
University) Function fi tting with many variables: Neural 
networks and beyond; Chun-houh Chen (Academia Sinica 
Taipei) Dimension free data visualization and information 
mining; W. Grossmann (Universitat Wien), M. Schimek 
(Universitat Graz) and P. Sint (Austrian Academy of Sciences) 
Thirty years of COMPSTAT and key steps of statistical 
computing.

The Thirteenth International Workshop on 
Matrices and Statistics

Będlewo, Poland
18-21 August, 2004

The 13th International Workshop on Matrices and Statistics will 
be held at the Mathematical Research and Conference Center 
of the Polish Academy of Sciences in Będlewo (near Poznán) 
Poland, 18-21 August 2004.  The workshop is in celebration of 
Ingram Olkin’s 80th Birthday.

The purpose of this workshop is to stimulate research and, 
in an informal setting, to foster the interaction of researchers 
in the interface between statistics and matrix theory. This 
workshop will include the presentation of both invited and 
contributed papers on matrices and statistics. Also a special 
session for graduate students will be arranged. It is expected 
that many of these papers will be published, after refereeing, 
in a special issue of Linear Algebra and its Applications
associated with this workshop.

For further information contact Augustyn Markiewicz by 
e-mail amark@owl.au.poznan.pl or please visit the web site 
http://matrix04.amu.edu.pl.

Clock Tower at University of Coimbra
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COMPSTAT 2004, cont’d from page 17

Invited minisymposia topics are: Advances in 
multiple time series modeling: present impact and future 
potential; Applications of computational statistics methods; 
Computational aspects in risk calculation and risk 
assessment; Computational aspects of optimum model based 
design of experiments; Computational aspects of robust 
statistical methods; Computational search in classifi cation 
and clustering; Data visualization; E-statistics; Functional 
data: modeling and applications; High-dimensional data 
analysis;  Machine learning and neural networks; Modern 
trends of teaching statistics for the information society; 
New approaches to model based cluster methods; PLS tools 
for  regressions and structural modeling;  and Statistical 
biocomputing. 

There will be two tutorials: G. Golub (Stanford 
University) Numerical methods for statisticians; and K. 
Hornik (Vienna University of Technology) (R): The next 
generation.

Participants are encouraged to present contributed 
talks, or to submit posters on following topics: Algorithms, 
Graphics, Partial least squares, Applications image analysis, 
Resampling methods, Bayesian methods, Internet-based 
methods, Robustness, Biostatistics, Machine learning, 
Simulations, Classifi cation, Metadata smoothing, Clustering, 
MCMC, Spatial statistics, Data imputation, Model selection,               
Statistical data mining, Data mining, Multivariate analysis, 
Statistical software, Data visualization, Neural networks, 
Teaching statistics, Design of experiments, Nonparametrical 
statistics, Time series analysis, Dimensional reduction, 
Numerical methods for statistics, Tree-based methods, E-
statistics, Offi cial statistics, Web mining, Functional data 
analysis, Optimization.

February 2, 2004 is the deadline for electronic 
submission of contributed and invited papers. For more 
information see http://compstat2004.cuni.cz or write to 
compstat2004@cuni.cz.

Gini–Lorenz Conference

Sienna, Italy
23-26 May, 2005

The University of Siena, Italy, will host the International 
C. Gini and M. O. Lorenz Centenary Scientifi c Research 
Conference from May 23 to May 26, 2005. The Organizing 
Committee invites specialists to present papers in the 
fi elds of Income and Wealth Distributions, Lorenz Curve, 
Human Capital, Inequality and Poverty.  A proposal should 
include: title of the paper, abstract, names of the participants, 
institutional affi liation, address, e-mail, phone and fax 
number, and should be submitted to: 

C.R.I.D.I.R.E.
Department of  Quantitative Methods
Piazza San Francesco 8 - 53100 
SIENA,  ITALY

or electronically to: ginilorenz05@unisi.it.
The language of the Meeting will be English, and the 

abstract should also be submitted in English. It is planned to 
publish a book with the papers selected after refereeing. 

The scientifi c committee is:  S. Kotz (Chairman), B. Arnold, 
L. Biggeri, F. Cowell, C. Dagum, G. M. Giorgi, C. Kleiber, A. 
Lemmi, E. Maasoumi, P. Moyes, J. Silber, D. J. Slottje.

The organizing committee is comprised of A. Lemmi 
(Chairman), G. Betti, L. D’Alessandro, F. Farina, L. Fattorini, 
L. Greco, M. Marcheselli, S. Naddeo, L. Neri, C. Pisani, S. 
Vannucci, A. Vercelli. 

The scientifi c secretariat is: C. Carmignani, A. Giannini, 
V. Mazza.

Call for Submissions to IMAGE

As always, IMAGE welcomes announcements of upcoming 
meetings, reports on past conferences, historical essays on 
linear algebra, book reviews, essays on the development of 
Linear Algebra in a certain country or region,  and  letters to 
the editor or signed columns of opinion.   IMAGE would like 
to slightly expand its scope by including general audience 
articles that highlight emerging applications and topics in 
Linear Algebra.  Contributions for IMAGE should be sent to 
Bryan Shader (bshader@uwyo.edu) or Hans Joachim Werner 
(werner@united.econ.uni-bonn.de). The deadlines are October 
1 for the fall issue, and April 1 for the spring issue. 

Electronic Journal of Linear Algebra

The Electronic Journal of Linear Algebra (ELA), a publication 
of the International Linear Algebra Society (ILAS), is a refereed 
all-electronic journal that welcomes mathematical articles of 
high standards that contribute new information and new insights 
to matrix analysis and the various aspects of linear algebra and 
its applications. Refereeing of articles is conventional and of 
high standards, and is being carried out electronically. The 
Editors-in-Chief are Ludwig Elsner and Daniel Hershkowitz.  
The web page is  http://www.math.technion.ac.il/iic/ela.
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Recent Papers Published in ELA
Volume 10 (2003)

1. Stephen J. Kirkland, Conditioning properties of the 
stationary distribution for a Markov chain, pp. 1-15. 

2. Ravindra B. Bapat and Bing Zheng, Generalized 
inverses of bordered matrices, pp. 16-30. 

3. Tedja Santanoe Oepomo, A contribution to Collatz’s 
eigenvalue inclusion theorem for nonnegative irreducible 
matrices, pp. 31-45. 

4. Ji Young Choi, Luz Maria DeAlba, Leslie Hogben, 
Benard M. Kivunge, Sandra K. Nordstrom and Mike 
Shedenhelm, The nonnegative P0-matrix completion 
problem, pp. 46-59. 

5. Hari Bercovici, Spectral versus classical Nevanlinna-
Pick interpolation in dimension two, pp. 60-64. 

6. Zewen Zhu, Daniel C. Coster and Leroy B. Beasley, 
Properties of a covariance matrix with an application to 
D-optimal design, pp. 65-76. 

7. Geir Dahl, A note on linear discrepancy, pp. 77-80. 

8. Daniel Hershkowitz and Hans Schneider, One-sided 
simultaneous inequalities and sandwich theorems 
for diagonal similarity and diagonal equivalence of 
nonnegative matrices, pp. 81-101. 

9. Walter D. Morris, Recognition of hidden positive row 
diagonally dominant matrices, pp. 102-105. 

10. D. Steven Mackey, Niloufer Mackey and Francoise 
Tisseur, Structured tools for structured matrices, pp. 106-
145. 

11. Masaya Matsuura, A generalization of Moore-Penrose 
biorthogonal systems, pp. 146-154. 

12. C.M. da Fonseca, The path polynomial of a complete 
graph, pp. 155-162. 

13. Michael Neumann and Nic Ormes, Bounds for graph 
expansions via elasticity, pp. 163-178. 

14. Jan Snellman, The maximal spectral radius of a 
digraph with (m+1)2-s edges, pp. 179-189. 

15. Charles R. Johnson, Yonatan Harel, Christopher J. Hillar, 
Jonathan M. Groves and Patrick X. Rault, Absolutely flat 
idempotents, pp. 190-200. 

16. Jean-Daniel Rolle, Optimal subspaces and constrained 
principal component analysis, pp. 201-211. 

17.  Felix Goldberg and Gregory Shapiro, The Merris index of 
a graph, pp. 212-222. 

18. Michael Marks, Rick Norwood and George Poole, The 
maximum number of 2 by 2 odd submatrices in (0,1)-matrices, 
pp. 223-231. 

19.  Randall J. Elzinga, Strongly regular graphs: Values of λ 
and µ for which there are only finitely many feasible (v, k, λ,, 
µ), pp. 232-239. 

20. Gilbert J. Groenewald and Mark A. Petersen, J-spectral 
factorization for rational matrix functions with alternative 
realization, pp. 240-256. 

21. Luz Maria DeAlba, Timothy L. Hardy, Leslie Hogben 
and Amy Wangsness, The (weakly) sign symmetric P-matrix 
completion problems, pp. 257-271. 

22.  K.A.M. Sayyed, M.S. Metwally and Raed S. Batahan,  On 
generalized Hermite matrix polynomials, pp. 272-279. 

23.  S.W. Drury, J.K. Merikoski, V. Laakso and T. Tossavainen, 
On nonnegative matrices with given row and column sums, pp. 
280-290. 
 
24.  Robert M. Guralnick, Chi-Kwong Li and Leiba X. 
Rodman, Multiplicative maps on invertible matrices that 
preserve matricial properties, pp. 291-319. 
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IMAGE Problem Corner: Old Problems, Most With Solutions

We present solutions toIMAGE Problems 29-3, 29-4, 29-11 [IMAGE 29 (October 2002), pp. 36 & 35], 30-1, 30-2, and 30-4 through 30-7 [IMAGE 30
(April 2003), pp. 36 & 35]. Problems 28-3 and 30-3 are repeated below without solutions; we are still hoping to receive solutions to these problems.
We introduce 8 new problems on pp. 44 & 43 and invite readers to submit solutions to these problems as well as new problems for publication in
IMAGE. Please submit all material both(a) in macro-free LATEX by e-mail, preferably embedded as text, to werner@united.econ.uni-bonn.de and
(b) two paper copies (nicely printed please) by classical p-mail to Hans Joachim Werner,IMAGE Editor-in-Chief, Department of Statistics, Faculty
of Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Please make sure that your name as well as your e-mail and
classical p-mail addresses (in full) are included in both (a) and (b)!

Problem 28-3: Ranks of Nonzero Linear Combinations of Certain Matrices.
Proposed by Shmuel FRIEDLAND, University of Illinois at Chicago, Chicago, Illinois, USA:friedlan@uic.edu
and Raphael LOEWY, Technion–Israel Institute of Technology, Haifa, Israel:loewy@technunix.technion.ac.il

Let

B1 =


1 0 0 1

0 0 1 1

0 1 1 0

1 1 0 −1

 , B2 =


0 1 0 0

1 0 1 0

0 1 1 −1

0 0 −1 −1

 , B3 =


0 1 1 0

1 1 0 0

1 0 1 −1

0 0 −1 0

 , B4 =


0 0 0 1

0 1 1 0

0 1 0 −1

1 0 −1 0

 .

Show that any nonzero real linear combination of these four matrices has rank at least 3.

The Proposers of Problem 28-3 and the Editors ofIMAGE are still looking forward to receiving a solution to this problem;
the Proposers prefer a solution which does not depend on the use of a computer package such asMAPLE.

Problem 29-3: Isometric Realization of a Finite Metric Space
Proposed by S. W. DRURY, McGill University, Montŕeal (Qúebec), Canada:drury@math.mcgill.ca

Show that every finite metric space can be realized isometrically as a subset of a normed vector space.

Solution 29-3.1by Alexander KOVAČEC, Universidade de Coimbra, Coimbra, Portugal:kovacec@mat.uc.pt

Blumenthal & Menger (1970, p. 240, Exercise 6) claim that ann-point metric spaceM = ({1, 2, . . . , n}, d) can be iso-
metrically embedded into the normed space(Rn−1, | · |∞). Indeed, letdij = d(i, j), for i, j = 1, . . . , n. Define points
pk = (dk2, dk3, . . . , dkn) ∈ Rn−1, for k = 1, . . . , n. By definition of|·|∞, we have|pk−pj |∞ = max{|dk2−dj2|, . . . , |dkn−djn|}.
Now, the traditional triangle inequalities in the metric spaceM are actually equivalent to|dki − dji| ≤ djk for every set{i, j, k} of
not necessarily distinct points ofM. If k 6= j, thenk or j is in M \ {1} = {2, . . . , n}. Hence|pk − pj |∞ = dkj . Clearly this is also
true if k = j. With this exercise solved, so is Problem 29-3.

NOTES. It would be interesting to know from colleagues having Blumenthal (1953) available whether this exercise is there - even
solved? Kelly (1975) is a more modern source having material and many references on isometric embeddability of metric spaces.

References
L. M. Blumenthal & K. Menger (1970).Studies in Geometry.W. H. Freeman, San Francisco.

L. M. Blumenthal (1953).Theory and Applications of Distance Geometry.Clarendon Press, Oxford.

L. M. Kelly, (Ed.) (1975).The Geometry of Metric and Linear Spaces.Lecture Notes in Mathematics 490, Springer-Verlag, Berlin.

A Solution to Problem 29-3 was also received from the Proposer S. W. Drury.
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Problem 29-4: Normal Matrix and a Commutator
Proposed by S. W. DRURY and George P. H. STYAN , McGill University, Montŕeal (Qúebec), Canada:

drury@math.mcgill.ca styan@math.mcgill.ca

Show that everyn× n complex matrixA can be written in the formA = N + [H,N ], whereN is normal andH is Hermitian, and
[H,N ] denotes the commutatorHN −NH.

Solution 29-4.1by the Proposers S. W. DRURY and George P. H. STYAN , McGill University, Montŕeal (Qúebec), Canada:
drury@math.mcgill.ca styan@math.mcgill.ca

We consider the supremum of the functionB 7→ βn(B) =
∑n

j=1 |bjj |2 on the (compact) orbit ofA under unitary similarity. Let
us suppose that this continuous function attains its maximum value atB. We argue by making variations ofB of the formU?BU ,

whereU =
(

V 0

0 I

)
andV is a2× 2 unitary block. It is easy to see thatB11 must be a maximum point on the unitary similarity

orbit {V ?B11V ;V ∈ U(2)} for the functionβ2.
We start by considering the case whereV is a variation of the2× 2 identity matrix

V =
(

1 p

−p 1

)
+ O(|p|2),

wherep is a small complex number. This leads to

V ?B11V =
(

1 −p

p 1

) (
b11 b12

b21 b22

) (
1 p

−p 1

)
+ O(|p|2)

=
(

b11 − pb12 − pb21 b12 + p(b11 − b22)

b21 + p(b11 − b22) b22 + pb12 + pb21

)
+ O(|p|2).

In turn, this gives
β2(V ?B11V ) = |b11|2 + |b22|2 + 2<p((b22 − b11)b21 + (b22 − b11)b12) + O(|p|2).

Sinceβ2(V ?B11V ) takes its maximum value whenp = 0, it follows that

(b22 − b11)b21 + (b22 − b11)b12 = 0. (1)

In the caseb11 = b22, a more detailed analysis (which we omit) usingV =
(

cos θ ω sin θ

−ω sin θ cos θ

)
, whereθ is real andω is a

complex number of absolute value1, reveals thatB11 cannot be local maximum point unless the off-diagonal elementsb12 andb21

both vanish.
The pair{1, 2} can be replaced by an arbitrary pair{j, k}. We therefore define

hjk =


0 if bjj = bkk,

bjk

bkk − bjj
otherwise. (2)

It follows from the generalized form of (1) thathkj = hjk and from (2) thathjj = 0. We can therefore writebj,k = bjjδjk +
hjk(bkk − bjj), effectivelyB = D + [H,D], whereD is diagonal andH is Hermitian. Applying a unitary similarity now allows us
to writeA in the desired form.

Solution 29-4.2by Lajos LÁSZLÓ, Eötvös Loŕand University, Budapest, Hungary:laszlo@numanal.inf.elte.hu

The statement is nothing else than the first order necessary condition forN to be the best normal approximation toA in the Frobenius
norm, as can e. g. be found in Ruhe (1987).

Reference
A. Ruhe (1987). Closest normal matrix finally found!BIT, 27, 585–598.
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Problem 29-11: The Minimal Rank of a Block Matrix with Generalized Inverses
Proposed by Yongge TIAN , Queen’s University, Kingston, Ontario, Canada:ytian@mast.queensu.ca

Let (·)− denote generalized inverse. Show that

min
A−, B−, C−

rank
(

A− C−

B− 0

)
= max {rank(A), rank(B) + rank(C)}.

Solution 29-11.1by the Proposer Yongge TIAN , Queen’s University, Kingston, Ontario, Canada:ytian@mast.queensu.ca

A matrix X is a generalized inverse ofM if MXM = M , and is henceforth denoted byM−. The general expression forM− can
be written asM− = M† + FMU + V EM , whereM† is the Moore-Penrose inverse ofM , FM = I −M†M , EM = I −MM†,
andU andV are two arbitrary matrices of appropriate size. BecauseMM−M = M , it follows thatrank(M−) > rank(M). Note

that for any bordered matrix

(
A B

C 0

)
, whereA, B andC arem× n, m× k andl × n matrices, respectively,rank

(
A B

C 0

)
>

max {rank(A), rank(B) + rank(C)}. Hence

min
A−,B−,C−

rank
(

A− C−

B− 0

)
> max {rank(A−), rank(B−) + rank(C−)} > max {rank(A), rank(B) + rank(C)}. (3)

We next show that the lower bound on the right-hand side of (3) is attainable. LetB− = B† + V EB andC− = C† + FCU , where

U andV are arbitrary, and substitute them into

(
A− C−

B− 0

)
to get

(
A− C−

B− 0

)
=

(
A− C† + FCU

B† + V EB 0

)
=

(
A− C†

B† 0

)
+

(
0

Ik

)
V (EB 0 ) +

(
FC

0

)
U ( 0 Il ) . (4)

It is shown in Tian (2002b) that

min
X1, X2

rank(A−B1X1C1 −B2X2C2 ) = rank

 A

C1

C2

 + rank (A B1 B2 )

+ max

rank
(

A B1

C2 0

)
− rank

(
A B1 B2

C2 0 0

)
− rank

 A B1

C1 0

C2 0

 ,

rank
(

A B2

C1 0

)
− rank

(
A B1 B2

C1 0 0

)
− rank

 A B2

C1 0

C2 0


.

Applying this result to (4) with any fixedA− and simplifying gives

min
B−, C−

rank
(

A− C−

B− 0

)
6 min

U, V
rank

((
A− C†

B† 0

)
+

(
0

Ik

)
V (EB 0 ) +

(
FC

0

)
U ( 0 Il )

)
= rank(B) + rank(C) + max {0, rank(A−)− rank(A−B)− rank(CA−)}.

Therefore

min
A−, B−, C−

rank
(

A− C−

B− 0

)
6 rank(B) + rank(C) + max {0, min

A−
[rank(A−)− rank(A−B)− rank(CA−)]}. (5)

Notice thatA−AA− is also a generalized inverse ofA. ReplaceA− in rank(A−)− rank(A−B)− rank(CA−) in (5) byA−AA−.
Sincerank(A−AA−) = rank(A), rank(A−AA−B) = rank(AA−B), andrank(CA−AA−) = rank(CA−A), it follows that

min
A−

[rank(A−)− rank(A−B)− rank(CA−)] 6 rank(A)−max
A−

[rank(AA−B) + rank(CA−A)]. (6)
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Note that
AA−B = AA†B + AV EAB, CA−A = CA†A + CFAUA,

whereU andV are arbitrary. Applying

max
X

rank (A + BXC ) = min
{

rank (A B ) , rank
(

A

C

)}
[see Tian (2002a)] toAA−B andCA−A and simplifying gives

max
A−

rank(AA−B) = max
V

rank(AA†B + AV EAB) = min {rank(A), rank(B)}, (7)

max
A−

rank (CA−A) = max
U

rank(CA†A + CFAUA) = min {rank(A), rank(C)}. (8)

Combining (6) with (7) and (8) gives

min
A−

[rank(A−)−rank(A−B)−rank(CA−)] 6 max {−rank(A), −rank(B), −rank(C), rank(A)−rank(B)−rank(C)}. (9)

Substituting (9) into (5) and simplifying gives

min
A−, B−, C−

rank
(

A− C−

B− 0

)
6 max{rank(A), rank(B) + rank(C)},

and so, in view of (3), the claimed result.

References
Y. Tian (2002a). The maximal and minimal ranks of some expressions of generalized inverses of matrices.Southeast Asian Bulletin of Mathematics,

25, 745–755.

Y. Tian (2002b). The minimal rank completion of a3× 3 partial block matrix.Linear and Multilinear Algebra, 50, 125–131.

Solution 29-11.2by Hans Joachim WERNER, Universiẗat Bonn, Bonn, Germany:werner@united.econ.uni-bonn.de

THEOREM 1. Let

H :=
(

A B

C 0

)
be a given block partitioned real matrix. Define

G(A−, B−, C−) :=
(

A− C−

B− 0

)
and g(A−, B−, C−) := rank(G(A−, B−, C−)).

Then
min

A−,B−,C−
g(A−, B−, C−) = max{rank(A), rank(B) + rank(C)}.

Our proof of this result will be based on the geometry of generalized inversion. For the sake of clarity as well as for easier
reference, we therefore begin with introducing some notation and stating some auxiliary results.

Let Rn andRm×n denote the set ofn-dimensional real column vectors and the set ofm × n real matrices, respectively. Given
A ∈ Rm×n, let A′, R(A), N (A), and rank(A) denote the transpose, the range (column space), the null space, and the rank,
respectively, ofA.

LetM andN be linear subspaces inRn. ThenM⊥ will stand for the orthogonal complement ofM in Rn (with respect to the
usual inner product), and ifM∩N = {0}, thenM⊕N will denote the direct sum ofM andN . Next, ifN is a direct complement
of M (i.e.,Rn = M⊕N ), thenPM,N will denote the well-defined (generally oblique) projector ontoM alongN . We note that
PM,N may be defined byPM,Nu = u if u ∈ M andPM,Nu = 0 if u ∈ N ; see, e.g., Rao and Mitra (1971, pp. 106–113). We
recall that any projectorPM,N is an idempotent matrix, i.e.(PM,N )2 = PM,N , and that conversely every idempotent matrixP is
a projector, namelyP = PR(P ),N (P ). It is also pertinent to mention that(PM,N )′ = PN⊥,M⊥ . If N = M⊥, then we briefly write
PM for the orthogonal projector ontoM, i.e. PM := PM,M⊥ . The dimension ofM will be denoted bydim(M).
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For a givenA ∈ Rn×m and for given linear subspacesM andN of Rm, it is convenient to denote byM+N , AM,Nc(A), and
Rc(A), respectively, the Minkowski sum ofM andN , the image ofM underA, the set of all direct complements ofN (A), and the
set of all direct complements ofR(A). We note that(M +N )⊥ = M⊥ ∩ N⊥, (M∩N )⊥ = M⊥ +N⊥, and thatN⊥ ⊆ M⊥

wheneverM⊆ N . We further recall thatR(A)⊥ = N (A′) andN (A)⊥ = R(A′).
For givenA ∈ Rn×m,M∈ Nc(A) andS ∈ Rc(A), consider the matrix equations

(G1) AXA = A, (G2) XAX = X, (GM) XA = PM,N (A), (GS) AX = PR(A),S .

Suppose that∅ 6= η ⊆ {1, 2,M,S}. ThenAη will denote the set of all those matricesX which satisfy equations(Gi) for all
i ∈ η. A matrix X ∈ Aη is called anη-inverseof A and is denoted byAη. {1}-inverses are usually calledgeneralized inverses
or g-inversesand are also denoted byA−. For an extensive discussion of the theory of g-inverses, we refer, e.g., to the books by
Ben-Israel and Greville (1974, 1980, 2003), Hartung and Werner (1984), Pringle and Rayner (1971), Rao and Mitra (1971); for a
geometric approach, to Werner (1977, Chapter 1) and Rao and Yanai (1985); and for a projector theoretical one e.g. to the paper
by Langenhop (1967). Only for the sake of clarity and for easier reference, a few basic results are summarized in Theorem 2 (cf.
Werner (1986), see also Werner and Yapar (1996)).

THEOREM 2. For A ∈ Rn×m,M∈ Nc(A) andS ∈ Nc(A) we have the following results.
(a) The{2,M,S}-inverse ofA exists uniquely. The{2,R(A′),N (A′)}-inverse ofA coincides with the Moore-Penrose inverse

of A and is usually denoted byA†.
(b) Any{M}-inverse ofA and likewise any{S}-inverse ofA is always a{1}-inverse ofA. Conversely, for each{1}-inverseX

of A there uniquely exist anM ∈ Nc(A) and anS ∈ Rc(A) such thatX ∈ A{M,S}. Moreover, ifX ∈ A{M,S}, then
XAX = A{2,M,S}.

(c) If X ∈ A{M,S}, thenM = R(XA) ⊆ R(X), andN (X) ⊆ S = N (AX). In particular, XS ⊆ N (A). Moreover,
X = A{2,M,S} if and only ifR(X) = M andN (X) = S. Hencerank(A−) ≥ rank(A), andX ∈ A{1, 2} if and only if
X ∈ A{1} andrank(X) = rank(A).

(d) If X ∈ A{M,S}, thenX ′ ∈ A′{S⊥,M⊥}, whereS⊥ ∈ Nc(A′) andM⊥ ∈ Rc(A′).
(e) If A is nonsingular, then the only{1}-inverse ofA is its regular inverse, i.e.,A{1} = {A−1}.

For given matricesA ∈ Rm×n andB ∈ Rm×k, it is well-known thatrank(A, B) = rank(A)+rank(B)−dim [R(A) ∩R(B)].
Applying this result twice and observing that the rank of a matrix coincides with the rank of its transpose, we readily obtain the
following result.

LEMMA 3. For the rank of the partitioned matrixH of Theorem 1 we have

rank(H) = rank(A) + rank(B) + rank(C)− dim [R(C ′) ∩R(A′)]− dim [(AN (C)) ∩R(B)] .

COROLLARY 4. For the partitioned matrixH of Theorem 1 we have the following results:
(a) rank(H) ≥ max{rank(A), rank(B) + rank(C)},
(b) rank(H) = rank(A) if and only ifR(B) ⊆ AN (C) andR(C ′) ⊆ R(A′),
(c) rank(H) = rank(B) + rank(C) if and only ifrank(A) = dim [R(C ′) ∩R(A′)] + dim [R(B) ∩ (AN (C))] or, equivalently,

if and only ifAN (C) ⊆ R(B),
(d) rank(H) = rank(B) if and only ifC = 0 andR(A) ⊆ R(B),
(e) rank(H) = rank(C) if and only ifB = 0 andR(A′) ⊆ R(C ′),
(f) rank(H) = rank(A) + rank(B) + rank(C) if and only ifR(A′) ∩R(C ′) = {0} andR(A) ∩R(B) = {0}.

PROOF. The claimed results follow easily from Lemma 3. We only prove (c). The rest is left to the reader. According to
Lemma 3,rank(H) = rank(B) + rank(C) if and only if rank(A) = dim[R(C ′) ∩ R(A′)] + dim [(AN (C)) ∩R(B)]. So it
suffices to show that this is equivalent toAN (C) ⊆ R(B). Clearly,dim [AN (C)] = dim

[
R(APN (C))

]
= rank(APN (C)) =

rank
(
(APN (C))′

)
= rank(PN (C)A

′) = rank(A′) − dim [R(A′) ∩R(C ′)] = rank(A) − dim [R(A′) ∩R(C ′)] or, equivalently,
rank(A) = dim [AN (C)]+dim [R(A′) ∩R(C ′)]. Therefore,rank(A) = dim [R(C ′) ∩R(A′)]+dim [(AN (C)) ∩R(B)] if and
only if AN (C) ⊆ R(B). 2

Applying Corollary 4(a) to the block partitioned matrixG(A−, B−, C−) of Theorem 1 and recalling Theorem 2(c) yields

g(A−, B−, C−) ≥ max {rank(A−), rank(B−) + rank(C−)} ≥ max {rank(A), rank(B) + rank(C)}. (10)
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In order to verify Theorem 1, we only have to show that the lower bound on the right-hand side of (10) is actually attainable for some
suitably chosen generalized inverses. Below we therefore wish to construct such a triplet of g-inverses that minimizes our objective
functiong(A−, B−, C−). For that purpose, the following three results prove useful.

LEMMA 5. Let A andB be matrices with the same number of rows, saym. Thenrank(A) ≤ rank(B) if and only if there exist
SA ∈ Rc(A) andSB ∈ Rc(B) such thatSB ⊆ SA.

PROOF. Let the block partitioned matrix[RA,B , RrA, RrB , SA,B ], whose set of columns constitute a basis forRm, be such that
R(RA,B) = R(A)∩R(B),R(RA,B , RrA) = R(A) andR(RA,B , RrB) = R(B). ThenSA,B := R(SA,B) is a direct complement
of R(A) +R(B). Sincerank(A) ≤ rank(B), it is possible to partitionRrB = (R1rB , R2rB) such thatR1rB andRrA have the
same number of column vectors. DefineSB := SA,B ⊕R(RrA + R1rB) andSA := SA,B ⊕ [R(RrA + R1rB)⊕R(R2rB)]. Since
S(B) ∈ Rc(B), SA ∈ Rc(A) andSB ⊆ SA, the proof of necessity is complete. The converse implication is trivial. 2

On similar lines we obtain the following.

LEMMA 6. Let A and C be matrices with the same number of columns. Thenrank(A) ≤ rank(C) if and only if there exist
MA ∈ Nc(A) andMC ∈ Nc(C) such thatMA ⊆MC .

LEMMA 7. LetA andB be matrices with the same number of rows and letrank(A) > rank(B). Then there existSA ∈ Rc(A) and
SB ∈ Rc(B) such thatSA ⊆ SB , in which case

P := PSB∩R(A),SA⊕R(B) (11)

is a well-defined (generally oblique) projector for which we have

A{SA}P ∈ (PA){1, 2}

as well asrank(A{SA}P ) = rank(PA) = rank(A)− rank(B), irrespective of the choice ofA{SA} ∈ A{SA}.

PROOF. Sincerank(A) > rank(B), the existence ofSA ∈ Rc(A) andSB ∈ Rc(B) with SA ⊆ SB is guaranteed by Lemma 5.
Then, in view ofSA ∈ Rc(A) andSB ∈ Rc(B), clearlySB = SA ⊕ [R(A) ∩ SB ], so thatP is indeed a well-defined projector.
SinceSA ⊆ N (P ), we getPAA{SA} = P , soPAA{SA}PPA = P 3A = PA andA{SA}PPAA{SA}P = A{SA}P 3 = A{SA}P ,
thus showing thatA{SA}P is as claimed a{1, 2}-inverse ofPA. Therefore, in view of Theorem 2(c),rank(A{SA}P ) = rank(PA).
Since by constructionrank(PA) = rank(P ) = rank(A)− rank(B), our proof is complete. 2

We are now in the position to prove Theorem 1 just by making use of all our auxiliary observations.

PROOF OFTHEOREM 1. We consider the following three exhaustive cases: (i)rank(B) ≥ rank(A), (ii) rank(C) ≥ rank(A), and
(iii) rank(A) > max {rank(B), rank(C)}.

Case (i):Let rank(B) ≥ rank(A), in which caserank(B)+rank(C) = max {rank(A), rank(B)+rank(C)}. Then, according
to Theorem 2(c), clearlyrank(B) = rank(B{1,2}) ≥ rank(A{1,2}) = rank(A). Lemma 5 allows us to chooseSA ∈ Rc(A) and
SB ∈ Rc(B) such thatSB ⊆ SA, in which case, in the light of Theorem 2,

A{2,SA}N (B{2,SB}) = A{2,SA}SB = {0} ⊆ R(C{1,2}),

whence, by means of Corollary 4(c) and Theorem 2(c), we get

g(A{2,SA}, B{2,SB}, C{1,2}) = rank(B{2,SB}) + rank(C{1,2}) = rank(B) + rank(C)

irrespective of the choices ofA{2,SA} ∈ A{2,SA}, B{2,SB} ∈ B{2,SB} andC{1,2} ∈ C{1, 2}.
Case (ii): Let rank(C) ≥ rank(A), in which caserank(C) + rank(B) ≥ max {rank(A), rank(B) + rank(C)}. Since

g(A{1,2}, B{1,2}, C{1,2}) = g((A{1,2})′, (C{1,2})′, (B{1,2})′), it follows from Case (i) that there exist some{1, 2}-inverses
A{1,2}, B{1,2} andC{1,2} such that

g(A{1,2}, B{1,2}, C{1,2}) = rank(C) + rank(B).

Case (iii):Let rank(A) > max {rank(B), rank(C)}. According to Lemma 5, chooseSA ∈ Rc(A) andSB ∈ Rc(B) such
thatSA ⊆ SB or, equivalently,S⊥B ⊆ S⊥A . ThenSB = SA ⊕ [SB ∩R(A)] andS⊥A ∩ S⊥B = S⊥B . Applying Lemma 3 to the block
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partitioned matrixG(A{2,SA}, B{2,SB}, C{1,2}) and making repeatedly use of Theorem 2 results in

g(A{2,SA}, B{2,SB}, C{1,2}) = rank(A{2,SA}) + rank(B{2,SB}) + rank(C{1,2})− dim[R((B{2,SB})′) ∩R((A{2,SA})′)]
−dim[R(C{1,2}) ∩ (A{2,SA}N (B{2,SB}))]

= rank(A) + rank(B) + rank(C)− dim[S⊥B ∩ S⊥A ]− dim[R(C{1,2}) ∩ (A{2,SA}SB)]
= rank(A) + rank(B) + rank(C)− dim S⊥B − dim[R(C{1,2}) ∩ (A{2,SA}SB)]
= rank(A) + rank(C)− dim[MC ∩ (A{2,SA}SB)], (12)

whereMC := R(C{1,2}). SinceA{2,SA}SB = A{2,SA}[SB ∩ R(A)] = R(A{2,SA}P ), whereP is defined as in (11), we know
from Lemma 7 thatdim(A{2,SA}SB) = rank(PA) = rank(A) − rank(B). For convenience, put̃A := PA. SinceN (A) ⊆
N (PA) = N (Ã), it is possible to choose for any givenMÃ ∈ Nc(Ã) anMA ∈ Nc(A) with MÃ ⊆ MA, in which case, as a
consequence of Lemma 7 and Theorem 2,R(A{2,MA,SA}P ) = MÃ ⊆MA. Then

A{2,MA,SA}SB = MÃ and dim(MÃ) = rank(A)− rank(B). (13)

We now proceed with considering two complementary subcases, namely (iii1) rank(Ã) ≤ rank(C) and (iii2) rank(C) < rank(Ã).
(iii 1): Let rank(Ã) ≤ rank(C). Thenrank(A) ≤ rank(B)+rank(C) or, equivalently,max {rank(A), rank(B)+rank(C)} =

rank(B)+rank(C). According to Lemma 6, chooseMÃ ∈ Nc(Ã) andMC ∈ Nc(C) such thatMÃ ⊆MC . ThenMC ∩MÃ =
MÃ, and so it follows from (12) and (13) that

g(A{2,MA,SA}, B{2,SB}, C{2,MC}) = rank(B) + rank(C)

holds for eachMA ∈ Nc(A) for whichMÃ ⊆MA.

(iii 2): Let rank(C) < rank(Ã). Thenrank(B)+rank(C) < rank(A), and somax {rank(A), rank(B)+rank(C)} = rank(A).
According to Lemma 6, chooseMC ∈ Nc(C) andMÃ ∈ Nc(Ã) such thatMC ⊆MÃ. ThenMC ∩MÃ = MC . Consequently,
dim(MC ∩MÃ) = rank(C), and so it follows from (12) and (13) that

g(A{2,MA,SA}, B{2,SB}, C{2,MC}) = rank(A) + rank(C)− rank(C) = rank(A)

holds for eachMA ∈ Nc(A) for whichMÃ ⊆MA. This completes the proof of Theorem 1. 2

We conclude with mentioning that our solution can obviously be extended to the case of complex matrices just by replacing
transposition by conjugate transposition.
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Problem 30-1: Star Partial Ordering, Left-star Partial Ordering, and Commutativity
Proposed by Jerzy K. BAKSALARY , Zielona Ǵora University, Zielona Ǵora, Poland:J.Baksalary@im.uz.zgora.pl

Oskar Maria BAKSALARY , Adam Mickiewicz University, Poznań, Poland:baxx@amu.edu.pl
and Xiaoji LIU, Xidian University, Xi’an, China:xiaojiliu72@yahoo.com.cn

For anyA,B ∈ Cm,n, the star partial orderingA
∗
≤ B, defined byA∗A = A∗B andAA∗ = BA∗, clearly implies the left-star

partial orderingA ∗≤ B, defined byA∗A = A∗B andR(A) ⊆ R(B), whereR(·) denotes the range of a given matrix. Show that
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if m = n andA or B is an EP matrix, i.e.,R(A) = R(A∗) orR(B) = R(B∗), then the implicationA ∗≤ B ⇒ AB = BA cannot

hold unlessA ∗≤ B is strengthened toA
∗
≤ B.

Solution 30-1.1by the Proposers Jerzy K. BAKSALARY , Zielona Ǵora University, Zielona Ǵora, Poland:J.Baksalary@im.uz.zgora.pl
Oskar Maria BAKSALARY , Adam Mickiewicz University, Poznań, Poland:baxx@amu.edu.pl
and Xiaoji LIU, Xidian University, Xi’an, China:xiaojiliu72@yahoo.com.cn

In fact we will establish a somewhat more general result, whose one part refers to the notion of the minus partial ordering instead of
the left-star partial ordering, the former admitting a characterization through the rank subtractivity property

A
−
≤ B ⇔ r(B −A) = r(B)− r(A). (14)

The generalization mentioned above is a consequence of the relationships

A
∗
≤ B ⇒ A ∗≤ B ⇒ A

−
≤ B; (15)

cf. Theorem 2.1 of Baksalary and Mitra (1991).

THEOREM. Under the assumption thatA,B ∈ Cn,n satisfy the commutativity conditionAB = BA, the following statements hold:

(a) whenA is an EP matrix, thenA
−
≤ B ⇔ A

∗
≤ B,

(b) whenB is an EP matrix, thenA ∗≤ B ⇔ A
∗
≤ B.

PROOF. In the case where the ranksr(A) = a andr(B) = b are equal, it follows from (14) that each of the orders in (15) holds
merely whenA = B. In nontrivial situations, wherea < b, Theorems 1 and 2 of Hartwig and Styan (1986) and Theorem 2.1 of
Baksalary, Baksalary, and Liu (2003a) assert thatA andB are ordered as in the succsessive parts of (15) if and only if

A = U

(
D1 0

0 0

)
V ∗ (16)

and, correspondingly to the casesA
∗
≤ B, A ∗≤ B, A

−
≤ B,

B = U

(
D1 0

0 D2

)
V ∗, B = U

(
D1 0

D2S D2

)
V ∗, B = U

(
D1 + RD2S RD2

D2S D2

)
V ∗ (17)

for someU ∈ Cm,b andV ∈ Cn,b such thatU∗U = Ib = V ∗V , some positive definite diagonal matricesD1 andD2 of degreea
andb− a, respectively, and someR ∈ Ca,b−a, S ∈ Cb−a,a.

Now, assuming thatm = n andU andV are partitioned asU = (U1 : U2) andV = (V1 : V2), whereU1, V1 ∈ Cn,a,
U2, V2 ∈ Cn,b−a, let the productV ∗U be partitioned accordingly as

V ∗U =
(

W11 W12

W21 W22

)
, (18)

with Wij = V ∗
i Uj , i, j = 1, 2. Referring to notation (18),A of the form (16) commutes withB of the form given in the third part of

(17) if and only if(
D1 0

0 0

) (
W11 W12

W21 W22

) (
D1 + RD2S RD2

D2S D2

)
=

(
D1 + RD2S RD2

D2S D2

) (
W11 W12

W21 W22

) (
D1 0

0 0

)
.

A straightforward analysis of this equality shows that whenA
−
≤ B, then

AB = BA ⇔ W11R + W12 = 0 and SW11 + W21 = 0. (19)

Noting that the matrixB in the second part of (17) is obtainable from that in the third part by substitutingR = 0 leads to the corollary
that whenA ∗≤ B, then

AB = BA ⇔ W12 = 0 and SW11 + W21 = 0; (20)
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cf. Theorem 2.1 of Baksalary, Baksalary, and Liu (2003b).
Let CEP

n denote the subset ofCn,n consisting of EP matrices. It is known thatK ∈ CEP
n if and only if KK† = K†K, whereK†

denotes the Moore-Penrose inverse ofK, i.e., the unique solution to the equations

KK†K = K, K†KK† = K†, KK† = (KK†)∗, K†K = (K†K)∗. (21)

Referring to (21), it can easily be verified that ifA is of the form (16) andB of the form given in the middle part of (17), then

A† = V

(
D−1

1 0

0 0

)
U∗ and B† = V

(
D−1

1 0

−SD−1
1 D−1

2

)
U∗. (22)

Premultiplying and postmultiplying the equalityAA† = A†A, which on account of (16) and the first part of (22) is expressible as

U

(
Ia 0

0 0

)
U∗ = V

(
Ia 0

0 0

)
V ∗,

firstly by U∗ andU and then byV ∗ andV , respectively, shows that

A ∈ CEP
n ⇒ W ∗

11W11 = Ia = W11W
∗
11, W ∗

12W12 = 0, and W21W
∗
21 = 0. (23)

Since the conditions on the right-hand side of (23) obviously imply the nonsingularity ofW11 ∈ Ca,a andW12 = 0, W21 = 0, it is
seen that combining (19) with (23) leads toR = 0 andS = 0. ThenB takes the form as in the first part of (17), which means that

A
∗
≤ B, thus concluding the proof of part (a) of the theorem. Further, premultiplying and postmultiplying the equalityBB† = B†B,

which on account of the second parts of (17) and (22) is expressible asUU∗ = V V ∗, by V ∗ andV , respectively, shows that

B ∈ CEP
n ⇒ W11W

∗
11 + W12W

∗
12 = Ia and W11W

∗
21 + W12W

∗
22 = 0. (24)

Consequently, combining (20) with (24) yieldsW11W
∗
11 = Ia andW11W

∗
21 = 0. On account of the nonsingularity ofW11, the latter

of these equalities entailsW21 = 0, and then from (20) it follows thatS = 0. It is seen, therefore, thatB takes again the form as in

the first part of (17), which means thatA
∗
≤ B. 2

We conclude our solution by pointing out that the assumption of the left-star orderA ∗≤ B in part (b) of the theorem cannot in

general be weakened to the minus orderA
−
≤ B as in part (a). A counterexample is provided by the matrices

A =
(

1 1

0 0

)
and B =

(
1 0

0 1

)

obviously satisfying the conditionsAB = BA andB ∈ CEP
2 along withA

−
≤ B, but not satisfying the equalityA∗A = A∗B, and

therefore not being even left-star ordered, which according to (15) is necessary forA
∗
≤ B.
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Solution 30-1.2by Nir COHEN, Campinas State University, Campinas, Brazil:nir@ime.unicamp.br

A part of the assertion in Problem 30-1 can be seen by checking that both

A =
(

1 0

0 0

)
, B =

(
1 0

1 1

)
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are EP matrices which satisfyA∗ ≤ B, but not the commutativity property[A,B] = 0. The second example, in which

A =
(

1 1

−1 −1

)
, B =

(
0 2

−2 0

)
,

shows that ifB is EP butA is not, thenA
∗
≤ B does not necessarily imply[A,B] = 0. It is correct, however, that ifA is EP and

A ∗ ≤ B, then[A,B] = 0. We shall show a stronger result.

PROPOSITION. If A is EP andA
∗
≤ B, then<A is a reducing subspace forB andB|<A = A|<A. (This implies thatAB = BA =

A2, hence in particularA andB commute.)

PROOF. Indeed, sinceA is EP, there exist a unitaryn× n matrixU and an invertibler × r matrixA11 (with r = rank A) such that

A = U∗(A11 ⊕ 0)U (easy). WritingB = U∗
(

B11 B12

B21 B22

)
U, we get

A∗(B −A) = 0 ⇒ B11 = A11, B12 = 0,

(B −A)A∗ = 0 ⇒ B11 = A11, B21 = 0.

HenceB = U∗(A11 ⊕B22)U, proving the assertion. 2

Solution 30-1.3by Hans Joachim WERNER, Universiẗat Bonn, Bonn, Germany:werner@united.econ.uni-bonn.de

For a complex matrixC, let rank(C), C∗, R(C), N (C), andPR(C) denote the rank, the conjugate transpose, the range (column
space), the null space, and the orthogonal projector ontoR(C) [along its usual orthogonal complementN (C∗)], respectively, ofC.
Recall that any orthogonal projector is Hermitian and thatPR(C) may be defined byPR(C)x = x if x ∈ R(C) andPR(C)x = 0 if
x ∈ N (C∗).

We offer the following slightly more informative solution to the problem under study.

THEOREM. For square complex matricesA, A1 andA2 with A = A1 + A2 we have the following results:

(a) A1 ∗ ≤ A if and only ifPR(A) = PR(A1) + PR(A2), in which case, in particular,A1

−
≤ A, i.e.,R(A) = R(A1)⊕R(A2) or,

equivalently,R(A∗) = R(A∗1)⊕R(A∗2), where⊕ indicates a direct sum.

(b) WhenA1 ∗ ≤ A, thenA1A = AA1 if and only ifA1A2 = 0 = A2A1.

(c) WhenA1 ∗ ≤ A andA1A = AA1, thenA is EP if and only ifA1 andA2 are both EP.

(d) WhenA1 is EP andA1A = AA1, thenA1 ∗ ≤ A if and only ifA1

∗
≤ A.

(e) WhenA is EP andA1A = AA1, thenA1 ∗ ≤ A if and only ifA1

∗
≤ A.

PROOF. (a): By definition,A1∗ ≤ A if and only if A∗1A2 = 0 andR(A1) ⊆ R(A). Clearly,A∗1A2 = 0 ⇔ R(A2) ⊆ N (A∗1), in
which caseR(A2) ∩ R(A1) = {0}. Hence, wheneverA1 ∗ ≤ A, then necessarilyR(A) = R(A1) ⊕ R(A2). According to, e.g.,
Theorem 2.3 in Jain, Mitra & Werner (1996),

R(A) = R(A1)⊕R(A2) ⇔ A1

−
≤ A ⇔ rank(A) = rank(A1) + rank(A2) ⇔ R(A∗) = R(A∗1)⊕R(A∗2).

For completing the proof of (a), observe first thatA∗1A2 = 0 ⇔ PR(A1)A2 = 0 ⇔ PR(A1)PR(A2) = 0 ⇔ PR(A2)PR(A1) = 0 ⇔
A∗2A1 = 0. Recall next thatPR(A1) + PR(A2) is an orthogonal projector if and only ifPR(A1)PR(A2) = 0, in which case the sum
of these orthogonal projectors is the orthogonal projector ontoR(A1) ⊕ R(A2); see, e.g., Theorem 5.12 in Rao & Mitra (1971).
Consequently,PR(A) = PR(A1) + PR(A2) if and only ifR(A1) ⊆ R(A) andA∗1A2 = 0, and so the proof of part (a) is complete.

(b): According to (a), wheneverA1 ∗ ≤ A, thenR(A1)∩R(A2) = {0}. Therefore, in view ofA1A = AA1 ⇔ A1A2 = A2A1,
clearlyA1A = A1A if and only if A1A2 = 0 = A2A1.

(c): Let A1 ∗ ≤ A andA1A = AA1. ThenA∗1A2 = 0 or, equivalently,A∗2A1 = 0. Furthermore, in view of (a),PR(A) =
PR(A1)+PR(A2) andR(A∗) = R(A∗1)⊕R(A∗2). Finally, according to (b),A2A1 = 0 = A1A2 or, equivalently,A∗1A

∗
2 = 0 = A∗2A

∗
1.

Consequently,A is EP⇔ R(A) = R(A∗) ⇔ PR(A)A
∗ = A∗ ⇔ PR(A)A

∗
i = A∗i (i = 1, 2) ⇔ PR(Ai)A

∗
i = A∗i (i = 1, 2) ⇔

R(A∗i ) = R(Ai) (i = 1, 2) ⇔ A1 andA2 are both EP.
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(d): Let A1 ∗ ≤ A andA1A = AA1. ThenA∗1A2 = 0 and, in view of (b),A2A1 = 0. Needless to say, ifA1 is EP, i.e., if
R(A1) = R(A∗1), thenA2A1 = 0 ⇔ A2A

∗
1 = 0. In such a case we therefore haveA∗1A2 = 0 andA2A

∗
1 = 0 or, equivalently,

A1

∗
≤ A. The converse implication is trivial.
(e):This result follows directly from (c) and (d). 2

We conclude with mentioning the following Corollary which is easy to prove by means of our Theorem.

COROLLARY. LetA := A1 + A2 be such thatA1 ∗ ≤ A. Then any two of the following three conditions imply the remaining one:

(i) A is EP, (ii) A1 andA2 areEP, (iii) A1A = AA1.
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Problem 30-2: Class of (0, 1)-Matrices Containing Constant Column-Sum Submatrices
Proposed by Bernardete RIBEIRO and Alexander KOVAČEC, Universidade de Coimbra, Coimbra, Portugal:

bribeiro@dei.uc.pt kovacec@mat.uc.pt

For givenk1, . . . , kn ∈ [n] = {1, 2, . . . , n} define the{0, 1}-matrix A = A(k1, . . . , kn) = (aij) by puttingaij = 1 iff j is one of
the firstki entries of then−tuple(i, i + 1, . . . , n, 1, 2, . . . , i− 1). Show that there exists a{0, 1}−row x and ak ∈ [n− 1] such that
xA = k1n, where1n = (1, . . . , 1).

Solution 30-2.1by Nir COHEN, Campinas State University, Campinas, Brazil:nir@ime.unicamp.br

Define a functionf : [n] → [n] by f(i) ≡ i + ki mod(n). We shall call a setC ⊂ [n] ”stable” if f(C) = C. Obviously, the minimal
stable sets are closed chains of the formC = {i1, . . . , im} with f(ij) = ij+1 (j = 1, · · · ,m − 1) andf(im) = i1, with |C| = m.
A singleton may be a stable set. The existence of minimal stable sets is easily established by following a chainik+1 = f(ik) until it
repeats itself. The minimal stable sets are pairwise disjoint.

With any minimal stable setC define the (0,1)-vectorxC =
∑

i∈C ei, with the usual canonical basis{ei} in Rn. Cyclicity of
the chain implies that

∑
i∈C f(i) = kCn for some positive integerkC , implying thatxCA = kC1n.

This settles affirmatively the question raised, but more can be said: Every (0,1)-vectory with yA = t1n is supported on a disjoint
union of minimal stable subsets.

Indeed, letS be the support ofy. We claim thatf(S) ⊂ S, henceS contains a minimal stable subset, unlessS = ∅.
Indeed, ifi but notf(i) were inS then(y1A)i+ki would be smaller than(y1A)i+ki−1, since the sequence of1’s in row i ends in

columnf(i), while no new sequence of ones would start there. But this would contradict the identityy1A = t11n.

Let now C be the (non-trivial, disjoint) union of minimal stable subsets inS, and callx the vector supported on it. We have
xA = k1n. The vectorz := y − x is a (0,1) vector with supportS \ C and satisfieszA = (t − k)1n. However, the support ofz
contains no minimal stable subsets, hence by the previous claim, it is empty, implying thatS = C. 2

Solution 30-2.2by the Proposers Bernardete RIBEIRO and Alexander KOVAČEC, Universidade de Coimbra, Coimbra, Portugal:
bribeiro@dei.uc.pt kovacec@mat.uc.pt

We define the involutive map op: Rn → Rn by op(a) = 1n − a and first prove the following combinatorial lemma of interest in its
own right.

LEMMA . Let n ∈ Z≥1, ∅ 6= X ⊂ Rn be finite, andY = op(X). Let f : X → Y be any map. Then there is a nonempty subsetX ′

of X on whichf |X ′ is injective and such that ∑
x∈X′

(x + f(x)) = |X ′|1n.
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PROOF. Inductively defineX0 = X, Y0 = f(X0), andXk+1 = op(Yk), Yk+1 = f(Xk+1), for k = 0, 1, 2, . . . . These sets are
nonempty. Note thatX1 ⊆ X0, henceY1 ⊆ Y0, henceX2 ⊆ X1, henceY2 ⊆ Y1, etc. . By the finiteness ofX, Y and the injectivity
of op, there is ak such that|Xk| = |Xk+1|. Thus forX ′ = Xk andY ′ = Yk we haveX ′ = Xk+1, f |X ′ : X ′ → Y ′ is a bijection,
andX ′ = op(Y ′). Consequently,∑

x∈X′

(x + f(x)) =
∑

x∈X′

x +
∑
y∈Y ′

y =
∑
y∈Y ′

(y + op(y)) =
∑
y∈Y ′

1n = |X ′|1n,

as claimed. 2

We borrow from Matlab the notational devices to write A(I,J) for the submatrix obtained by restricting the set of row and column
indices to the sets I, J, assumed in their natural order,A(i, :) for the i−th row of a matrixA, s(j : j′) for the (j′ − j + 1)−tuple
made from entries in positionsj, j + 1, . . . , j′ of ann−tuples, etc.

The reader hopefully will get a rough idea of what is actually going on in the proof below, by following it with the example
given in Figure 1, where all blanks are zeroes. Theren = 7, (k1, . . . , k7) = (4, 5, 6, 4, 5, 3, 4) respectively. With the definitions

Figure 1: Example

given in the proof below, we haveR = {1, 3, 5, 6, 7}, Rc = {2, 4}, r0 = 3. The setX should be thought of essentially as being the
rowsA(R, r0 : 7) that arise by replacing ones that come from left blocks of ones inA by zeroes,exceptthe first row of that matrix,
and instead the row07−r0+1 added. The rows of the middle matrix give the set{(x, r(x), j(r(x)) : x ∈ X}, and the rows of the
right matrix the setY of the present case. An idea is to add rows fromA(Rc, :) to the rows ofA(R, :) in such a manner that the
positions inR × [r0 − 1] become filled with ones; the overflow of ones that can arise (or degenerate to be ‘empty’) to the positions
in R× (r0 : n) define a mapf : X → Y detailed in the proof. The arrows are intended to indicate that map.

PROOF OF CLAIMED PROPERTY OF MATRIXA(k1, . . . , kn). Let R = {r : ar1 = 1}. Clearly1 ∈ R. If A has some row equal
to 1n, then we are done. So we assume from now on that each row ofA has a0 and a1. Then1 ≤ |R| < n ≥ 2.

For eachr ∈ R we have aj(r) ≥ 2 so that

A(1, :) = (1, 1, . . . 1︸ ︷︷ ︸
j(1)−1

, 0, 0, . . . , 0), andA(r, :) = (1, 1, . . . 1︸ ︷︷ ︸
j(r)−1

, 0, 0, . . . , 0, 1
r

, 1, . . . , 1), if r 6= 1. (25)

Given anyj ∈ {1, 2, . . . , n} as an input consider the following algorithm:
s = (1j−1, 0n−j+1); I := Rc; R′ = ∅;

while there is anr′ ∈ I so that the leftmost 1 ofA(r′, :) is at the position of the leftmost 0 ofs do
s = s + A(r′, :); I = I \ {r′}; R′ = R′ ∪ {r′};

end
The algorithm returns a certainn-tuples = sj and setR′ = R′j .

Claim: Letj ≥ 2. Then:
(i). R′j ⊆ Rc andsj = (1j−1, 0n−j+1) +

∑
{A(r′, :) : r′ ∈ R′j}.

(ii). Either sj = 1n or there exists anr ∈ R \ {1} so thatsj = (1r−1, 0n−r+1) ∈ {0, 1}n.
(iii). If sj 6= sj′ thenR′j ∩R′j

′
= ∅.
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(i). is an immediate consequence of the algorithm’s code. (ii). The leftmost 0 of ansj exists iff sj 6= 1n. In this case the
definition of the algorithm prohibits for its position an integer inRc. Clearlyr ≥ j ≥ 2. So (ii) follows. (iii). If R′j andR′j

′
would

have an element, sayr′, in common, thenA(r′, :) was added to some intermediates in the production ofsj as well as to some suchs
in the production ofsj′ . But this is seen to imply that the two referreds are equal, and from there on all the following corresponding
s will be equal; in particularsj = sj′ , contradicting the hypothesis of (iii).

In the caseR = {1}, claim (ii) implies sj = 1n for everyj ≥ 2. Hencesj(1) = 1n and from (i) and (25) we get that1n is
A(1, :)+a sum of rows ofA(Rc, :) and are done. So we assume from now on|R| ≥ 2, putr0 := min(R \ {1}), and define

X = {(0r−r0 , 1n−r+1) : r ∈ R \ {1} ∪ {n + 1}}, Y = {(1r−r0 , 0n−r+1) : r ∈ R \ {1} ∪ {n + 1}}.

ClearlyX, Y ⊆ {0, 1}n−r0+1 andY = op(X). For anx ∈ X \ {0n−r0+1} consider ther = r(x) ∈ R \ {1} that defines it, and
put r(0n−r0+1) := 1. By claim (ii), x 7→ f(x) := sj(r(x))(r0 : n) yields a mapf : X → Y. Therefore, by the lemma, there exist
X ′ ⊆ X, Y ′ ⊆ Y so thatf |X ′ : X ′ → Y ′ is a bijection and

∑
x∈X′(x + f(x)) = |X ′|1n−r0+1. Then for everyx ∈ X we have

A(r(x), :) +
∑
{A(ν, :) : ν ∈ R′j(r(x))} = (0r0−1, x) + (1j(r(x))−1, 0n−j(r(x))+1) +

∑
{A(ν, :) : ν ∈ R′j(r(x))}

= (0r0−1, x) + sj(r(x))

= (sj(r(x))(1 : r0 − 1), x + sj(r(x))(r0 : n))
= (1r0−1, x + f(x)).

Since thef(x), x ∈ X ′, are all distinct, so are then−tuplessj(r(x)), so that by claim (iii), theR′j(r(x)) are all disjoint. Thus
summing above expressions over allx ∈ X ′, the left hand side yields a sum of rows ofA, while the right hand side yields|X ′|1n.
Since|X ′| ≤ |X| = |R| < n, the claim concerningA(k1, . . . , kn) is proved. 2

Problem 30-3: Singularity of a Toeplitz Matrix
Proposed by Wiland SCHMALE, Universiẗat Oldenburg, Oldenburg, Germany:schmale@uni-oldenburg.de

and Pramod K. SHARMA , Devi Ahilya University, Indore, India:pksharma1944@yahoo.com

Let n ≥ 5, c1, . . . , cn−1 ∈ C \{0}, x an indeterminate over the complex numbersC and consider the Toeplitz matrix

M :=



c2 c1 x 0 · · · · 0

c3 c2 c1 x 0 · · · 0

· · · · · · · · ·
...

...
. . .

...

cn−3 cn−4 · · · · · · x

cn−2 cn−3 · · · · · · c1

cn−1 cn−2 · · · · · · c2


.

Prove that if the determinantdetM = 0 in C[x] and5 ≤ n ≤ 9, then the first two columns ofM are dependent. [We do not know
if the implication is true forn ≥ 10.]

We look forward to receiving solutions to Problem 30-3!

Problem 30-4: The Similarity of Two Block Matrices
Proposed by Yongge TIAN , Queen’s University, Kingston, Ontario, Canada:ytian@mast.queensu.ca

Let A andB be two idempotent matrices of the same sizem and letM := A + B. Show that(
M A

0 −M

)
is similar to

(
M 0

0 −M

)
.
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Solution 30-4.1by Robert REAMS, College of William and Mary, Williamsburg, Virginia, USA:reams@math.wm.edu

The given block matrices are similar, since(
I −X

0 I

) (
M 0

0 −M

) (
I X

0 I

)
=

(
M A

0 −M

)
,

whereX = 1
4 (I + A−B).

Solution 30-4.2by the Proposer Yongge TIAN , Queen’s University, Kingston, Ontario, Canada:ytian@mast.queensu.ca

It is easy to verify that
(A + B)(A−B) + (A−B)(A + B) = 2A− 2B = 4A− 2(A + B).

HenceMX + XM = A, whereX = 1
4 (Im + A−B). Thus(

Im X

0 Im

) (
M A

0 −M

) (
Im X

0 Im

)−1

=
(

Im X

0 Im

) (
M A

0 −M

) (
Im −X

0 Im

)
=

(
M A−MX −XM

0 −M

)
=

(
M 0

0 −M

)
.

The proof is complete.

Solution 30-4.3by Götz TRENKLER, Universiẗat Dortmund, Dortmund, Germany:trenkler@statistik.uni-dortmund.de

DefineZ :=
(

I 1
4 (A−B + I)

0 −I

)
. ThenZ is nonsingular with the inverseZ−1 = Z. Some straightforward calculations show

that

Z−1

(
M A

0 −M

)
Z =

(
M 0

0 −M

)
,

which proves the asserted similarity.

Solutions to Problem 30-4 were also received from Nir Cohen and from Alicja Smoktunowicz.

Problem 30-5: A Range Equality for the Difference of Orthogonal Projectors
Proposed by Yongge TIAN , Queen’s University, Kingston, Ontario, Canada:ytian@mast.queensu.ca

Let A andB be two orthogonal projectors of the same size. Show thatrange [ (A−B )†− (A−B ) ] = range (AB−BA ), where
(A−B )† is the Moore–Penrose inverse ofA−B. Hence show that( A−B )† = A−B if and only if AB = BA.

Solution 30-5.1by Jerzy K. BAKSALARY , Zielona Ǵora University, Zielona Ǵora, Poland:J.Baksalary@im.uz.zgora.pl
and Oskar Maria BAKSALARY , Adam Mickiewicz University, Poznań, Poland:baxx@amu.edu.pl

We establish a more general result, in which the assumption thatA andB are orthogonal projectors is relaxed by referring to the
concept of an EP matrix. Let us recall that the set of EP matrices (range-Hermitian matrices) of ordern is specified as

CEP
n = {K ∈ Cn,n: R(K) = R(K∗)} = {K ∈ Cn,n: KK† = K†K}, (26)

whereK∗, K†, andR(K) denote the conjugate transpose, Moore-Penrose inverse, and range ofK, respectively.

THEOREM. Any idempotent matricesA,B ∈ Cn,n such thatA−B ∈ CEP
n andAB −BA ∈ CEP

n satisfy

R[(A−B)† − (A−B)] = R(AB −BA). (27)
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PROOF. It can easily be verified that ifA−B ∈ CEP
n , then

R[(A−B)† − (A−B)] = R[(A−B)†(A−B)2 − (A−B)3] = R[(A−B)− (A−B)3].

Consequently, since the assumption of the idempotency ofA andB entails

(A−B)3 = (A−B)− (ABA−BAB), (28)

it follows that (27) is equivalent to
R(ABA−BAB) = R(AB −BA). (29)

Hence, by referring to the orthogonal complements of the subspaces involved in (29), the proof reduces to showing that, for any
x ∈ Cn,1,

x∗AB = x∗BA ⇔ x∗ABA = x∗BAB.

But this is indeed the case. Ifx∗AB = x∗BA, then

x∗ABA = x∗BA2 = x∗BA = x∗AB = x∗AB2 = x∗BAB.

Conversely, since in view of (26) the assumptionAB−BA ∈ CEP
n can be expressed in the form(AB−BA)∗ = (AB−BA)L for

someL ∈ Cn,n, it follows that

ABA = BAB ⇒ (AB −BA)(AB −BA)∗ = (AB −BA)2L = (BAB2 −ABA−BAB + ABA2)L = 0. (30)

Hence it is seen that ifx∗ABA = x∗BAB, thenx∗(AB−BA)(AB−BA)∗ = 0, which is obviously equivalent tox∗AB = x∗BA.
2

It is clear that ifA andB are orthogonal projectors, thenA − B = (A − B)∗ andAB − BA = −(AB − BA)∗, and thus the
conditionsA− B ∈ CEP

n andAB − BA ∈ CEP
n are fulfilled trivially. In addition to this observation it should be pointed out that a

generalization of the claim in Problem 30-5 given in the theorem above is substantial. For example, ifA andB are projectors of the
form

A =
(

1 1

0 0

)
and B =

(
1 0

1 0

)
,

then the matrices

A−B =
(

0 1

−1 0

)
and AB −BA =

(
1 −1

−1 −1

)
are both EP, and thereforeA andB satisfy equality (27) although neither of them is an orthogonal projector.

From Thorem it immediately follows that, under the assumptions involved therein, the equality(A−B)† = A−B holds if and
only if the projectorsA andB commute. We extend this statement by referring to the set(A−B){1} of all generalized inverses of
A−B, i.e., matricesG ∈ Cn,n satisfying(A−B)G(A−B) = A−B.

COROLLARY. For any idempotent matricesA,B ∈ Cn,n such thatA − B ∈ CEP
n andAB − BA ∈ CEP

n , the following statements
are equivalent:

(a)A−B = (A−B)†, (b) A−B ∈ (A−B){1}, (c) AB = BA.

PROOF. The part (a)⇒ (b) is an obvious consequence of the definitions of(A − B)† and(A − B){1}. Further, on account of
specification of(A−B){1} and (28), condition (b) is equivalent toABA = BAB, and then from (30) it is seen thatAB−BA = 0,
which is (c). Finally, as already mentioned, the part (c)⇒ (a) follows straightforwardly from Theorem. 2

We conclude by pointing out that the result on commutativity of projectors given in Corollary is an interesting supplement to
several other characteristics of such a type derived by Baksalary and Baksalary (2002, Section 4).

Reference
J. K. Baksalary & O. M. Baksalary (2002). Commutativity of projectors.Linear Algebra and Its Applications, 341, 129–142.

Solution 30-5.2by the Proposer Yongge TIAN , Queen’s University, Kingston, Ontario, Canada:ytian@mast.queensu.ca

We first show that ifM is Hermitian, then

range(M −M†) = range(M −M3). (31)
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Recall that ifM is Hermitian, thenMM† = M†M . Hence

(M −M†)M2 = M3 −M†M2 = M3 −M and (M3 −M)M†M† = M −M†.

These two equalities imply (31). IfA andB are two orthogonal projectors of the same size, then the matrixA−B is Hermitian and
A−B − (A−B)3 = ABA−BAB. Thus by (31)

range[(A−B)† − (A−B)] = range(ABA−BAB). (32)

For any two idempotent matricesA andB of orderm, it is easy to verify the following two identities:

AB −BA = (A−B)(A + B − Im),

ABA−BAB = (AB −BA)(A + B − Im) = (A−B)(A + B − Im)2.

If A andB are two orthogonal projectors of the same size, then the matrixA + B − Im is Hermitian. Thus

range[(A−B)(A + B − Im)2] = range[(A−B)(A + B − Im)] = range(AB −BA).

Hence
range(ABA−BAB) = range(AB −BA). (33)

Combining (32) and (33) yields the desired result.

Solution 30-5.3by Hans Joachim WERNER, Universiẗat Bonn, Bonn, Germany:werner@united.econ.uni-bonn.de

We note that a matrixA ∈ Cn×n is an orthogonal projector if and only ifA2 = A = A∗, whereA∗ denotes the conjugate transpose
of A. We further recall that for anyB ∈ Cm×n we haveR(B†) = R(B∗) andN (B†) = N (B∗), whereB† indicates the
Moore-Penrose inverse ofB andR(·) andN (·) stand for the range (column space) and the null space, respectively, of(·). If B is
Hermitian, i.e., ifB = B∗, then triviallyR(B) = R(B∗), i.e.,B is an EP-matrix. Finally, we mention that for an EP-matrixC we

haveC†C = CC†, whence we getC2C† = C = C†C2 and
(
C†

)2
C = C†. With these observations in mind, it is not difficult to

prove the following theorem.

THEOREM. LetA andB be orthogonal projectors such thatAB is defined. Then the following conditions are equivalent:

(a) x ∈ N ((A−B)† − (A−B)),

(b) x ∈ N ((A−B)3 − (A−B)),

(c) x ∈ N (BAB −ABA) ,

(d) x ∈ N (AB −BA).

PROOF. (a)⇔ (b): First, letx ∈ N ((A − B)† − (A − B)), i.e., let(A − B)x = (A − B)†x. Premultiplying by(A − B)2 yields
(A−B)3x = (A−B)2(A−B)†x = (A−B)x or, equivalently,x ∈ N ((A−B)3−(A−B)). Conversely, let(A−B)x = (A−B)3x.
Premultiplying by((A−B)†)2 results in(A−B)†x = (A−B)x.

(b)⇔ (c): This is a direct consequence of(A−B)3 − (A−B) = BAB −ABA.
(c)⇔ (d): First, letx ∈ N (BAB − ABA), i.e., letBABx = ABAx. Premultiplying byB yieldsBABx = BABAx or,

equivalently,BAB(I−A)x = 0. SinceBAB is nonnegative definite and Hermitian,BAB(I−A)x = 0 implies thatAB(I−A)x =
0 or, equivalently,ABx = ABAx. Analogously, premultiplyingBABx = ABAx by A, we obtainBAx = BABx. Since
ABAx = BABx, we now obtainABx = BAx. To prove the converse, letABx = BAx. Premultiplying this equality byA and
B, respectively, results inABx = ABAx andBABx = BAx. HenceABAx = BABx, and so the proof is complete. 2

Since the range of a matrix coincides with the orthogonal complement of the null space of its conjugate transpose (where the
orthogonal complement is with respect to the usual standard inner product), the claim in Problem 30-5 follows directly from our
theorem above. We conclude with emphasizing that (a)⇔ (b) holds for EP-matrices, while (b)⇔ (c) holds for idempotent matrices.
Only our proof of (c)⇔ (d) is based on the assumption thatA andB are orthogonal projectors.
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Problem 30-6: A Matrix Related to an Idempotent Matrix
Proposed by G̈otz TRENKLER, Universiẗat Dortmund, Dortmund, Germany:trenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix fromCn×n. What can be said about the matrixR = P (P + P ∗)−P ∗, where(P + P ∗)− is a
generalized inverse ofP + P ∗ andP ∗ denotes the conjugate transpose ofP?

Solution 30-6.1by Jerzy K. BAKSALARY , Zielona Ǵora University, Zielona Ǵora, Poland:J.Baksalary@im.uz.zgora.pl
and Oskar Maria BAKSALARY , Adam Mickiewicz University, Poznań, Poland:baxx@amu.edu.pl

Our contribution to answering the question posed in Problem 30-6 is concerned with the concept of parallel summability. Let
us recall, following Rao and Mitra (1971, p. 188), that for matricesA,B ∈ Cm×n the term ”parallel sum” is attributed to the
expressionA(A + B)−B whenever it is independent of the choice of a generalized inverse(A + B)−, i.e., any matrix satisfying
(A + B)(A + B)−(A + B) = A + B.

PROPOSITION. For any idempotentP ∈ Cn×n, the matrixP (P + P ∗)−P ∗ is the parallel sum ofP andP ∗.

PROOF. It is known that the productA(A + B)−B is invariant with respect to the choice of(A + B)− if and only if R(A∗) ⊆
R(A∗ + B∗) andR(B) ⊆ R(A + B), whereR(.) denotes the range of a given matrix; cf., e.g., Rao and Mitra (1971, pp. 21 and
43). Consequently, a necessary and sufficient condition for parallel summability ofP andP ∗ is

R(P ∗) ⊆ R(P + P ∗). (34)

By referring to the orthogonal complements of the subspaces involved in (34), the proof consists in showing that, for anyx ∈ Cn×1,

x∗(P + P ∗) = 0 ⇒ x∗P ∗ = 0.

But this follows by noting that

x∗(P + P ∗) = 0 ⇔ x∗(P + P ∗)2 = 0 ⇔ x∗(P + PP ∗ + P ∗P + P ∗) = 0,

and hence

x∗(P + P ∗) = 0 ⇒ x∗(PP ∗ + P ∗P ) = 0 ⇔ x∗(P : P ∗)(P : P ∗)∗ = 0 ⇔ x∗(P : P ∗) = 0 ⇒ x∗P ∗ = 0,

as desired. 2

Reference
C. R. Rao & S. K. Mitra (1971).Generalized Inverse of Matrices and its Applications. Wiley, New York.

Solution 30-6.2by the Proposer G̈otz TRENKLER, Universiẗat Dortmund, Dortmund, Germany:trenkler@statistik.uni-dortmund.de

We show that2R is the orthogonal projector onR(P ) ∩ R(P ∗), whereR(·) denotes the column space of a matrix. This follows
trivially if P is nonsingular, since then it must be the identity matrix of ordern. To see this in general, we writeP in the form

P = U

(
Ir K

0 0

)
U∗,

whereU is ann × n unitary matrix,Ir is the identity matrix of orderr = rank(P ), andK is anr × (n − r) matrix (see Hartwig
and Loewy, 1992). This implies

P + P ∗ = U

(
2Ir K

K∗ 0

)
U∗.

Using Theorem 3.5.2 from Campbell and Meyer (1979), we get the Moore-Penrose inverse ofP + P ∗ as

(P + P ∗)+ = U

( 1
2 (Ir −KK+) K+∗

K+ −2(K∗K)+

)
U∗

and consequently

(P + P ∗)+(P + P ∗) = (P + P ∗)(P + P ∗)+ = U

(
Ir 0

0 K+K

)
U∗.
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It is readily established that(P +P ∗)(P +P ∗)+P = P and(P +P ∗)(P +P ∗)+P ∗ = P ∗, which implies the somewhat surprising
resultR(P ) ⊂ R(P + P ∗) andR(P ∗) ⊂ R(P + P ∗). HenceP (P + P ∗)−P ∗ is invariant under the choice of the g-inverse
(P + P ∗)−, that is, we get the parallel sum ofP andP ∗ asP + P ∗ = P (P + P ∗)−P ∗ = P (P + P ∗)+P ∗. According to Rao and
Mitra (1971, Theorem 10.1.8e), we haveR(P + P ∗) = R(P) ∩R(P ∗). However, further calculations give

P (P + P ∗)+P ∗ = U

( 1
2 (Ir −KK+) 0

0 0

)
U∗,

such that2P + P ∗ is the orthogonal projector onR(P ) ∩R(P ∗).

References
S. L. Campbell & C. D. Meyer (1979).Generalized Inverses of Linear Transformations.Pitman, London.

R. E. Hartwig & R. Loewy (1992). Maximal elements under the three partial orders.Linear Algebra and Its Applications, 175, 39–61.

C. R. Rao & S. K. Mitra (1971).Generalized Inverse of Matrices and its Applications.Wiley, New York.

Solution 30-6.3by Hans Joachim WERNER, Universiẗat Bonn, Bonn, Germany:werner@united.econ.uni-bonn.de

For a complexm × n matrix A, let A∗, A−, R(A), andN (A) denote the conjugate transpose, a generalized inverse, the range
(column space), and the null space, respectively, ofA. If M is a linear subspace ofCn, then we denote byPM the orthogonal
projector ontoM alongM⊥, with the orthogonal complementM⊥ of M being defined with respect to the usual standard inner
product inCn. We note that the projectorPM may be defined byPMx = x if x ∈ M andPMx = 0 if x ∈ M⊥. If M andN are
two linear subspaces inCn, then we recall that[M∩N ]⊥ = M⊥ +N⊥. We also mention thatR(A)⊥ = N (A∗).

THEOREM. LetP be a (complex) idempotent matrix, i.e., letP 2 = P . Then:

(a) N (P + P ∗) = N (P ) ∩N (P ∗) andR(P + P )∗ = R(P ) +R(P ∗).
(b) P (P + P ∗)−P ∗ = P (P + P ∗)†P ∗, irrespective of the choice of(·)−, with (·)† indicating the Moore-Penrose inverse of(·).

Moreover,P (P + P ∗)−P ∗ is Hermitian andP (P + P ∗)−P ∗ = P ∗(P + P ∗)−P .

(c) 2P (P + P ∗)−P ∗ = PR(P )∩R(P∗).

PROOF. (a):From Theorem in Werner (2003) we know thatN (P + P ∗) = N (P ) ∩ N (P ∗). Taking orthogonal complements(·)⊥
in this set equation results inR(P + P ∗) = R(P ) +R(P ∗).

(b): In view of (a), clearlyR(P ) ⊆ R(P + P ∗) andR(P ∗) ⊆ R(P + P ∗). From the theory of generalized inversion, see,
e. g., Rao & Mitra (1971), we then know thatP (P + P ∗)−P ∗ is independent of the choice of the g-inverse(P + P ∗)−. Therefore,
P (P + P ∗)−P ∗ = P (P + P ∗)†P ∗. Since(P + P ∗)(P + P ∗)− is a projector ontoR(P ) +R(P ∗) whereas(P + P ∗)−(P + P ∗)
is a projector alongN (P ) ∩N (P ∗), it is now not difficult to see that

P (P + P ∗)−P ∗ = P ∗ − P ∗(P + P ∗)−P ∗ = P − P (P + P ∗)−P = P ∗(P + P ∗)−P, (35)

where all expressions are again independent of the choice of the g-inverse(P + P ∗)−. Hence, in particular,P (P + P ∗)−P ∗ =
P ∗(P + P ∗)−P . Since(P + P ∗)† is Hermitian, it is further clear thatP (P + P ∗)−P ∗ is also Hermitian.

(c): For convenience, putA := P (P + P ∗)−P ∗. By means of (b) and (35) check thatA2 = A − A2. HenceA2 = 1
2A or,

equivalently,(2A)2 = 2A. Since2A is also Hermitian,2A is an orthogonal projector, and so it remains to show thatR(2A) =
R(P ) ∩ R(P ∗). In view of P (P + P ∗)−P ∗ = P ∗(P + P ∗)−P , clearlyR(2A) ⊆ R(P ) ∩ R(P ∗). That the converse inclusion,
namelyR(P ) ∩ R(P ∗) ⊆ R(2A) is also true is seen as follows. Letx ∈ R(P ) ∩ R(P ∗). Thenx = Px = P ∗x and so
2Ax = A(P + P ∗)x = P (P + P ∗)−(P + P ∗)x = Px = x. This completes our proof. 2

We conclude with mentioning that in the literature the matrixP (P +P ∗)−P ∗ is called the parallel sum ofP andP ∗ and is often
denoted byP + P ∗; cf. Rao & Mitra (1971, pp. 188-192). ThatR(P + P ∗) = R(P )∩R(P ∗) is shown in Theorem 10.1.8(e) in Rao
& Mitra for more general classes of matrices.

References
C. R. Rao & S. K. Mitra (1971).Generalized Inverse of Matrices and its Applications.Wiley, New York.

H. J. Werner (2003). A range equality involving an idempotent matrix. Solution 29-8.3IMAGE: The Bulletin of the International Linear Algebra
Society, no. 30 (April 2003), 28.



IMAGE 31: October 2003 page 41

Problem 30-7: A Condition for an Idempotent Matrix to be Hermitian
Proposed by G̈otz TRENKLER, Universiẗat Dortmund, Dortmund, Germany:trenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix fromCn×n. Show thatP is Hermitian if and only if the Moore–Penrose inverse ofP (I − P ∗) is
idempotent, whereP ∗ denotes the conjugate transpose ofP .

Solution 30-7.1by Jerzy K. BAKSALARY , Zielona Ǵora University, Zielona Ǵora, Poland:J.Baksalary@im.uz.zgora.pl
and Oskar Maria BAKSALARY , Adam Mickiewicz University, Poznań, Poland:baxx@amu.edu.pl

Let A = P − PP ∗. SinceP = P 2, it follows thatP = P ∗ ⇔ A = 0. Moreover, forA† denoting the Moore-Penrose inverse ofA,

A† = (A†)2 ⇔ A(A†AA∗) = AA†(A†AA∗) ⇔ AA∗ = AA†A∗.

Consequently, the statement in Problem 30-7 may be reformulated as

AA∗ = AA†A∗ ⇔ A = 0. (36)

The ”⇐ part” is trivial, as well as the converse implication whenP is nonsingular (in which caseP must be equal to the identity
matrix In). For establishing the ”⇒ part” in general, it is therefore assumed thatP is a singular idempotent matrix (of rankp, say,
p < n) having a representation of the form

P = U

(
Ip K

0 0

)
U∗, (37)

whereU∗U = In andK is any matrix of orderp × (n − p); see Hartwig and Loewy (1992) and comments in Trenkler (1994, p.
260). From (37) it follows that

A = U

(
Ip K

0 0

)
U∗ − U

(
Ip + KK∗ 0

0 0

)
U∗ = U

(−KK∗ K

0 0

)
U∗. (38)

Hence it is seen that the range ofA satisfies

R(A) = R(U
(

K

0

)
(−K∗ : In−p)U∗) = R(U

(
K

0

)
),

and therefore the orthogonal projectorAA† ontoR(A) is of the form

AA† = U

(
KK† 0

0 0

)
U∗. (39)

On account of (38) and (39),

AA∗ = AA†A∗ ⇔ U

(
(KK∗)2 + KK∗ 0

0 0

)
U∗ = U

(−KK∗ 0

0 0

)
U∗ ⇔ (KK∗)2 + 2KK∗ = 0. (40)

SinceKK∗ is obviously a nonnegative definite matrix, it is clear from (40) thatAA∗ = AA†A∗ ⇔ KK∗ = 0 ⇔ K = 0, which in
view of (38) means thatA = 0, as required in (36).

References
R. E. Hartwig & R. Loewy (1992). Maximal elements under the three partial orders.Linear Algebra and Its Applications, 175, 39–61.

G. Trenkler (1994). Characterizations of oblique and orthogonal projectors. InProceedings of the International Conference on Linear Statistical
Inference LINSTAT’93(T. Caliński & R. Kala, eds.), Kluwer, Dordrecht, pp. 255–270.

Solution 30-7.2by William F. TRENCH, Trinity University, San Antonio, Texas, USA:wtrench@trinity.edu

Let Q = [P (I − P ∗)]†. If P = P ∗, thenQ = 0 = Q†, soQ† is idempotent. For the converse note that the conditions defining the
Moore-Penrose inverse imply

P (I − P ∗)Q = Q∗(I − P )P ∗, (41)

QP (I − P ∗) = (I − P )P ∗Q∗, (42)
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QP (I − P ∗)Q = Q, (43)

P (I − P ∗)QP (I − P ∗) = P (I − P ∗). (44)

From (42),PQP (I − P ∗) = 0, so (43) implies thatPQ = 0 = Q∗P ∗. Hence, (44) simplifies to

−PP ∗QP (I − P ∗) = P (I − P ∗) (45)

and (41) simplifies toPP ∗Q = (PP ∗Q)∗. Therefore, ifQ2 = Q, thenPP ∗Q = [(PP ∗Q)Q]∗ = Q∗PP ∗Q is positive semidefinite,
so (45) implies thatP (I − P ∗) = 0. HenceP = PP ∗ is Hermitian.

Solution 30-7.3by the Proposer G̈otz TRENKLER, Universiẗat Dortmund, Dortmund, Germany:trenkler@statistik.uni-dortmund.de

Necessity is trivial. Conversely, let the Moore-Penrose inverse ofP (I−P ∗) be idempotent. SinceP is idempotent, it can be written
as

P = U

(
Ir K

0 0

)
U∗,

whereIr is the identity matrix of orderr = rankP , K is anr × (n− r) matrix andU is a unitary matrix (see Hartwig and Loewy,
1992). By some straightforward computations one finds that

[P (I − P ∗)]+ = U

( −G(KK∗)+ 0

K+G(KK∗)+ 0

)
U∗,

whereG = [Ir + (KK∗)+]−1. SinceG and(KK∗)+ commute, the idempotency of[P (I − P ∗)]+ entailsK = 0, so thatP is
Hermitian.

Reference
R.E. Hartwig & R. Loewy (1992). Maximal elements under the three partial orders.Linear Algebra and its Applications, 175, 39–61.

Solution 30-7.4by Hans Joachim WERNER, Universiẗat Bonn, Bonn, Germany:werner@united.econ.uni-bonn.de

Our solution offers additional insights into the theory of projectors. We begin with characterizing(A†)2 = A† in terms of the matrix
A and its conjugate transpose.

THEOREM 1. Let A be a square complex matrix. Then the Moore-Penrose inverseA† of A is idempotent, i.e.,(A†)2 = A†, if and
only if A2 = AA∗A.

PROOF. We note that the Moore-Penrose inverse ofA satisfies the following well-known properties: (a)A†AA† = A†, (b)R(A†) =
R(A∗), and (c)N (A†) = N (A∗), with R(·) andN (·) denoting the range (column space) and the null space, respectively, of(·);
cf. Theorem 2 in Werner (2003b). By means of (a), (b), and (c) it is now easy to see that(A†)2 = A† ⇔ A†(I − A)A† = 0 ⇔
A∗(I −A)A∗ = 0⇔ A(I −A∗)A = 0⇔ A2 = AA∗A. 2

This powerful characterization has a series of direct implications. Here we only mention the following.

COROLLARY 2. LetA be a square complex matrix. Then we have:

(a) If A is an EP-matrix, i.e., ifR(A) = R(A∗), thenA† is idempotent if and only ifA is idempotent and Hermitian, in which
caseA2 = A = A∗ = A†.

(b) If A is idempotent, thenA† is idempotent if and only ifA is a partial isometry, i.e., if and only ifA = AA∗A, in which case
A2 = A = A∗ = A†.

(c) A† is idempotent only ifindex(A) ≤ 1. Moreover, ifA† is idempotent andA2 = 0, then necessarilyA = 0.

PROOF. (a): Let A be an EP-matrix. SinceA†A is the orthogonal projector ontoR(A∗), clearlyA†AA∗A = A∗A. SinceA†A =
AA† is equivalent toA being an EP-matrix, alsoA†A2 = AA†A = A. According to Theorem 1, therefore,(A†)2 = A† ⇔
A2 = AA∗A⇔ A†A2 = A†AA∗A⇔ A = A∗A⇔ A = A∗ = A2.

(b): Let A be idempotent, i. e.,A2 = A. Then, in view of Theorem 1, clearly(A†)2 = A† ⇔ A = AA∗A. From Theorem in
Werner (2003a) it follows that this is equivalent toA = A∗.
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(c): According to Theorem 1,(A†)2 = A† if and only if A2 = AA∗A. SinceR(AA∗A) = R(A), necessarilyR(A2) = R(A)
or, equivalently,index(A) ≤ 1. Hence, whenever(A†)2 = A† andA2 = 0, then necessarilyA = 0. 2

Part (c) of Corollary 2 enables us now to give a very brief solution to the stated problem.

THEOREM 3. LetP be an idempotent matrix, and letQ := P (I − P ∗). Then(Q†)2 = Q† if and only ifQ2 = 0 or, equivalently, if
and only ifP = P ∗.

PROOF. According to Theorem 1,(Q†)2 = Q† ⇔ Q2 = QQ∗Q⇔ Q(I −Q∗)Q = 0. Check thatQ(I −Q∗)Q = (I + PP ∗)Q2.
SinceI +PP ∗ is a positive definite Hermitian matrix, it is nonsingular, and so we getQ(I−Q∗)Q = 0⇔Q2 = 0, which, in virtue
of Corollary 2(c), can happen only ifQ = 0. But thenP = PP ∗ or, equivalently,P = P ∗. 2

We conclude with mentioning that a completely different proof for the characterization given in part (b) of Corollary 2 can be
found in Werner (2003c).

References
H. J. Werner (2003a). Partial isometry and idempotent matrices. Solution 28-7.5.IMAGE: The Bulletin of the International Linear Algebra Society,

no. 30 (April 2003), 31–32.

H. J. Werner (2003b). The minimal rank of a block partitioned matrix with generalized inverses. Solution 29-11.2.IMAGE: The Bulletin of the
International Linear Algebra Society, no. 31 (October 2003), 26–29.

H. J. Werner (2003c). 02.6.1 Oblique Projectors – Solution.Econometric Theory, 19, 1196–1197.

IMAGE Problem Corner: More New Problems

Problem 31-6: A Full Rank Factorization of a Skew-Symmetric Matrix
Proposed by G̈otz TRENKLER, Universiẗat Dortmund, Dortmund, Germany:trenkler@statistik.uni-dortmund.de

Determine a full rank factorization of the matrix

C =

 0 −c3 c2

c3 0 −c1

−c2 c1 0

 ,

with real entriesci, i = 1, 2, 3. (Observe that forx = (x1, x2, x3)′ ∈ R3 the identityCx = c × x, wherec = (c1, c2, c3)′, defines
the vector cross product inR3.)

Problem 31-7: On the Product of Orthogonal Projectors
Proposed by G̈otz TRENKLER, Universiẗat Dortmund, Dortmund, Germany:trenkler@statistik.uni-dortmund.de

Let P andQ be orthogonal projectors of the same order with complex entries and letA denote their product. Show that the following
conditions are equivalent:

(i) A is an orthogonal projector, i.e.A = AA∗,
(ii) A is Hermitian, i.e.A = A∗,

(iii) A is normal, i.e.AA∗ = A∗A,
(iv) A is EP, i.e.AA+ = A+A,
(v) A is bi-EP, i.e.AA+A+A = A+AAA+,

(vi) A is bi-normal, i.e.AA∗A∗A = A∗AAA∗,
(vii) A is bi-dagger, i.e.(A+)2 = (A2)+.

Problem 31-8: Eigenvalues and Eigenvectors of a Particular Tridiagonal Matrix
Proposed by Fuzhen ZHANG, Nova Southeastern University, Fort Lauderdale, Florida, USA:zhang@nova.edu

Let A be then-by-n tridiagonal matrix with 2 on diagonal and 1 on super- and sub-diagonals. That is,aii = 2, aij = 1 if j = i + 1
or j = i− 1, andaij = 0 otherwise,i, j = 1, 2, · · · , n. Find all eigenvalues and corresponding eigenvectors ofA.

Problems 31-1 through 31-5 are on page 44.
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as text, and(b) with two paper copies by regular mail to Hans Joachim Werner,IMAGE Editor-in-Chief, Department of Statistics, Faculty of
Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany.Problems 31-6 through 31-8 are on page 43.

Problem 31-1: A Property of Linear Subspaces
Proposed by J̈urgen GROß and G̈otz TRENKLER, Universiẗat Dortmund, Dortmund, Germany:

gross@statistik.uni-dortmund.de trenkler@statistik.uni-dortmund.de

In Groß (1999, Corollary 2) the following is stated: IfU andV are linear subspaces ofCm, then

Cm = [U ∩ (U⊥ + V ⊥)]⊕ [V ⊕ (U⊥ ∩ V ⊥)],

where “⊕” indicates the direct sum of two subspaces and “⊥” denotes the orthogonal complement. Is this decomposition also valid
in a Hilbert space? The Proposers of the problem have no answer to this question.

Reference
J. Groß (1999). On oblique projection, rank additivity and the Moore-Penrose inverse of the sum of two matrices.Linear and Multilinear Algebra,

46, 265–275.

Problem 31-2: Matrices Commuting with All Nilpotent Matrices
Proposed by Henry RICARDO, Medgar Evers College (CUNY) Brooklyn, New York, New York, USA:odedude@yahoo.com

If an n×n matrixA commutes with alln×n nilpotent matrices, mustA be nilpotent? Determine the whole class of these matrices.
(We recall that a square matrixN is said to be nilpotent wheneverNk = 0 for some positive integerk.)

Problem 31-3: A Range Equality for Block Matrices
Proposed by Yongge TIAN , Queen’s University, Kingston, Canada:ytian@mast.queensu.ca

Let A andB be two nonnegative definite complex matrices of the same size. Show that

range

 A B
...

...

A B


n×(n+1)

= range

 A + B
...

A + B


n×n

,

where all blanks are zero matrices.

Problem 31-4: Two Equalities for Ideals Generated by Idempotents
Proposed by Yongge TIAN , Queen’s University, Kingston, Canada:ytian@mast.queensu.ca

Let R be a ring with unity1 and leta, b ∈ R be two idempotents, i.e.,a2 = a andb2 = b. Show that

( ab− ba )R = ( a− b )R ∩ ( a + b− 1 )R and R( ab− ba ) = R( a− b ) ∩R( a + b− 1 ).

Problem 31-5: A Norm Inequality for the Commutator AA∗ −A∗A

Proposed by Yongge TIAN , Queen’s University, Kingston, Canada:ytian@mast.queensu.ca

and Xiaoji LIU, University of Science and Technology of Suzhou, Suzhou, China:xiaojiliu72@yahoo.com.cn

Let A be a square matrix and letA∗ andA† denote the conjugate transpose and the Moore-Penrose inverse ofA, respectively. A
well-known result asserts thatAA∗ = A∗A if and only if AA† = A†A andA∗A† = A†A∗, that is,A is normal if and only ifA is
both EP and star-dagger. Show that in general

||AA∗ −A∗A || 6 ||A||2( 2||AA† −A†A ||+ ||A∗A† −A†A∗ || ),

where|| · || denotes the spectral norm of a matrix. This inequality shows that ifA∗A† − A†A∗ → 0, AA† − A†A → 0, andA is
bounded, thenAA∗ −A∗A → 0.




