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SIAG LA Prize Winners Speed up
the QR Algorithm

by Nicholas J. Higham*

Karen Braman (University of Kansas), Ralph Byers
(University of Kansas), and Roy Mathias (College of
William and Mary) received the 2003 SIAM Activity Group
on Linear Algebra Prize for their paper “The multishift QR
algorithm. Part II: Aggressive early deflation” [1] at the
SIAM Conference on Applied Linear Algebra, held at the
The College of William and Mary, Williamsburg, July 15-
19, 2003. The citation of the Prize Committee, comprising
Ludwig Elsner (University of Bielefeld), Anne Greenbaum
(University of Washington, Seattle), Bo Kagstrom (Umea
University), Nick Trefethen (University of Oxford), and chair
Steve Vavasis (Cornell University), reads “This elegant paper
on solution of large dense eigenvalue problems blends theory
and computational experiments to significantly improve one
of the best established numerical algorithms.”

The QR algorithm for solving the nonsymmetric
eigenvalue problem is one of the jewels in the crown of
matrix computations. Nominated by Jack Dongarra and
Francis Sullivan [2] as one of the “10 algorithms with the
greatest influence on the development and practice of science
and engineering in the 20th century,” the QR algorithm has
allowed routine solution of the eigenvalue problem since its
invention in the early 1960s. As Beresford Parlett [3] points
out, the QR algorithm’s eminence stems from the fact that
it is a “genuinely new contribution to the field of numerical
analysis and not just a refinement of ideas given by Newton,
Gauss, Hadamard, or Schur.”

Anyone who computes eigenvalues by typing “eig(A)”
in MATLAB is invoking the QR algorithm, or more precisely
the LAPACK implementation, and for matrices up to 300-
by-300 they will obtain the result within less than a second
on a fast modern workstation. Dense eigenvalue problems
of much larger sizes arise in various applications, and for
dimensions up to 10,000 or so the QR algorithm is still
the method of choice for computing all the eigenvalues.
Unfortunately, since the number of floating point operations
is proportional to the cube of the dimension, execution times
for matrices at the upper end of this range are measured in
hours. But thanks to recent work by Braman, Byers, and
Mathias, execution times of the QR algorithm for matrices
of dimension a few hundred upwards are set to decrease
substantially.

Since the QR algorithm was first developed it has been
understood that deflation is essential to its success. Deflation
is the process of splitting the problem into smaller pieces
during QR iterations on the upper Hessenberg matrix. (For
efficiency, a full matrix is reduced to Hessenberg form

before carrying out the QR iteration.) Previously, deflation was
accomplished by zeroing tiny elements on the subdiagonal.
The key idea in this new work is to introduce carefully chosen
perturbations to reveal deflations that are not yet evident on the
subdiagonal. Braman, Byers and Mathias have developed clever
analysis and algorithmics to understand and make practical this
idea. Important to the success is strategically expending some
computational effort to look for early deflations and carefully
exploiting modern computer architectures in the implementation.
Their well-designed numerical experiments present convincing
evidence of the improvements that aggressive early deflation
can bring. In extreme cases, the cost of the QR algorithm on a
matrix of size 10,000 already in Hessenberg form is reduced by
two orders of magnitude.

The three prizewinners gave a joint presentation on their
work at the conference. Organized by a committee co-chaired
by Roy Mathias and Hugo Woerdeman (College of William and
Mary), and in cooperation with the International Linear Algebra
Society, the conference was the eighth in a successful series of
meetings that began in Raleigh, N.C. in 1982.

The next SIAM Conference on Applied Linear Algebra
will take place in 2006 in Germany in collaboration with
Gesellschaft fiir Angewandte Mathematik und Mechanik
(GAMM).
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Research Experiences with Undergraduates

by

Chi-Kwong Li
Department of Mathematics
College of William & Mary

Prelude

When first approached to write an article for IMAGE about
the REU program at William and Mary, | wasn’t sure there
was anything new for me to say, as the paper [JL] already
clearly described the program. But then, Hurricane Isabel
hit Virginia. The College was closed and computer systems
were down. This gave me some more time to think about
the project. I came up with the idea to focus the article on
some of my personal experience in doing research with
undergraduates. In the last 14 years, I have worked with 24
undergraduate students on a number of research projects; see
the reference list. For whatever it is worth, here is my story.

What types of undergraduate research programs have I
participated in?

I have participated in several different types of undergraduate
research programs including: National Science Foundation
(NSF) Research Experiences for Undergraduate (REU)
programs conducted in the summer, NSF supplementary
REU programs conducted during the academic year,
Honors projects for mathematics majors and the Wilson
Interdisciplinary research program at William and Mary.
Accordingly, 1 selected students or was selected by students
in a variety of ways.

For each of the summer NSF REU programs, eight to
nine students were recruited from different institutions. In the
first two days of the eight-week program, several potential
advisors would present their research projects. Students
would then have a meeting among themselves to determine
a matching between advisors and advisees. It is amazing that
it always worked well with students spread rather evenly
among the advisors.

The NSF supplementary REU opportunitiecs were
limited to William and Mary students. Sometimes I invited
outstanding students who were taking my courses to
participate, and other times I offered the vacancies to good
students who inquired about possible research opportunities.
The latter approach is the standard way to get students for
Honors projects and other research programs at our College.
Knowing that I am interested in advising Honors projects and
other undergraduate research projects, students would talk to
me about such possibilities. Usually, they were encouraged to
talk to other potential advisors as well. In any event, I did get
a number of good students working with me in this way.

What kind of research have I done with students?

It is not hard for readers, especially for those who know me, to
guess the answer: matrix analysis! Instead of boring the readers
with the technical details of various students’ projects, I will
only touch upon some of them later when I discuss why I think
that matrix analysis is a good theme for undergraduate research.
Here let me mention the few exceptional cases, that is, those
research projects with undergraduates with topics other than
matrix analysis.

In [LN], a student and I studied coding theory related to the
familiar Tower of Hanoi puzzle. This was actually an extension
of the student’s summer REU project at another university.
When 1 filled out the recommendation form of the other
university’s REU program for the student, one of the questions
was whether a faculty member at the student’s home university
would continue to work with the student after the summer if
the student would be interested in doing so. I said yes to the
question and the student was admitted to the REU program.
After she came back to William and Mary, she expressed
interest in continuing the research. So, I kept my promise, and
worked with her in the following academic year. The research
led to [LN], which contains a short proof of the result and the
answer to an open problem posed in a paper of the student and
her REU advisor.

In the spring of 1997, I taught a course in applied abstract
algebra covering topics including some coding theory and
cryptology. A student in my class was a double mathematics and
computer science major. The student was concurrently enrolled
in a computer science class concerning the implementation of
crypto systems. He was very interested in both the theoretical
and practical aspects of cryptology, and ended up doing an
Honors project on cryptology under the joint supervision of a
colleague in the computer science department and me. When he
graduated, he was hired by a software security company—of
course, with a salary much higher than mine. He later learned
that he was selected over many applicants with Masters degrees
because of his course work and research in cryptology. Two
years later, he and his colleagues made CNN news for cracking
an online casino by showing that the pseudo-random number
generator used to deal the poker game was very insecure.
They illustrated how one could predict the poker hands after
observing the game for an hour or so. This remains one of my
favorite stories for those abstract algebra students who do not
find abstract algebra interesting and useful!

Cont’d on page 5
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The Lanczos Method:
Evolution and Application S e
Louis Komzsik E e

“...I recommend this book to anyone who
wants to appreciate the often subtle
interactions between algorithm research and
engineering applications. For the engineer, it
comprehensively summarizes 25 years of
intellectual development in the understanding
of the basic Lanczos algorithm and its many
variants. For the numerical analysts, it
describes the variety of practical considerations, which are of
critical importance in such applications as structural analysis.”
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Iterative Methods for Sparse
Linear Systems, Second Edition
Yousef Saad

Since the first edition of this book was published
in 1996, tremendous progress has been made in
the scientific and engineering disciplines
regarding the use of iterative methods for linear
systems. The size and complexity of the new
generation of linear and nonlinear systems arising
in typical applications has grown. Solving the
three-dimensional models of these problems using
direct solvers is no longer effective. At the same
time, parallel computing has penetrated these

—Horst Simon, Director, NERSC Division,
Berkeley National Laboratory.
“Detailed development of the method and its algorithmic structure,
illustrations by industrial grade examples make this book a welcome
addition to the literature on this important subject. The book is a
valuable reference...”
—Barna A. Szabo, Professor of Mechanics,
Washington University, St. Louis.

The Lanczos Method: Evolution and Application is divided into
two distinct parts. The first part reviews the evolution of one of
the most widely used numerical techniques in the industry. The
development of the method, as it became more robust, is
demonstrated through easy-to-understand algorithms. The second
part contains industrial applications drawn from the author’s
experience. These chapters provide a unique interaction between
the numerical algorithms and their engineering applications.

This is a valuable reference for numerical analysts and
engineers and can be used as a supplementary or reference text at
the graduate level. Readers should be familiar with basic linear
algebra and numerical analysis.

Contents: Preface; Part I: Evolution. Chapter 1: The classical Lanczos
method; Chapter 2: The Lanczos method in exact arithmetic; Chapter 3: The
Lanczos method in finite precision; Chapter 4: Block real symmetric Lanczos
method; Chapter 5: Block unsymmetric Lanczos method; Part I1: Applications.
Chapter 6: Industrial implementation of the Lanczos method; Chapter 7: Free
undamped vibrations; Chapter 8: Free damped vibrations; Chapter 9: Forced
vibration analysis; Chapter 10: Linear systems and the Lanczos method; Closing
Remarks; A Brief Biography of Cornelius Lanczos; Bibliography; Index.

2003 - xii + 87 pages - Softcover - ISBN 0-89871-537-7
List Price $42.00 - SIAM Member Price $29.40 - Order Code SE15

%, TO ORDER
¢ Use your credit card (AMEX, MC, and VISA): Go to www.siam.org/catalog * Call toll-free in USA/Canada:
800-447-SIAM - Worldwide, call: 215-382-9800 * Fax: 215-386-7999 * E-mail: service@siam.org. Send check
or money order to: SIAM, Dept. BKIL03, 3600 University City Science Center, Philadelphia, PA 19104-2688.

application areas as it became less expensive and
standardized. Iterative methods are easier than direct solvers to
implement on parallel computers but require approaches and
solution algorithms that are different from classical methods.

Iterative Methods for Sparse Linear Systems, Second Edition
gives an in-depth, up-to-date view of practical algorithms for
solving large-scale linear systems of equations. These equations
can number in the millions and are sparse in the sense that each
involves only a small number of unknowns. The methods
described are iterative, i.e., they provide sequences of
approximations that will converge to the solution.

This new edition includes a wide range of the best methods
available today. The author has added a new chapter on multigrid
techniques and has updated material throughout the text.
Material on older topics has been removed or shortened,
numerous exercises have been added, and many typographical
errors have been corrected. The updated and expanded
bibliography now includes more recent works emphasizing new
and important research topics in this field.

Contents: Preface to the Second Edition; Preface to the First Edition;
Chapter 1: Background in Linear Algebra; Chapter 2: Discretization of Partial
Differential Equations; Chapter 3: Sparse Matrices; Chapter 4: Basic Iterative
Methods; Chapter 5: Projection Methods; Chapter 6: Krylov Subspace Methods,
Part I; Chapter 7: Krylov Subspace Methods, Part II; Chapter 8: Methods
Related to the Normal Equations; Chapter 9: Preconditioned Iterations; Chapter
10: Preconditioning Techniques; Chapter 11: Parallel Implementations; Chapter
12: Parallel Preconditioners; Chapter 13: Multigrid Methods; Chapter 14:
Domain Decomposition Methods; Bibliography; Index.

2003 - xviii + 528 pages - Softcover - ISBN 0-89871-534-2
List Price $89.00 - SIAM Member Price $62.30 - Order Code OT82

SIlAM Society for Industrial and Applied Mathematics
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Research Experiences, cont’d from page 3

The next case is just half exceptional because the story
started with chaos and ended in matrices. In the spring
of 1996, an economics student approached me about the
possibility of doing a Wilson interdisciplinary research
project in the following summer. Based on a Time magazine
article that had piqued her interest, she wanted to work on
chaos theory and economics. I frankly told her that I knew
nothing about chaos, but I was willing to learn some chaos
theory with her in addition to learning some economics
theory from her! She obviously realized that it would be
too heavy a burden for both of us. So, she looked into other
possibilities, and found another article about game theory and
auctions in Forbes magazine. When she asked me about that,
I told her that at least I knew matrix games. So, we ended
up doing a project in game theory and economics. In fact,
I was so fond of the subject that I taught a topics course in
game theory in the following semester in which I discussed
some applications of game theory in biology. Some results
obtained in that summer and the following semester led to
[LNa]. It was quite an educational experience for the student
as well as myself.

Why is matrix analysis a good theme for undergraduate
research?

In my opinion, matrix analysis is an excellent topic
for undergraduate research. It does not require a lot of
background to understand some research questions, yet it
is linked to different topics such as group theory, operator
theory, operator algebras, and numerical analysis, and it offers
endless opportunities for further research. In fact, the many
different aspects of matrix analysis can attract students with
different backgrounds. In my work, for students with strong
abstract algebra background, we studied homomorphisms or
linear/additive maps that leave invariant symmetric groups,
alternating groups, semi-groups of stochastic matrices, and
other related nonnegative matrix sets [AM,ChL1,ChL2];
for students interested in complex analysis and functional
analysis, we studied numerical range [LMR2,LSS] or
isometry problems [CL2,Cet,KL,LM]; for students interested
in combinatorics, we studied topics in combinatorial matrix
theory [CPLLR,SS]; for students interested in convex
analysis, we studied geometrical structure of matrix sets
[HL]; and for students with a computer science background,
we used scientific computation to study matrix problems
[CL1,CPHe]. In fact, advising undergraduate research
projects in matrix analysis well manifests the theory of
Confucius that “students should be educated and trained
according to their strength”. (This is truly from Confucius
and not from a fortune cookie!)

According to the nature of the research problems,
students may need to use or develop techniques in group
theory, combinatorial theory, functional analysis or scientific

computation, in the matrix analysis research projects. This
exposed students to different research areas in addition to
matrix analysis, and might influence their future choices of
research topics in graduate studies. Moreover, the techniques
acquired in the projects might be useful in their future research
in mathematics or other subjects. For example, the matrix
techniques developed in [LNa] were later used in the graduate
study in economics by the student (see [Na]).

What have students and I gained by doing undergraduate
research projects?

Students received stipends for their summer research, and
Honors project students graduated with honors. Students
acquired some experience in mathematical research and got a
glimpse of how professional mathematicians work. In some
cases, the research led to the excitement of their first publication.
In any event, students at least learned some mathematics that
might be useful for their future study. On the one hand, I am
glad to see that most of my undergraduate research students
have gone on to graduate school to study mathematics and
related subjects. On the other hand, as long as the students have
seen a real picture of what mathematical research is about, I do
not have any problem of seeing them pursue directions other
than mathematics.

I received a stipend for doing the summer REU projects.
Other projects had no financial compensation. Nevertheless,
successful research projects led to research papers, a better CV
for tenure, promotion, and even for faculty award nominations.
Similar to my other research projects, it was most enjoyable
to develop with collaborators new ideas to solve problems.
Moreover, | have acquired a lot of knowledge through studying
new topics with students or through consultation with colleagues
on problems arising in the research. All of these are good. But
there is a more primitive motivation for me to do research with
undergraduates. Researchers, educators, and grant agencies
may emphasize that undergraduate experiences can help train
young scientists. In comparison, | have a more elementary goal:
to let more young people know what mathematics research is
about.

I like mathematics, I like mathematics research, I like
to share my research experiences with others, and I feel that
appreciating mathematics should not be restricted to a small
group of people. Not everyone has to be a musician, but many
people can appreciate good music. Similarly, I would like to see
that more people can appreciate mathematics and mathematical
research work—though not every one has to be a research
mathematician!

Cont’d on page 7
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Linear Algebra: An Interactive Approach
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M Interact “F 480 pages. Casebound. ©2004. ISBN: 0-534-40915-6.
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5 This new text from Jain and Gunawardena introduces matrices as a handy

tool for solving systems of linear equations and demonstrates how the utili-
ty of matrices goes far beyond this initial application. Students discover that
hardly any area of modern mathematics exists where matrices do not have
some application. Flexible in its approach, this book can be used in a tradi-
tional manner or in a course using technology.

B An Accompanying CD-ROM Contains the Entire Contents of the
Book: Students have all of the content of the text in a searchable,
customizable format available at their fingertips, which can be
highlighted and annotated by the student, just like a print text-
book. The CD-ROM also includes MATLAB® drills, concept
demonstrations, solutions, projects, and chapter review questions.

B A Book Companion Web Site Enriches the Learning Experience:
A Book Companion Web site linked to the CD-ROM provides
additional problems, projects, and applications, as well as support
for Maple® and Mathematica®.

LINEAR ALGEBRA Linear Algebra: A Modern Introduction

A MODERN INTRODUCTION DaVid Poole, Trent University
763 pages. Casebound. © 2003. ISBN: 0-534-34174-8.

In this innovative new linear algebra text, David Poole covers vectors and
vector geometry first to enable students to visualize the mathematics while
they are doing matrix operations. By seeing the mathematics and under-
standing the underlying geometry, students develop mathematical maturity
and learn to think abstractly. An extensive number of modern applications
represent a wide range of disciplines and allow students to apply their
knowledge.

B Vectors and Vector Geometry Start in Chapter 1: Chapter 1 is
a concrete introduction to vectors. The geometry of two- and
three-dimensional Euclidean space then motivates the need
for linear systems (Chapter 2) and matrices (Chapter 3).

B Flexible Approach to Technology: Students are encouraged,
but not required, to use technology throughout the book.
Where technology can be used effectively, it is not platform-
specific. A Technology Bytes appendix shows students how to
use Maple®, Mathematica®, and MATLAB® to work some of the
examples in the text.

Detailed table of contents for both texts are available at our THOMSON
New for 2004 Web site: http://www.newtexts.com —— -
BROOKS/COLE

Request a review copy at 800-423-0563
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Research Experiences, cont’d from page 5
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C.K. Li and P Mehta, Permutation invariant norms,
Linear Algebra Appl. 219 (1995), 93-110, (based on
an REU project).

[LMR1] C.K. Li, P Mehta, and L. Rodman, Linear operators

preserving the inner and outer c-spectral, Linear and
Multilinear Algebra 36 (1994), 195-204.

[LMR2] C.K. Li, P Mehta, and L. Rodman, A generalized

[LNa]

[LSS]

[LW]

[Na]

numerical range: The range of a constrained
sesquilinear form, Linear and Multilinear Algebra 37
(1994), 25-50, (based on an REU project).

CK. Li and S. Nataraj, Some matrix techniques
in game theory, Mathematical Inequalities and
Applications 3 (2000),133-141, (based on a Wilson
interdisciplinary research project).

C.K. Li and I. Nelson, Perfect Codes on the Towers of
Hanoi Graph, Bulletin of the Australian Math. Soc. 57
(1998), no. 3, 367-376, (based on an Honors thesis).
CK. Li and C. Pohanka, Estimating the Extreme
Singular Values of Matrices, Mathematical Inequalities
and Applications 1(1998), 153-169, (based on an
Honors thesis).

CK. Li, S. Shukla, and 1. Spitkovsky, Equality of
higher numerical ranges of matrices and a conjecture
of Kippenhahn on hermitian pencils, Linear Algebra
Appl. 270 (1997), 323-349, (based on an REU
project).

C.K. Li and W. Whitney, Symmetric overgroups of S
in O , Canad. Math. Bulletin 39 (1996), 83- 94, (based
on an REU project).

S. Nataraj, Age Bias in Fiscal Policy: Why Does the
Political Process Favor the Elderly?, Ph.D. thesis,
Stanford University, 2002.

O. Shenker and K. G. Spurrier, Notes on ray-
nonsingularity, REU report (Advisors: C.K. Li and T.
Milligan), William and Mary, 2003.
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The Eighth SIAM Conference on
Applied Linear Algebra
Williamsburg, VA: 15-19 July 2003

The 8th SIAM Conference on Applied Linear Algebra
was held July 15-19, 2003, at the College of William and
Mary, Williamsburg, VA, USA. There were 246 registered
participants from academia, government laboratories and
industry. Geographically, the participants were from North
America, Europe and Asia. The co-chairs of the meeting were
Roy Mathias and Hugo Woerdeman.

The keynote speakers (including two ILAS speakers)
were George Cybenko (Dartmouth College), Heike
Fassbender (TU Braunschweig), Andreas Frommer
(Bergische Universitdt-Gesamthochschule Wuppertal), Rich
Lehoucq (Sandia National Laboratories), Judith McDonald
(Washington State University; ILAS Speaker), James G.
Nagy (Emory University), Michael Overton (New York
University), Bryan Shader (University of Wyoming; ILAS
Speaker), G. W. (Pete) Stewart (University of Maryland), and
Gilles Villard (CNRS/EcoleNormale Superieure de Lyon).

In addition there were 26 minisymposia with a wide
range of topics, including Combinatorics in Linear Algebra,
Linear Algebra in Computational Biomedicine, Matrix
Inequalities and Applications, Recent Developments in
Sparse Matrix Algorithms, Indefinite Inner Products and
Applications, Linear Algebra in Data Mining and Information
Retrieval. The wide variety of topics and the wide variety of
backgrounds of the participants resulted in a scientifically
exciting atmosphere.

The SIAM Activity Group on Linear Algebra (SIAG
LA) Prize was awarded to the paper by K. Braman, R.
Byers, and R. Mathias, “The multishift QR algorithm. II.
Aggressive early deflation.” SIAM J. Matrix Anal. Appl. 23
(2002), 948--973. The three authors gave an excellent joint
presentation on their awarded work.

The SIAG LA business meeting was held over lunch and
was attended by approximately 40% of the participants, which
led to some lively discussions. The business meeting featured
also Junping Wang, NSF, Computational Mathematics and
Applied Mathematics.

The social events included a welcome reception and a
banquet featuring Roger Horn. Roger did an excellent job
of entertaining the crowd and made thankful use of some of
the snafus in the organization, which included having two
keynote presentations with the same title.

For the first time in this series of conferences, the
proceedings were published online http://www.siam.org/
meetings/1a03/proceedings/.

The next SIAM Conference on Applied Linear Algebra
will be held in Diisseldorf, Germany, in 2006. It will be the
first time the meeting will be held outside of the US.

Twelfth International
Workshop on
Matrices and Statistics
ITWMS-2003

W
=74

RN

Dortmund, Germany: 5-8 August 2003

Report by Hans Joachim Werner

The Twelfth International Workshop on Matrices and
Statistics (IWMS-2003) was held at the University of
Dortmund (Dortmund, Germany), 5-8 August 2003, during
the week immediately before the 54th Biennial Session of
the International Statistical Institute (ISI) in Berlin. This
Workshop, which was hosted by the Department of Statistics
at the University of Dortmund, had been cosponsored by the
Bernoulli Society as an ISI satellite meeting, and had been
endorsed by the International Linear Algebra Society (ILAS).

The International Organizing Committee for this workshop
consisted of R. William Farebrother (Shrewsbury, England),
Simo Puntanen (University of Tampere, Finland), George
P. H. Styan (McGill University, Montréal, Québec, Canada;
vice-chair), and Hans Joachim Werner (University of Bonn,
Germany; chair). The Local Organizing Committee (LOC)
at the University of Dortmund comprised Jirgen Grof3, Gotz
Trenkler (chair) and Claus Weihs. The Workshop Secretary was
Eva Brune.

The purpose of the workshop was to stimulate research and,
in an informal setting, to foster the interaction of researchers in
the interface between matrix theory and statistics. More than 45
participants from 15 different countries joined this workshop.
The Workshop was opened by Professor Dr. Eberhard Becker,
Rector of the University of Dortmund. This was followed
by plenary sessions of invited, short course and contributed
papers. The invited and short course speakers were Jerzy K.
Baksalary, Adi Ben-Israel, N. Rao Chaganty, Ludwig Elsner,
Bjarne Kjer Ersbell, Richard William Farebrother, Patrick
J. F. Groenen, Alexander Guterman, Stephen Pollock, Simo
Puntanen, George P. H. Styan, Julia Volaufovd and Roman
Zmyslony. The ILAS-Lecturer was Jerzy K. Baksalary. Another
25 papers were presented in several contributed paper sessions,
and 3 further papers were presented just by title. It is expected
that many of these papers will be published, after refereeing,
in Linear Algebra and lIts Applications. The Workshop
Programme can still be downloaded from the Workshop
website: www.statistik.uni-dortmund.de/IWMS/main.html.

On Wednesday, August 6, there was an Afternoon Outing
to Bochum which is a neighboring city of Dortmund. There,

Cont’d on page 10
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Workshop on Matrices and Stastics , cont’d from page 9

visiting the famous Mining Museum Bochum, we had a few
hours to imagine the hard work of coal miners. We started our
visit with an excellent guided tour down in a mine, followed
by some free time to walk on our own through the many
exhibition halls of this museum and to climb up a winding
tower. Up to the mid 1970’s the Ruhr region, Dortmund
lies on the north-west edge of the Ruhr, was one-sidedly
characterized by mining, steel and iron-making industries. In
the evening of the same day there was a Beer Taste and Test
at Hovels Brewery in downtown Dortmund. Afterwards a
delicious Workshop Dinner was served at the same place. Like
our Workshop in Lyngby (Denmark) last year, this Workshop

in Dortmund again provided an extremely good atmosphere to
stimulate contacts and exchange ideas.

The 13th International Workshop on Matrices and Statistics
(IWMS-2004), in Celebration of Ingram Olkin’s 8§0th Birthday,
will be held at Bedlewo, about 30 km (18 miles) south of
Poznan, Poland, from 18 to 21 August 2004. For further details
visit http://matrix04.amu.edu.pl.

The 14th International Workshop on Matrices and Statistics
(IWMS-2005) will be held at Massey University (Albany
Campus), Auckland, New Zealand, 29 March to 1 April 2005,
just before the 55th Biennial Session of the International
Statistical Institute (Sydney, Australia, 5-12 April 2005).

Photo of Participants in the 2003 Workshop on Matrices and Statistics

Photo by N. Rao Chaganty
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John William Strutt
and the Rayleigh Quotient

by Richard William Farebrother

The name of Lord Rayleigh, although frequently misspelled,
is well-known to computational linear algebraists for the
Rayleigh quotient. In his contribution to a panel discussion
at the 1995 AMS-SIAM Summer Seminar in Applied
Mathematics, Beresford Parlett (1995) noted that Lord
Rayleigh made this discovery when working on the first draft
of his Theory of Sound (1877-78) during a six-month trip to
Egypt in 1872-73. However, Parlett also noted that:

“There is an interation called the Raleigh
quotient interation but I don’t think he
[Lord Rayleigh] ever used it. He did use
a Raleigh quotient and he did do inverse
interation with a Raleigh quotient shift for
the first time.”

[T have retained the AMS-SIAM secretary’s misspellings of
‘interaction’ and ‘Rayleigh’].

John William Strutt was born in Langford Grove,
Malden, Essex, England on 12 November 1842, he succeeded
his father as the third Baron Rayleigh in June 1873, and died
at his home Terling Place, Witham, Essex, England on 30
June 1919. Because of his social background, he was not
able to follow a conventional academic career, but undertook
numerous scientific experiments in a private laboratory
at Terling Place. He accepted the posts of Professor of
Experimental Physics at the University of Cambridge from
1879 to 1884 and that of Professor of Natural Philosophy
at the Royal Institution in London in 1887. He was elected
President of the Royal Society in 1905 and Chancellor of the
University of Cambridge in 1908. Rayleigh was a member of
all the leading scientific societies and received many awards.
In particular, he was a founding member of the (British)
Order of Merit in 1902 and he and Sir William Ramsay were
awarded a Nobel Prize in 1904 for their discovery of the inert
gas argon.

As noted above, Lord Rayleigh’s title is sometimes
misspelled. For myself, I cannot recollect having had any
trouble with the spelling of his name—all of the milk
delivered to my parents’ home during the first 25 years of
my life was supplied by the local branch of Lord Rayleigh's
Dairies.

In 1885 Lord Rayleigh’s younger brother Edward
Strutt went into partnership with his friend Charles Parker
to found a farm management and land agent company that
still continues today. In 1886 the Strutt brothers set up Lord
Rayleigh's Farms. In 1887, they bought a London retail outlet
that formed the nucleus of Lord Rayleigh'’s Dairies. Lord

Rayleigh'’s Farms continued as an independent concern until
1996 when it became part of Mejeriselsk and Danmark Foods,
and in June 2000 they, in turn, merged with the Swedish-based
Arla Group.

For those interested in such matters, the glass milk bottles
of my childhood were marked with the words “Lord Rayleigh’s
Dairies” set one above another and enclosed in a truncated
rhombus. By contrast, the logo on the waxed cardboard milk
carton illustrated in anonymous (1986) consists of the words
“Lord Rayleigh’s Farms” set one above the other but without
a surround.

For further details of Lord Rayleigh’s life, see the (British)
Dictionary of National Biography, the Dictionary of Scientific
Biography, or “The MacTutor: History of Mathematics
Archive” website: wwwhistory.mes.standrews.ac.uk/History/
Mathematicians/Rayleigh.html. For further details of the
history of Lord Rayleigh’s Farms and Lord Rayleigh’s Dairies,
see Anonymous (1986) and Wormall (1999, pp. 111-119). See
Wilkinson (1965) for a discussion of the Rayleigh quotient.

Acknowledgement: I am indebted to Margaret Irvine for
downloading some of the material cited above, and to Richard
Shackle, the Local Studies Librarian at Colchester Library, for
identifying and supplying copies of Anonymous (1986) and
Chapter 19 of Wormall (1999).
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Book Review

Developments and Applications of Block Toeplitz Iterative
Solvers by Xiao-Qing Jin, Science Press (Beijing-New York)
& Kluwer Academic Publishers (Dordrecht-Boston-London),
2002, Series on Combinatorics and Computer Science, Vol.
2, ISBN 7-03-010719-5 (Science Press, Beijing) ISBN 1-
4020-0830-9 (Kluwer Academic Publishers), US $103 or
EUR $105, xiii+218 pp., hard cover.

Reviewed by Yimin Wei

This book includes the latest developments on iterative
methods for solving block Toeplitz systems. Such systems
have been widely used in the field of image processing,
numerical differential equations and integral equations, time-
series analysis and control theory. Iterative methods make it
possible to solve a large class of mn-by-mn block Toeplitz
systems in O(mn log (mn)) operations.

The book is divided into twelve chapters. Chapter |
introduces some basics about matrix computations and
some good circulant preconditioners for solving Toeplitz
systems. Chapter 2 studies block circulant preconditioners
and their use in solving systems block 7 u=b, where T
is an m-by-m block Toeplitz matrix with n-by-n blocks, via
the preconditioned conjugate gradient method. Chapter 3
discusses obtaining block circulant preconditioners for block
Toeplitz systems from the viewpoint of kernels. Chapter
4 proposes a fast algorithm with two preconditioners to
solve block Toeplitz systems with tensor structure and
gives an application to the inverse heat problem. Chapters
5 and 6 discuss the constrained and weighted Toeplitz least
squares problem, and ill-conditioned block Toeplitz systems,
respectively. Non-circulant preconditioners are studied in
Chapter 7 and multigrid methods are used for solving block
Toeplitz systems in Chapter 8. Chapters 9, 10 and 11 propose
some block preconditioners for partial differential equations
and ordinary differential equations with Krylov subspace
methods. Both theoretical analysis and numerical results are
given. Chapter 12 applies the preconditioning technique to
image restoration problems. Finally, the Bibliography of the
book contains many recent papers in the related area.

This book is the first on Toeplitz iterative solvers. Since
the book contains current developments and applications, it
should be of benefit to anybody with research interests in
block Toeplitz systems. Overall, I really enjoy this book and
I am sure that it will be useful to students and researchers
alike for many years to come.

Yimin Wei: ymwei@fudan.edu.cn
Department of Mathematics
Fudan University, Shanghai, China.

Math Books Published in 2003

As a service to IMAGE readers, below is a listing of
mathematics books published in 2003. The list was complied
from the Mathematics Online Bookshelf™. Additional
information about these books is available online at

http://www.mathbookshelf.com.
The titles are sorted by subject.

Applied Math
Theory of Scheduling. Conway,. R.; Maxwell, W.; Miller, L.,
Dover 2003, 0-486-42817-6.

Finite Element Methods for Structures with Large Stochastic
Variations. Elishakoff, 1., Oxford University Press 2003, 0-19-
852631-8.

The Universality of the Radon Transform, Ehrenpreis, Leon,
Oxford University Press 2003, 0-19-850978-2, 860 pp.

The Lanczos Method: Evolution and Application. Komzsik, L.,
SIAM 2003, 0-89871-537-7.

Chaos
Chaos: A Mathematical Introduction. Banks, J., Cambridge
University Press, 2003, 0-521-53104-7.

Collected Works
The Collected Papers of William Burnside. Neumann, Peter,
Oxford University Press, 2003, 0-19-850585-X.

Combinatorics
Surveys in Combinatorics 2003, Wensley, C., Cambridge
University Press 2003, 0-521-54012-7.

Discrete Convex Analysis. Murota, Kazuo. SIAM 2003,
0-89871-540-7, 389 pp.

Discrete Mathematics: Elementary and Beyond. Lovasz,
Laszlo; Pelikan, Jozsef; Vesztergombi, Katalin L., Springer
2003, 0-387-95585-2, 296 pp.

Automatic Sequences. Haeseler, Friedrich von, Walter de
Gruyter 2003, 3-11-015629-6, 191 pp.

Combinatorics. Merris, R., John Wiley. 2 ed., 2003,
0-471-26296-X.

Complex Analysis
Complex Variables: Introduction and Applications. Ablowitz,
M.; Fokas, A., Cambridge University Press.

Cont’d on page 13
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Books, cont’d from page 12

Complex Analysis. Kodaira, Kunihiko, Cambridge
University Press 2003, 0-521-80937-1.

Complex Analysis. Stein, E., Princeton University Press
2003, 0-691-11385-8, 392 pp.

Control Theory
Adaptive Control Design and Analysis. Tao, G., John Wiley
2003, 0-471-27452-6.

Real-Time Optimization by Extreme-Seeking Control. Ariyur,
K.; Krstic, M., John Wiley 2003, 0-471-46859-2.

Differential Equations
Differential Equations. King, A. C., Cambridge University
Press 2003, 0-521-81658-0, 500 pp.

Numerical Methods for Delay Differential Equations.
Bellen, A.; Zennaro, M., Oxford University Press 2003,
0-19-850654-6.

Differential Geometry

Introduction to Mobius Differential Geometry.
Hertrich-Jeromin, U., Cambridge University Press 2003,
0-521-53569-7.

Abstract Algebra
An Introduction to Abstract Algebra. Robinson, D., Walter de
Gruyter, 2003, 3-11-017544-4, 282 pp.

Galois Groups and Fundamental Groups. Schneps, L.,
Cambridge University Press 2003, 0-521-80831-6, 470 pp.

Finance

Financial Markets in Continuous Time. Dana, Rose-Anne;
Jeanblanc-Picque, Monique, Springer 2003, 3-540-43403-8,
330 pp.

Weak Convergence of Financial Markets. Prigent, J.-L.,
Springer 2003, 3-540-42333-8.

The Statistical Mechanics of Financial Markets. Voit, J.,
Springer 2 ed., 2003, 3-540-00978-7.

Fluid Dynamics

Generalized Riemann Problems in Computational Fluid
Dynamics. Ben-Artzi, M., Cambridge University Press 2003,
0-521-77296-6, 392 pp.

Fourier Analysis
Fourier Analysis: An Introduction. Stein, E., Princeton
University Press 2003, 0-691-11384-X, 320 pp.

Functional Analysis
An Introduction to the Theory of Operator Spaces. Pisier, Gilles,
Cambridge University Press 2003, 0-521-81165-1, 300 pp.

Geometry
The Changing Shape of Geometry. Pritchard, C., Cambridge
University Press 2003, 0-521-53162-4, 550 pp.

Dissections: Plane & Fancy. Frederickson, G., Cambridge
University Press 2003, 0-521-52582-9.

Graph Theory
Random Geometric Graphs. Penrose, M., Oxford University
Press 2003, 0-19-850626-0.

Four Colors Suffice: How the Map Problem Was Solved.
Wilson, Robin, Princeton University Press 2003, 0-691-11533-
8, 280 pp.

Group theory

Elementary Number Theory, Group Theory, and Ramanujan
Graphs. Davidoff, G., Cambridge University Press 2003,
0-521-53143-8.

Finite Structures with Few Types. Cherlin, Gregory;
Hrushovski, Ehud, Princeton University Press 2003, 0-691-
11332-7, 192 pp.

Information theory

Information Theory, Inference and Learning Algorithms.
MacKay, David, Cambridge University Press, 2003, 0-521-
64444-5, 550 pp.

Linear Algebra/Matrix Theory
Iterative Krylov Methods for Large Linear Systems.Vorst, H.,
Cambridge University Press 2003, 0-521-81828-1.

Linear Algebra and Geometry.: A Second Course. Kaplansky, I..
Dover 2003, 0-486-43233-5, 146 pp.

Iterative Solution of Large Linear Systems.Young, D., Dover
2003, 0-486-42548-7, 570 pp.

Fast Algorithms for Structured Matrices: Theory and
Applications. Olshevsky, Vadim, SIAM 2003, 0-89871-543-1,
433 pp.

Iterative Methods for Sparse Linear Systems. Saad, Yousef,
SIAM 2 ed., 2003, 0-89871-534-2, 528 pp.

Cont’d on page 14
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Mathematical Physics
Perturbation Techniques in Mathematics, Engineering and
Physics. Bellman, R., Dover 2003, 0-486-43258-0, 118 pp.

The Theory of Relativity. Pathria, R., Dover 2003,
0-486-42819-2.

Topics in Quantum Mechanics. Williams, Floyd, Springer
2003, 0-8176-4311-7, 416 pp.

Miscellaneous
Mathematical Constants, Finch, S., Cambridge University
Press 2003, 0-521-81805-2.

Number Theory
The Riemann Zeta-Function: Theory and Applications.
Ivic, A., Dover 2003, 0-486-42813-3.

The Art of the Infinite. Kaplan, Robert, Oxford University
Press.

Numerical Analysis
Practical Extrapolation Methods. Sidi, Avram, Cambridge
University Press 2003, 0-521-66159-5.

Optimization
Real-Time Optimization by Extreme-Seeking Control. Ariyur,
K.; Krstic, M., John Wiley 2003, 0-471-46859-2.

PDE’s

Soliton Equations and their Alegbro-Geometric Solutions.
Gesztesy, F.; Holden, H., Cambridge University Press

2003, 0-521-75307-4.

A Tutorial on Elliptic PDE Solvers and Their Parallelization.
Douglas, Craig, SIAM 2003, 0-89871-541-5, 135 pp.

Probability
Probability Theory. Jaynes, E. T., Cambridge University
Press, 2003, 0-521-59271-2, 650 pp.

Real Analysis
A Course in Modern Analysis and its Applications. Cohen, G.
Cambridge University Press 2003, 0-521-52627-2.

Counterexamples in Analysis. Gelbaum, B.; Olmsted, H.
Dover 2003, 0-486-42875-3.

A Concise Approach to Mathematical Analysis. Robdera,
M.A., Springer 2003, 1-85233-552-1, 374 pp.

Statistics

Data Analysis and Graphics Using R: An Example-Based
Approach. Maindonald, J.; Braun, J.,, Cambridge University
Press 2003, 0-521-81336-0.

Statistical Models. Davison, A. C., Cambridge University Press
2003, 0-521-77339-3, 680 pp.

Radial Basis Functions. Buhmann, M., Cambridge University
Press 2003, 0-521-63338-9.

Statistical Inference. Rohatgi, V., Dover 2003, 0-486-42812-5,
948 pp.

Bayesian Statistics 7. Bernardo, J., Oxford University Press
2003, 0-19-852615-6, 768 pp.

Statistical Thought: A Perspective and History. Chatterjee, S.,
Oxford University Press 2003, 0-19-852531-1.

Proceedings of the Third SIAM International Conference on
Data Mining. Barbara, Daniel, SIAM 2003, 0-89871-545-8,
347 pp.

Mathematical Statistics. Shao, Jun, Springer 2 ed., 2003,
0-387-95382-5.

Statistical Methods for Rates and Proportions. Fleiss, J.
John Wiley 2003, 0-471-52629-0.

Quantitative Methods in Population Health: Extensions of
Ordinary Regression. Palta, M., John Wiley 2003,
0-471-45505-9.

A Primer on Statistical Distributions. Balakrishnan, N;
Nevzorov, V., John Wiley 2003, 0-471-42798-5.

Order Statistics. David, H.; Nagaraja, H., John Wiley 3 ed.,
2003, 0-471-38926-9.

An Introduction to Multivariate Statistical Analysis.
Anderson, T., John Wiley, 3 ed., 2003, 0-471-36091-0.

Probability and Statistics for Computer Science, Johnson, J.,
John Wiley, 2003, 0-471-32672-0.

Statistical Size Distributions in Economics and Actuarial
Sciences., Kleiber, C.; Kotz, S., John Wiley 2003,
0-471-15064-9.
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Forthcoming Conferences and Workshops in Linear Algebra

The SVG Meeting: A Celebration

Stanford University
9-10 January, 2004

Alan George, Michael Saunders, and Jim Varah are turning
60 between July 2003 and January 2004. During the mid-
and late 1960s, these three young men decided to pursue
their doctoral studies in scientific computing at Stanford
University. In the approximately m decades that followed
(up to a modest rounding error), they have become close
colleagues and are well-established individuals in the field
of numerical computing. Alan is well known for his work on
sparse matrix computation, much of which is fundamental
in the area. Mike is one of the leading experts in large-scale
numerical optimization. Jim’s work has covered a wide
spectrum of numerical analysis and scientific computing.

A two-day workshop will take place at Stanford
University on January 9-10, 2004 to celebrate their birthdays
and accomplishments. Students, friends, and colleagues
are welcome to attend. Additional information about the
workshop is available at http://sccm.stanford.edu/svg/. If
you have any questions, comments, or suggestions about the
workshop, please feel free to contact one of the organizers.
In particular, if you would like to speak about our three
prospective senior citizens, feel free to volunteer; talks as
well as personal observations are equally welcome!

Also, we would like to fill a photo page with
remembrances of the honorees; we welcome the entire
gamut, from toddler to graduation days to the present. Please
send hard copies (we’ll be sure to return them!) or JPEGs,
etc, to Michael Friedlander.

The organizing committee is Gene Golub, Stanford
University (golub@sccm.stanford.edu), Michael Friedlander,
Argonne National Laboratory (michael@mecs.anl.gov), Chen
Greif, University of British Columbia (greif(@cs.ubc.ca), and
Esmond G. Ng, Lawrence Berkeley National Laboratory

(egng@lbl.gov).

SIAM Workshop on Combinatorial Scientific
Computing (CSC04)

San Francisco, CA
27-28 February, 2004

Combinatorial algorithms play a key, supporting role in many
aspects of scientific computing. Examples include orderings
for sparse direct methods, graph coloring and partitioning for
parallel computing, geometric algorithms in mesh generation
and string algorithms in computational biology. The enabling

importance of combinatorial algorithms in scientific computing
is often overlooked, and sub-communities of researchers with
overlapping interests are often unaware of each other. To
address this fragmentation and to strengthen the ties between
the scientific computing and discrete algorithms communities,
SIAM is sponsoring a workshop on Combinatorial Scientific
Computing (CSCO04).

CSC04 will be organized following the 11th SIAM
Conference on Parallel Processing for Scientific Computing
(PP04) on February 27 and 28, 2004. The workshop aims
to bring together researchers interested in applications of
combinatorial mathematics and algorithms to scientific
computing.

Plenary speakers include Richard Brualdi (University
of Wisconsin, Madison), Shang-hua Teng (University of
Illinois, Champaign-Urbana), and Dan Gusfield (University of
California, Davis).

Funds have been requested to provide partial travel support
for graduate students, post-doctoral fellows, and faculty in the
early stages of their careers. Further details are available at
www.siam.org/meetings/pp04/cscworkshop.htm

The organizing committee is comprised of John Gilbert
(University of California, Santa Barbara), Bruce Hendrickson
(Sandia National Laboratories), Alex Pothen (Old Dominion
University), Horst Simon (Lawrence Berkeley National
Laboratory), and Sivan Toledo (Tel-Aviv University).

Directions in Combinatorial Matrix Theory

Banff International Research Station
Banff, Alberta, Canada
6-8 May, 2004

A two-day workshop Directions in Combinatorial Matrix
Theory will be held May 6-8, 2004 at the recently opened Banff
International Research Station (BIRS). This Oberwolfach-style
workshop, participation in which is by invitation only, will
include up to 40 researchers whose interests lie at the interface
of combinatorics and matrix theory.

The workshop will provide researchers working in
combinatorial matrix theory an opportunity to present
accounts of their current research, to identify challenges for
the discipline to undertake, and to suggest new approaches to
explore. A refereed proceedings of the workshop will appear
in the Electronic Journal of Linear Algebra. The organizers of
the workshop hope that Directions in Combinatorial Matrix
Theory will serve to establish connections between both
individual researchers and between research areas, and so will
also promote collaboration and new research in this exciting
discipline.

Cont’d on page 16
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The organizing committee for this workshop comprises
Shaun Fallat (University of Regina), Hadi Kharaghani
(University of Lethbridge), Steve Kirkland (University of
Regina), Bryan Shader (University of Wyoming), Michael
Tsatsomeros (Washington State University), and Pauline van
den Driessche (University of Victoria).

International Algebraic Conference

Moscow, Russia
26 May-2 June, 2004

Moscow State University was founded by M.V. Lomonosov
on January 25, 1755. The Department of Algebra in the
Moscow State University was founded in 1929 by Professor
Otto Yu. Schmidt. In connection with these events the
Department of Algebra of Moscow State University is
organizing an International Algebraic Conference. The
conference will be held in the Main Building of Moscow State
University on Vorobievy Hills, Moscow, Russia from May 26
till June 2, 2004. The campus of Moscow State University
is located on the southwest of Moscow in one of the best
regions of the city. It can be reached from the international
airport Sheremetyevo-2 by taxi in less than an hour.

The topics of the conference are:
rings and modules, homological algebra, K-theory;
quantum groups and Hopf algebras;
group theory;
computer algebra;
invariants and algebraic transformation groups;
algebraic geometry;
commutative algebra and algebraic number theory;
linear algebra;
general algebraic systems.

If you plan to attend the conference, please send an e-mail
with the following information

1. Full name

2. Title

3. Affiliation

4. Mailing address

5. e-mail address

6. Title of your talk

7. Necessity of Russian visa

to artamon@mech.math.msu.su.

If you plan to give a talk, please also send by e-mail the
LATEX2e file of your abstract (up to 1 page).

Deadline for submission of an abstract is January 15, 2004.
Deadline for registration is February 15, 2004.

All information is also available at :
http://mech.math.msu.su/department/algebra/IAC04

The participants of the conference can stay at the Hotel of
Moscow University. The price at the moment is 10-25 USD per
night. There are also some hotels close to the university campus.
We regret that travel and daily expenses cannot be paid by the
organizing committee. The registration fee is 100 USD.

The organizing committee consists of: co-chairs V. N.
Latyshev, A. V. Mikhalev, E. B. Vinber, and V. A. Iskovskih;
vice-chairs M. V. Zaicev and A. A. Mikhalev; members Yu. A.
Bahturin, K. Brown, A. Facchini, E. S. Golod, A. Giambruno,
V. A. Iskovskih, V. V. Kirichenko, S. Liu, R. McKenzie, A.
Yu. Olshansky, F. V. Oystacyen, B. Plotkin, C. Ringel, A. V.
Yakovlev, V. I. Yanchevski, and R. Wisbauer.

The program committee consists of: co-chairs V. A.
Artamonov and A. L. Shmelkin; members J. Alev, L. Avramov,
A. Bak, L. B. Beasley, L. A. Bokut, R. A. Brualdi, A. Conte,
C. DeConcini, V. Dlab, K. Denecke, K. Goodearl, J. Kollar, O.
Kraft, Yu. I. Manin, V. T. Makrov, A. A. Nechaev, C. Procesi,
Yu. P. Rasmyslov, A. Roiter, V. N. Remeslennikov, P. Semrl, G.
B. Shabat, and I. P. Shestakov.

11t TLAS Conference

Coimbra, Portugal
19-22 July, 2004

The 11th Conference of the International Linear Algebra Society
will be held at the University of Coimbra, Portugal, July 19-22,
2004. The conference is dedicated to Richard Brualdi in honor
of his 65" birthday and his numerous contributions to Linear
Algebra, ILAS, and Mathematics.

The members of the organizing committee are: Danny
Hershkowitz (ILAS President), Hans Schneider, Thomas
Laffey, Raphael Loewy, lon Zaballa, Bryan Shader, Graciano
de Oliveira, Jos¢ Dias da Silva, Eduardo Marques de Sa and
Jodo Filipe Queird (Chair).

The members of the local organizing committee are A. P.
Santana, A. L. Duarte, C. Caldeira, J. C. Gallardo, O. Azenhas
and J. F. Queiro.

The plenary speakers are: Rajendra Bhatia (Indian
Statistical Institute New Delhi), Hal Caswell (Woods Hole
Oceanographic Institution), George Cybenko (Dartmouth
College), Erik Elmroth (Umeé University), Shmuel Friedland
(University of Illinois, Chicago), Peter Gritzmann (Technical
University Munich), Robert Guralnick (University of Southern

Cont’d on page 17
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California), Uwe Helmke (Wiirzburg University),
William Helton (University of California-San Diego),
Christian Krattenthaler (Universit¢ Claude Bernard
Lyon), Matjaz Omladic (University of Ljubljana),
Xavier Puerta (Polytechnic University Catalonia), Arun
Ram (University of Wisconsin-Madison), Joachim
Rosenthal (Notre Dame University), Siegfried Rump
(Technical University Hamburg-Harburg), Fernando
Silva (Lisbon University).

In addition there will be special lectures by
the Hans Schneider Prize winner Peter Lancaster
(University of Calgary), the SIAG LA speakers Beatrice
Meini (University of Pisa) and Julio Moro (Carlos III
University Madrid), and the Taussky-Todd speaker
Peter Semrl (University of Ljubljana).

The following mini-symposia will take place:
Group representations, organized by Ana Paula Santana
and Carlos André; Combinatorial Matrix Theory,
organized by Bryan Shader; Markov methods for search
engines, organized by Ilse Ipsen and Steve Kirkland;
and Non-negative matrices, organized by Thomas J.
Laffey.

The organizing committee will consider additional
suggestions for mini-symposia, as the scheduling
constraints allow.

The deadline for submission of contributed papers
is April 30, 2004. The pre-registration deadline is May
31, 2004. Information concerning accommodation,
abstract submission and registration will be posted at a
later stage at the site http://www.mat.uc.pt/ilas2004 and

Clock Tower at University of Coimbra

The Thirteenth International Workshop on
Matrices and Statistics

Bedlewo, Poland
18-21 August, 2004

The 13" International Workshop on Matrices and Statistics will
be held at the Mathematical Research and Conference Center
of the Polish Academy of Sciences in Bedlewo (near Poznan)
Poland, 18-21 August 2004. The workshop is in celebration of
Ingram Olkin’s 80th Birthday.

The purpose of this workshop is to stimulate research and,
in an informal setting, to foster the interaction of researchers
in the interface between statistics and matrix theory. This
workshop will include the presentation of both invited and
contributed papers on matrices and statistics. Also a special
session for graduate students will be arranged. It is expected
that many of these papers will be published, after refereeing,
in a special issue of Linear Algebra and its Applications
associated with this workshop.

For further information contact Augustyn Markiewicz by
e-mail amark@owl.au.poznan.pl or please visit the web site
http://matrix04.amu.edu.pl.

COMPSTAT 2004
16th Symp. of IASC

Prague, Czech Republic
23-27 August, 2004

Statistical computing provides the link between statistical
theory and applied statistics. As at previous COMPSTATS, the
scientific program will cover all aspects of this link, from the
development and implementation of new statistical ideas to
user experiences and software evaluation. The program should
appeal to anyone working in statistics and using computers,
whether in universities, industrial companies, government
agencies, research institutes or as software developers. A brief
synopsis of the scientific program for COMPSTAT 2004 is as
follows.

The Keynote Lectures are: S. Van Huffel (Katholieke
Universiteit Leuven) Bridging the gap between statistics,
computational mathematics and engineering; A. Barron (Yale
University) Function fitting with many variables: Neural
networks and beyond; Chun-houh Chen (Academia Sinica
Taipei) Dimension free data visualization and information
mining; W. Grossmann (Universitat Wien), M. Schimek
(Universitat Graz) and P. Sint (Austrian Academy of Sciences)
Thirty years of COMPSTAT and key steps of statistical
computing.

Cont’d on Page 19



Introducing a new text from one of the

leading names in

CONTEMPORARY

Linear Algebra LINEAR ALGEBRY,

TR

education!

CONTEMPORARY LINEAR ALGEBRA

Howard Anton, Drexel University
Robert C. Busby, Drexel University

0-471-16362-7, 670 Pages, Cloth, 2003

www.wiley.com/college/anton

Contemporary Linear Algebra
fosters mathematical
thinking, problem-solving
abilities, and exposure to
real-world applications.
Without sacrificing
mathematical precision,
Anton and Busby focus on
the aspects of linear algebra
that are most likely to have
practical value to the
student while not
compromising the intrinsic
mathematical form of the
subject. Throughout the
text, students are encouraged
to look at ideas and problems

from multiple points of view.

Features

e All major concepts are introduced early and revisited in more
depth later on. This spiral approach to concept development
ensures that all key topics can be covered in the course.

* The authors believe that a working knowledge of vectors in Rn
and some experience with viewing functions as vectors is the
right focus for this course. Material on Axiomatic vector
spaces appears towards the end so as to avoid the wall of
abstraction so many students encounter.

* The text provides students with a strong geometric foundation
upon which to build. In keeping with this goal, the text covers
vectors first then proceeds to linear systems, which allows the
authors to interpret parametric solutions of linear systems as
geometric objects.

* Looking Ahead elements provide students with insight into
the future role of the material currently being studied.

* A wide range of applications throughout give students a sense
of the broad applicability of linear algebra.

For more information

Go to www.wiley.com/college/anton, or contact your local Wiley sales
representative. You can find your rep online at
www.wiley.com/college/rep

To browse all of Wiley’s mathematics textbooks, go to
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Invited minisymposia topics are: Advances in
multiple time series modeling: present impact and future
potential; Applications of computational statistics methods;
Computational aspects in risk calculation and risk
assessment; Computational aspects of optimum model based
design of experiments; Computational aspects of robust
statistical methods; Computational search in classification
and clustering; Data visualization; E-statistics; Functional
data: modeling and applications; High-dimensional data
analysis; Machine learning and neural networks; Modern
trends of teaching statistics for the information society;
New approaches to model based cluster methods; PLS tools
for regressions and structural modeling; and Statistical
biocomputing.

There will be two tutorials: G. Golub (Stanford
University) Numerical methods for statisticians; and K.
Hornik (Vienna University of Technology) (R): The next
generation.

Participants are encouraged to present contributed
talks, or to submit posters on following topics: Algorithms,
Graphics, Partial least squares, Applications image analysis,
Resampling methods, Bayesian methods, Internet-based
methods, Robustness, Biostatistics, Machine learning,
Simulations, Classification, Metadata smoothing, Clustering,
MCMC, Spatial statistics, Data imputation, Model selection,
Statistical data mining, Data mining, Multivariate analysis,
Statistical software, Data visualization, Neural networks,
Teaching statistics, Design of experiments, Nonparametrical
statistics, Time series analysis, Dimensional reduction,
Numerical methods for statistics, Tree-based methods, E-
statistics, Official statistics, Web mining, Functional data
analysis, Optimization.

February 2, 2004 is the deadline for -electronic
submission of contributed and invited papers. For more
information see http://compstat2004.cuni.cz or write to
compstat2004@cuni.cz.

Gini—Lorenz Conference

Sienna, Italy
23-26 May, 2005

The University of Siena, Italy, will host the International
C. Gini and M. O. Lorenz Centenary Scientific Research
Conference from May 23 to May 26, 2005. The Organizing
Committee invites specialists to present papers in the
fields of Income and Wealth Distributions, Lorenz Curve,
Human Capital, Inequality and Poverty. A proposal should
include: title of the paper, abstract, names of the participants,
institutional affiliation, address, e-mail, phone and fax
number, and should be submitted to:

CR.ID.LR.E.

Department of Quantitative Methods

Piazza San Francesco 8 - 53100

SIENA, ITALY
or electronically to: ginilorenz05@unisi.it.

The language of the Meeting will be English, and the
abstract should also be submitted in English. It is planned to
publish a book with the papers selected after refereeing.

The scientific committee is: S. Kotz (Chairman), B. Arnold,
L. Biggeri, F. Cowell, C. Dagum, G. M. Giorgi, C. Kleiber, A.
Lemmi, E. Maasoumi, P. Moyes, J. Silber, D. J. Slottje.

The organizing committee is comprised of A. Lemmi
(Chairman), G. Betti, L. D’Alessandro, F. Farina, L. Fattorini,
L. Greco, M. Marcheselli, S. Naddeo, L. Neri, C. Pisani, S.
Vannucci, A. Vercelli.

The scientific secretariat is: C. Carmignani, A. Giannini,
V. Mazza.

Call for Submissions to IMAGE

As always, IMAGE welcomes announcements of upcoming
meetings, reports on past conferences, historical essays on
linear algebra, book reviews, essays on the development of
Linear Algebra in a certain country or region, and letters to
the editor or signed columns of opinion. IMAGE would like
to slightly expand its scope by including general audience
articles that highlight emerging applications and topics in
Linear Algebra. Contributions for IMAGE should be sent to
Bryan Shader (bshader@uwyo.edu) or Hans Joachim Werner
(werner@united.econ.uni-bonn.de). The deadlines are October
1 for the fall issue, and April 1 for the spring issue.

Electronic Journal of Linear Algebra

The Electronic Journal of Linear Algebra (ELA), a publication
of the International Linear Algebra Society (ILAS), is a refereed
all-electronic journal that welcomes mathematical articles of
high standards that contribute new information and new insights
to matrix analysis and the various aspects of linear algebra and
its applications. Refereeing of articles is conventional and of
high standards, and is being carried out electronically. The
Editors-in-Chief are Ludwig Elsner and Daniel Hershkowitz.
The web page is http://www.math.technion.ac.il/iic/ela.
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Recent Papers Published in ELA
Volume 10 (2003)

1. Stephen J. Kirkland, Conditioning properties of the
stationary distribution for a Markov chain, pp. 1-15.

2. Ravindra B. Bapat and Bing Zheng, Generalized
inverses of bordered matrices, pp. 16-30.

3. Tedja Santanoe Oepomo, 4 contribution to Collatz's
eigenvalue inclusion theorem for nonnegative irreducible
matrices, pp. 31-45.

4. Ji Young Choi, Luz Maria DeAlba, Leslie Hogben,
Benard M. Kivunge, Sandra K. Nordstrom and Mike
Shedenhelm, The nonnegative P -matrix completion
problem, pp. 46-59.

5. Hari Bercovici, Spectral versus classical Nevanlinna-
Pick interpolation in dimension two, pp. 60-64.

6. Zewen Zhu, Daniel C. Coster and Leroy B. Beasley,
Properties of a covariance matrix with an application to
D-optimal design, pp. 65-76.

7. Geir Dahl, 4 note on linear discrepancy, pp. 77-80.

8. Daniel Hershkowitz and Hans Schneider, One-sided
simultaneous inequalities and sandwich theorems

for diagonal similarity and diagonal equivalence of
nonnegative matrices, pp. 81-101.

9. Walter D. Morris, Recognition of hidden positive row
diagonally dominant matrices, pp. 102-105.

10. D. Steven Mackey, Niloufer Mackey and Francoise
Tisseur, Structured tools for structured matrices, pp. 106-
145.

11. Masaya Matsuura, 4 generalization of Moore-Penrose

biorthogonal systems, pp. 146-154.

12. C.M. da Fonseca, The path polynomial of a complete
graph, pp. 155-162.

13. Michael Neumann and Nic Ormes, Bounds for graph
expansions via elasticity, pp. 163-178.

14. Jan Snellman, The maximal spectral radius of a
digraph with (m+1)** edges, pp. 179-189.

15. Charles R. Johnson, Yonatan Harel, Christopher J. Hillar,
Jonathan M. Groves and Patrick X. Rault, Absolutely flat
idempotents, pp. 190-200.

16. Jean-Daniel Rolle, Optimal subspaces and constrained
principal component analysis, pp. 201-211.

17. Felix Goldberg and Gregory Shapiro, The Merris index of
a graph, pp. 212-222.

18. Michael Marks, Rick Norwood and George Poole, The
maximum number of 2 by 2 odd submatrices in (0,1)-matrices,
pp. 223-231.

19. Randall J. Elzinga, Strongly regular graphs: Values of A
and W for which there are only finitely many feasible (v, k, A,
W, pp. 232-239.

20. Gilbert J. Groenewald and Mark A. Petersen, J-spectral
factorization for rational matrix functions with alternative
realization, pp. 240-256.

21. Luz Maria DeAlba, Timothy L. Hardy, Leslie Hogben
and Amy Wangsness, The (weakly) sign symmetric P-matrix
completion problems, pp. 257-271.

22. K.A.M. Sayyed, M.S. Metwally and Raed S. Batahan, On
generalized Hermite matrix polynomials, pp. 272-279.

23. S.W. Drury, J.K. Merikoski, V. Laakso and T. Tossavainen,
On nonnegative matrices with given row and column sums, pp.
280-290.

24. Robert M. Guralnick, Chi-Kwong Li and Leiba X.
Rodman, Multiplicative maps on invertible matrices that
preserve matricial properties, pp. 291-319.
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IMAGE Problem Corner: Old Problems, Most With Solutions

We present solutions itMAGE Problems 29-3, 29-4, 29-1IMAGE 29 (October 2002), pp. 36 & 35], 30-1, 30-2, and 30-4 through 3®AGE 30

(April 2003), pp. 36 & 35]. Problems 28-3 and 30-3 are repeated below without solutions; we are still hoping to receive solutions to these problems.
We introduce 8 new problems on pp. 44 & 43 and invite readers to submit solutions to these problems as well as new problems for publication in
IMAGE. Please submit all material bo¢a) in macro-freeAIEX by e-mail, preferably embedded as text, to werner@united.econ.uni-bonn.de and

(b) two paper copies (nicely printed please) by classical p-mail to Hans Joachim Wes@E, Editor-in-Chief, Department of Statistics, Faculty

of Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Please make sure that your name as well as your e-mail an
classical p-mail addresses (in full) are included in both (a) and (b)!

Problem 28-3: Ranks of Nonzero Linear Combinations of Certain Matrices.
Proposed by ShmuelRfEDLAND, University of lllinois at Chicago, Chicago, lllinois, USAiedlan@uic.edu
and Raphael bEwy, Technion-Israel Institute of Technology, Haifa, Isrdekwy@technunix.technion.ac.il

Let
1 0 0 1 01 0 O 01 1 0 00 O 1
00 1 1 1 0 1 0 1 1 0 0 01 1 0
Bl = ) 32 - 3 B3 — 5 B4 =
01 1 O o1 1 -1 1 0 1 -1 o1 0 -1
11 0 -1 00 -1 -1 00 -1 O 1 0 -1 0

Show that any nonzero real linear combination of these four matrices has rank at least 3.

The Proposers of Problem 28-3 and the EditorsnAGE are still looking forward to receiving a solution to this problem;
the Proposers prefer a solution which does not depend on the use of a computer packageMuehnas

Problem 29-3: Isometric Realization of a Finite Metric Space
Proposed by S. W. Rury, McGill University, Montéal (Quebec), Canadadrury@math.mcgill.ca

Show that every finite metric space can be realized isometrically as a subset of a normed vector space.

Solution 29-3.1by Alexander KovaCEC, Universidade de Coimbra, Coimbra, Portug&bvacec@mat.uc.pt

Blumenthal & Menger (1970, p. 240, Exercise 6) claim thatrapoint metric spaceM = ({1,2,...,n},d) can be iso-
metrically embedded into the normed spa@®&"~!,| - |.). Indeed, letd;; = d(i,j), for i,j = 1,...,n. Define points
p* = (dk2,dys, - .. dgn) € R fork = 1,...,n. By definition of|- |, we havelp® —p’ | = max{|dk2—djal, . .., |dkn—djnl}-
Now, the traditional triangle inequalities in the metric spaceare actually equivalent tal; — d;;| < d;; for every set{i, j, k} of
not necessarily distinct points of. If k # j, thenk orjisin M \ {1} = {2,...,n}. Hence|p* — p/|~, = dy;. Clearly this is also
true if £ = j. With this exercise solved, so is Problem 29-3.

NOTES. Itwould be interesting to know from colleagues having Blumenthal (1953) available whether this exercise is there - even
solved? Kelly (1975) is a more modern source having material and many references on isometric embeddability of metric spaces.

References

L. M. Blumenthal & K. Menger (1970)Studies in GeometryV. H. Freeman, San Francisco.

L. M. Blumenthal (1953)Theory and Applications of Distance Geomeftarendon Press, Oxford.

L. M. Kelly, (Ed.) (1975).The Geometry of Metric and Linear Spackecture Notes in Mathematics 490, Springer-Verlag, Berlin.

A Solution to Problem 29-3 was also received from the Proposer S. W. Drury.
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Problem 29-4: Normal Matrix and a Commutator
Proposed by S. W. RurRY and George P. H. &AN, McGill University, Montéal (Qebec), Canada:
drury@math.mcgill.ca styan@math.mcgill.ca

Show that every. x n complex matrixA can be written in the forral = N + [H, N], whereN is normal and” is Hermitian, and

[H, N] denotes the commutatéf N — N H.

Solution 29-4.1by the Proposers S. W.RURY and George P. H. &AN, McGill University, Montéal (Quebec), Canada:
drury@math.mcgill.ca styan@math.mcgill.ca

We consider the supremum of the functiBn— 3,,(B) = Z?Zl |b;;|? on the (compact) orbit oft under unitary similarity. Let
us suppose that this continuous function attains its maximum valBe ¥e argue by making variations &f of the formU* BU,

vV o
whereU = < 0 I) andV is a2 x 2 unitary block. It is easy to see th&4; must be a maximum point on the unitary similarity

orbit {V*B1,V;V € U(2)} for the functiongs.
We start by considering the case whéfés a variation of the x 2 identity matrix

L p
v=( 7)o,
—p 1
wherep is a small complex number. This leads to
I —p\ (b1 b2 I p
p 1 ba1  bao -p 1

bi1 —Pbia — pba1r  bia + p(bi1 — ba2)
(o g )+ o).
ba1 +P(b11 — baz)  bag + Pbia + pbar

V*BnV

In turn, this gives
Bo(V*B11V) = |b11|* + |baa|? + 2Rp((baz — b11)ba1 + (baz — b11)b12) + O(|p|?).

Sincesy(V* By, V) takes its maximum value when= 0, it follows that
(bag — b11)ba1 + (baa — b11)b12 = 0. 1)

cosf wsinf

In the casé;; = be, @ more detailed analysis (which we omit) usivig= < > whered is real andw is a

—wsinf  cos
complex number of absolute valuiereveals thaB;; cannot be local maximum point unless the off-diagonal elemgnatandbs;
both vanish.

The pair{1, 2} can be replaced by an arbitrary p&ji k}. We therefore define

0 |f bjj = bkk‘l
hjk = bjk:

. 2)
otherwise. (
brk — by

It follows from the generalized form of (1) that,; = hj;, and from (2) thati;; = 0. We can therefore writé; ;, = b;;5,; +
hjr(bri — bj;), effectively B = D + [H, D], whereD is diagonal and? is Hermitian. Applying a unitary similarity now allows us
to write A in the desired form.

Solution 29-4.2by Lajos LAszLO, Eotvds Lorand University, Budapest, Hungariiszlo@numanal.inf.elte.hu

The statement is nothing else than the first order necessary conditidintédoe the best normal approximation4an the Frobenius
norm, as can e. g. be found in Ruhe (1987).

Reference
A. Ruhe (1987). Closest normal matrix finally fourBIT, 27, 585-598.
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Problem 29-11: The Minimal Rank of a Block Matrix with Generalized Inverses
Proposed by YonggelAN, Queen’s University, Kingston, Ontario, Canadaian@mast.queensu.ca

Let (-)~ denote generalized inverse. Show that

. A= C™
Airglin’Ci rank <B_ 0 ) = max {rank(A), rank(B) 4 rank(C)}.

Solution 29-11.1by the Proposer YonggelAN, Queen’s University, Kingston, Ontario, Canadaian@mast.queensu.ca

A matrix X is a generalized inverse éf if M XM = M, and is henceforth denoted By —. The general expression fdf — can
be written as\/ — = MT + Fy;U + V Ey;, whereM 1 is the Moore-Penrose inverse df, Fyy = I — MTM, Eyy = I — MM,
andU andV are two arbitrary matrices of appropriate size. Because ~ M = M, it follows thatrank(A ~) > rank(M). Note

A B A B
that for any bordered matri o0 ) whereA, B andC arem x n, m x k andl x n matrices, respectivelyank (C 0 ) >
max {rank(A), rank(B) + rank(C)}. Hence
A= C~

B~ 0

min  rank
A—-,B—,C-

) > max {rank(A7), rank(B~) + rank(C ™)} > max {rank(A), rank(B) + rank(C)}.  (3)

We next show that the lower bound on the right-hand side of (3) is attainabl& tet Bt + VEg andC~ = Ct + F-U, where

A- =
U andV are arbitrary, and substitute them iréoB 0 ) to get
A= C~ A~ Ct+ FcU A= ¢t 0 Fe
= = + V(FE 0)+ Uuo I;). 4
(B— 0) (BMVEB 0 ) (BT 0) (Ik) {5z 0) <0> (0 %) @
It is shown in Tian (2002b) that
A
min rank( A — B1 X1C) — BoXoCs ) =rank [ C; | + rank(A B; Bs)
1 02
A B
A Bl A Bl B2
+ max < rank — rank —rank| C; 0 |,
CQ 0 Cz 0 0
Cy 0
A B,
A Bg A Bl B2
rank — rank —rank| C; 0
Cl O C1 0 0
Cy 0

Applying this result to (4) with any fixedl~ and simplifying gives

S C e— "VWizs o)+ (v 1
poin rank{ o) < min ran B 0o + Ik) (Ep 0)+ ( 0 ( z))
= rank(B) + rank(C) + max {0, rank(A™) — rank(A™ B) — rank(CA™)}.

Therefore
A-

min rank (
B-

4o mim CO_ ) < rank(B) + rank(C') 4+ max {0, Iﬂi}l [rank(A™) — rank(A~ B) — rank(CA7)]}. (5)

Notice thatA~ AA~ is also a generalized inverse 4f ReplaceAd™ in rank(A~) — rank(A~ B) —rank(C A7) in (5) by A~ AA~.
Sincerank(A~AA™) = rank(A4), rank(A~ AA~ B) = rank(AA~ B), andrank(CA~AA~) = rank(C A~ A), it follows that

rﬁi}l [rank(A~) — rank(A~ B) — rank(C'A7)] < rank(A4) — max [rank(AA~ B) + rank(C A~ A)]. (6)
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Note that
AA"B=AA'"B+ AVEALB, CA—A=CA'A+ CFAUA,

whereU andV are arbitrary. Applying
A
max rank (A + BX(C') = min {rank(A B), rank<c>}

[see Tian (2002a)] tol A~ B andC A~ A and simplifying gives

max rank(AA™B) = max rank(AA'B + AV E4B) = min {rank(A), rank(B)}, )]

max rank (CA™A) = max rank(CATA + CF4UA) = min {rank(A), rank(C)}. (8)
Combining (6) with (7) and (8) gives
Iﬂi}l [rank(A™) —rank(A™ B) —rank(CA™)] < max {—rank(A), —rank(B), —rank(C'), rank(A) —rank(B) —rank(C)}. (9)
Substituting (9) into (5) and simplifying gives
min rank(A_ “ ) < max{rank(A), rank(B) + rank(C)},
A-,B—,C— B 0
and so, in view of (3), the claimed result.

References

Y. Tian (2002a). The maximal and minimal ranks of some expressions of generalized inverses of n&utitesast Asian Bulletin of Mathematics
25, 745-755.

Y. Tian (2002b). The minimal rank completion oBax 3 partial block matrix.Linear and Multilinear Algebra50, 125-131.

Solution 29-11.2by Hans Joachim \WRNER, Universitit Bonn, Bonn, Germanyverner@united.econ.uni-bonn.de

THEOREM1. Let

(e )
H =
Cc 0
be a given block partitioned real matrix. Define
A= C™
GA™,B7,C7):= <B 0 ) and g(A™,B7,C7) :=rank(G(A™,B7,C7)).

Then

Airgiﬁn07 g(A™,B7,C7) = max{rank(A), rank(B) 4 rank(C)}.

Our proof of this result will be based on the geometry of generalized inversion. For the sake of clarity as well as for easier
reference, we therefore begin with introducing some notation and stating some auxiliary results.

Let R™ andR™*"™ denote the set ai-dimensional real column vectors and the setok n real matrices, respectively. Given
A e R™ " let A, R(A), N(A), andrank(A) denote the transpose, the range (column space), the null space, and the rank,
respectively, ofA.

Let M and A be linear subspaces R*. Then M-+ will stand for the orthogonal complement f in R™ (with respect to the
usual inner product), and M NN = {0}, thenM & N will denote the direct sum of and . Next, if /' is a direct complement
of M (i.e.,,R" = M @ N), thenPx » Will denote the well-defined (generally oblique) projector oMbalong . We note that
Pu n may be defined by yu = wif u € M andPypu = 0if u € N; see, e.g., Rao and Mitra (1971, pp. 106-113). We
recall that any projectaPa,  is an idempotent matrix, i.e{PM,N)2 = P n, and that conversely every idempotent maffixs
a projector, namely’ = Prp) a/(p)- Itis also pertinent to mention thaPy v) = Prripqe. If N = M, then we briefly write
Py for the orthogonal projector ont®1, i.e. Py := Py a4+ . The dimension of1 will be denoted bylim(M).
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For a givend € R™*™ and for given linear subspacéd andN of R™, it is convenient to denote byt + N, AM, N (A), and
R.(A), respectively, the Minkowski sum g¢1 and\/, the image of\ underA, the set of all direct complements.Af(A), and the
set of all direct complements @(A4). We note that M + A= = M- N NL (MNN)E = ML + N, and thatv+ € M-
whenevertM C N. We further recall thaR(A4)+ = N (A’) and N (4)1 = R(A").

For givenA € R™*™, M € N (A) andS € R.(A), consider the matrix equations

(G1) AXA=4, (G2) XAX=X, (GM) XA=Pyrw), (GS) AX = Priays.

Suppose tha) # n C {1,2, M,S}. Then An will denote the set of all those matricés which satisfy equation§Gi) for all

i € n. Amatrix X € An is called an-inverseof A and is denoted byl”. {1}-inverses are usually callegeneralized inverses

or g-inversesand are also denoted by~. For an extensive discussion of the theory of g-inverses, we refer, e.g., to the books by
Ben-Israel and Greville (1974, 1980, 2003), Hartung and Werner (1984), Pringle and Rayner (1971), Rao and Mitra (1971); for a
geometric approach, to Werner (1977, Chapter 1) and Rao and Yanai (1985); and for a projector theoretical one e.g. to the pape
by Langenhop (1967). Only for the sake of clarity and for easier reference, a few basic results are summarized in Theorem 2 (cf
Werner (1986), see also Werner and Yapar (1996)).

THEOREM2. For A € R™*™, M € N (A) andS € N.(A) we have the following results.

(a) The{2, M, S}-inverse ofA exists uniquely. Thé2, R(A’), N'(A’)}-inverse ofA coincides with the Moore-Penrose inverse
of A and is usually denoted by'.

(b) Any{M }-inverse ofA and likewise any{S}-inverse ofA is always a{1}-inverse ofA. Conversely, for eackil }-inverseX
of A there uniquely exist am € N.(A4) and anS € R.(A) such thatX € A{M,S}. Moreover, ifX € A{M,S}, then
XAX = A2MS}

(€) If X € A{M,S},thenM = R(XA) C R(X), andN(X) C § = N(AX). In particular, XS C N(A). Moreover,
X = A2MS}if and only if R(X) = M and N'(X) = S. Hencerank(A~) > rank(A), and X € A{1,2} if and only if
X € A{1} andrank(X) = rank(A).

(d) If X € A{M, S}, thenX’ € A/{S*+, M*}, whereSt € N.(4') and M+ € R.(A').

(e) If Ais nonsingular, then the onl }-inverse ofA is its regular inverse, i.e4{1} = {A71}.

For given matricest € R™*" andB € R™**  itis well-known thatank(A, B) = rank(A)+rank(B)—dim [R(A) N R(B)].
Applying this result twice and observing that the rank of a matrix coincides with the rank of its transpose, we readily obtain the
following result.

LEMMA 3. For the rank of the partitioned matrikl of Theorem 1 we have

rank(H) = rank(A) + rank(B) + rank(C) — dim [R(C") N R(A")] — dim [(AN(C)) N R(B)].

COROLLARY 4. For the partitioned matrixd of Theorem 1 we have the following results:
(@) rank(H) > max{rank(A), rank(B) + rank(C)},
(b) rank(H) = rank(A) if and only if R(B) € AN(C) andR(C") C R(A’),
(c) rank(H) = rank(B) + rank(C) if and only ifrank(A4) = dim [R(C") N R(A")] + dim [R(B) N (AN (C))] or, equivalently,
if and only if ANV(C) C R(B),
(d) rank(H) = rank(B) ifand only ifC = 0 andR(A) C R(B),
(e) rank(H) = rank(C) if and only if B=0andR(4") C R(C"),
(f) rank(H) = rank(A) + rank(B) 4 rank(C) if and only if R(A") N R(C") = {0} andR(A) N R(B) = {0}.

PROOFE The claimed results follow easily from Lemma 3. We only prove (c). The rest is left to the reader. According to
Lemma 3,rank(H) = rank(B) + rank(C) if and only if rank(4) = dim[R(C") N R(A")] + dim [(AN(C)) N R(B)]. So it
suffices to show that this is equivalent £\ (C) C R(B). Clearly,dim [AN(C)] = dim [R(APyr(c))] = rank(APyc)) =

rank ((APy(c))’) = rank(Pyr(c)A’) = rank(A’) — dim [R(A") N R(C")] = rank(A) — dim [R(A’) N R(C")] or, equivalently,
rank(A) = dim [AN(C)] +dim [R(A") N R(C")]. Thereforerank(A) = dim [R(C") N R(A")] +dim [(AN(C)) N R(B)] if and

only if AN(C) C R(B). O

Applying Corollary 4(a) to the block partitioned matii(A~, B—, C~) of Theorem 1 and recalling Theorem 2(c) yields
g(A™,B7,C7) > max {rank(A™), rank(B~) + rank(C™)} > max {rank(A), rank(B) 4 rank(C)}. (10)
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In order to verify Theorem 1, we only have to show that the lower bound on the right-hand side of (10) is actually attainable for some
suitably chosen generalized inverses. Below we therefore wish to construct such a triplet of g-inverses that minimizes our objective
functiong(A—, B—,C ™). For that purpose, the following three results prove useful.

LEMMA 5. Let A and B be matrices with the same number of rows, sayThenrank(A) < rank(B) if and only if there exist
Sa € R:(A)andSp € R.(B) suchthatSg C Sa.

PROOF Let the block partitioned matrikR 4 5, R, 4, R.5, Sa,g], Whose set of columns constitute a basisit, be such that
R(Ra,g) =R(A)NR(B),R(Ra,B,Rra) = R(A) andR(Ra,p, Rr5) = R(B). ThenS4 g := R(S4,p) is adirect complement
of R(A) + R(B). Sincerank(A) < rank(B), it is possible to partitiorR, 5 = (R1,5, R2-p) such thatkR,, 5 and R, 4 have the
same number of column vectors. Defifig := Sa, 5 @ R(Rra + Riy5) @andSa := Sa g @ [R(Rra + Rir8) @ R(R2r5)]. Since
S(B) € R.(B),Sa € R.(A) andSp C S4, the proof of necessity is complete. The converse implication is trivial. |

On similar lines we obtain the following.

LEMMA 6. Let A and C' be matrices with the same number of columns. Therk(A4) < rank(C) if and only if there exist
Ma € No(A) andMe € N, (C) such thatM 4 C M.

LEMMA 7. Let A and B be matrices with the same number of rows anddek(A) > rank(B). Then there exisf4 € R.(A) and
Sp € R.(B) such thatS, C Sg, in which case

P = Ps,nr(4),5,6R(B) (11)
is a well-defined (generally oblique) projector for which we have
AlSatp e (PA){1,2}
as well asrank (A4} P) = rank(PA) = rank(A) — rank(B), irrespective of the choice of{S4} € A{S,}.

PROOF Sincerank(A) > rank(B), the existence of4 € R.(A) andSp € R.(B) with S4 C Sp is guaranteed by Lemma 5.
Then, in view ofS4 € R.(A) andSp € R.(B), clearlySg = S4 ® [R(A) N Sp], so thatP is indeed a well-defined projector.
SinceSa C N(P), we getPAA{Sa} = P soPAAISA}PPA = P2A = PAandA{Sa} ppAALSat p = AlSalp3 — AlSalp,
thus showing thatt{S4} P is as claimed 41, 2}-inverse of PA. Therefore, in view of Theorem 2(@jnk(A{S4} P) = rank(PA).
Since by constructiopank(PA) = rank(P) = rank(A) — rank(B), our proof is complete. O

We are now in the position to prove Theorem 1 just by making use of all our auxiliary observations.
PrRoOOF OFTHEOREM 1. We consider the following three exhaustive casesiafik(B) > rank(A), (ii) rank(C') > rank(A), and
(iii) rank(A) > max {rank(B), rank(C)}.

Case (i)Letrank(B) > rank(A), in which caseank(B)+rank(C) = max {rank(A), rank(B)+rank(C)}. Then, according

to Theorem 2(c), clearlyank(B) = rank(B{12}) > rank(A{1?}) = rank(A). Lemma 5 allows us to choos®y € R.(A) and
Sp € R.(B) such thatSg C Sy, in which case, in the light of Theorem 2,

ARSUN(BESE)) = 4RSS = {0} CR(CT),
whence, by means of Corollary 4(c) and Theorem 2(c), we get
g(A{Z’SA}, Bi2Ss}, 0{1,2}) = rank(B{Q’sB}) + rank(C{l’Q}) = rank(B) + rank(C)

irrespective of the choices oft>S4} € A{2, S}, B1258} ¢ B{2,Sp} andC{12} € C{1,2}.
Case (ii): Let rank(C) > rank(A), in which caserank(C) + rank(B) > max {rank(A), rank(B) + rank(C)}. Since

gAY pit2t o{l2hy = g(Aatt2hy (ott2hy (B{12h)), it follows from Case (i) that there exist sonfe, 2}-inverses
A12E pit2h and {2} such that

g(A{l’Q}, BiL2}H 0{172}) = rank(C) + rank(B).

Case (jii): Let rank(A) > max {rank(B), rank(C)}. According to Lemma 5, choosgy € R.(A) andSg € R.(B) such
thatSa C Sg or, equivalentlySg C Si. ThenSg = S4 @ [Sp NR(A)] andSE NS = Si. Applying Lemma 3 to the block
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partitioned matrixG(A{2S4}, p{2:Ss} C©{1.2}) and making repeatedly use of Theorem 2 results in

g(A2Sat pi2Ss} ctl2hy = rank(A1254}) 4 rank(B1258}) 4 rank(CH2)) — dim[R((B2S5H)) n R((A12Sa}y)]
—dim[R(C{12) N (ARSI N (B2SE))]
= rank(A) 4 rank(B) + rank(C) — dim[Si N Sx] — dim[R(C1H2) N (412541 Sp)
= rank(A) + rank(B) + rank(C) — dim Sg — dim[R(C113) N (A12S41Sp)]
= rank(A) + rank(C) — dim[Mc N (41254} Sp)], (12)

whereM¢ = R(CH2}). SinceAt?54tSy = A{2Sa}[Sy N R(A)] = R(A{%54)P), whereP is defined as in (11), we know
from Lemma 7 thatlim(A{*$4}Sp) = rank(PA) = rank(A4) — rank(B). For convenience, pul := PA. SinceN(4) C

N(PA) = N(A), itis possible to choose for any giveWt ; € NV.(A) an M4 € N (A) with M ; C My, in which case, as a
consequence of Lemma 7 and TheorerR24{2M4-S4a} P) = M ; C M 4. Then

Al2MaSats, — Mj; and  dim(M ;) = rank(A) — rank(B). (13)

We now proceed with considering two complementary subcases, nan@lya(iik(fl) < rank(C) and (jii;) rank(C) < rank(A).

(iii 1): Letrank(A) < rank(C). Thenrank(A) < rank(B)+rank(C) or, equivalentlymax {rank(A), rank(B) +rank(C)} =

rank(B) +rank(C'). According to Lemma 6, choosk ; € N, (A) andM¢ € N.(C) suchthatM ; € Mc. ThenMoNM ; =
M ;, and so it follows from (12) and (13) that

g(A{2’MA’SA}, Bi{2:Ss} 0{2’M0}) = rank(B) + rank(C)
holds for eachM 4 € N, (A) for which M ; C M 4.

(iii 2): Letrank(C) < rank(A). Thenrank(B)+rank(C) < rank(A), and sanax {rank(A), rank(B)+rank(C)} = rank(A).
According to Lemma 6, chooskt € N,.(C) andM ; € N,(A) such thatMc C M ;. ThenMc N M ; = M. Consequently,
dim(Me N M ;) =rank(C), and so it follows from (12) and (13) that

g(AZMaSat p{2Se} c{2Me}y — rank(A) + rank(C) — rank(C) = rank(A)
holds for eachM 4 € N.(A) for which M ; C M 4. This completes the proof of Theorem 1. O

We conclude with mentioning that our solution can obviously be extended to the case of complex matrices just by replacing
transposition by conjugate transposition.
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Problem 30-1: Star Partial Ordering, Left-star Partial Ordering, and Commutativity

Proposed by Jerzy K. B<SALARY, Zielona Gra University, Zielona @ra, Poland:J.Baksalary@im.uz.zgora.pl
Oskar Maria B\KSALARY , Adam Mickiewicz University, PozhgPoland:baxx@amu.edu.pl
and Xiaoji Liu, Xidian University, Xi'an, Chinaxiaojiliu72@yahoo.com.cn

ForanyA, B € C,, ,, the star partial orderingl % B, defined byA*A = A*B and AA* = BA*, clearly implies the left-star
partial orderingd =< B, defined byA*A = A*B andR(A) C R(B), whereR(-) denotes the range of a given matrix. Show that
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if m =n andA or B is an EP matrix, i.e R(A) = R(A*) or R(B) = R(B*), then the implicatio *x< B = AB = BA cannot
hold unlessd «< B is strengthened td % B.

Solution 30-1.1by the Proposers Jerzy KABSALARY , Zielona Gdra University, Zielona @ra, Poland:J.Baksalary@im.uz.zgora.pl
Oskar Maria BKSALARY , Adam Mickiewicz University, PozhaPoland:baxx@amu.edu.pl
and Xiaoji Liu, Xidian University, Xi'an, Chinaxiaojiliu72@yahoo.com.cn

In fact we will establish a somewhat more general result, whose one part refers to the notion of the minus partial ordering instead o
the left-star partial ordering, the former admitting a characterization through the rank subtractivity property

A<B & 1(B—A)=r1(B)—r(A). (14)

The generalization mentioned above is a consequence of the relationships

A<B = A+<B = A<B: (15)
cf. Theorem 2.1 of Baksalary and Mitra (1991).

THEOREM. Under the assumption that, B € C,, ,, satisfy the commutativity conditiohB = B A, the following statements hold:

(a) whenA is an EP matrix, them i Bs A ; B,
(b) whenB is an EP matrix, them x< B < A % B.
PROOF In the case where the rank4) = a andr(B) = b are equal, it follows from (14) that each of the orders in (15) holds

merely whenA = B. In nontrivial situations, where < b, Theorems 1 and 2 of Hartwig and Styan (1986) and Theorem 2.1 of
Baksalary, Baksalary, and Liu (2003a) assert thaind B are ordered as in the succsessive parts of (15) if and only if

a=v (P Ny 16
v () (16)

and, correspondingly to the cases; B,A x<B,A<B,

D,y 0 D, 0 D; + RDyS RDo
B=U V*, B=U V¥, B=U v (17)
O D2 DQS Dg DZS D2

for someU € C,,, andV € C,, ; such that/*U = I, = V*V, some positive definite diagonal matricBs and D, of degreex
andb — a, respectively, and some € C, 4, S € Cyp_g 4.

Now, assuming thatn = n andU andV are partitioned a¥/ = (U; : Uz) andV = (Vi : V3), whereU;,V; € C,, ,,
Us, Va € Cy p—q, let the product*U be partitioned accordingly as

Wi Wiz )

(18)
W21 WQQ

V*U:(

with Wy; = V;*Uj, 4, j = 1,2. Referring to notation (18)4 of the form (16) commutes with of the form given in the third part of
(17) if and only if

(D1 O> <W11 W12> (D1+RDQS RDQ)_(D1+RDQS RD2> <W11 W12> (D1 O>
0 0/ \ Wy Wa Dy S Dy ) D58 Dy W1 Way 0 0/
A straightforward analysis of this equality shows that wher B, then

AB =BA & Wi 1R+ Wi =0 and SWy; + Wa; = 0. (19)

Noting that the matrix3 in the second part of (17) is obtainable from that in the third part by substititiag) leads to the corollary
that whend < B, then
AB=BA & Wi2=0 and SWi1 + Wo = 0; (20)
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cf. Theorem 2.1 of Baksalary, Baksalary, and Liu (2003b).
Let CEP denote the subset @, ,, consisting of EP matrices. It is known thit € CE” if and only if K KT = KTK, whereK
denotes the Moore-Penrose inverséfi.e., the unique solution to the equations

KK'K =K, K'KK' =K', KK' = (KK")*, KK = (KTK)*. (21)

Referring to (21), it can easily be verified thatdfis of the form (16) and3 of the form given in the middle part of (17), then
-1

DYoo D! 0
At=vV U* and B'=V o U (22)
0 0 —-SD;' D;

Premultiplying and postmultiplying the equaliyAt = AT A, which on account of (16) and the first part of (22) is expressible as

I, 0 I, 0
U( )U*zV( )v*,
0 O 0 0
firstly by U* andU and then byw* andV/, respectively, shows that
AcCEP = Wi/ Wy =1, =Wy Wy, Wi,Wia =0, and Wy, W5, = 0. (23)
Since the conditions on the right-hand side of (23) obviously imply the nonsingularit§; pic C, , andW;s = 0, Wy = 0, itis
seen that combining (19) with (23) leadsRo= 0 andS = 0. Then B takes the form as in the first part of (17), which means that
A < B, thus concluding the proof of part (a) of the theorem. Further, premultiplying and postmultiplying the e@lity BB,
which on account of the second parts of (17) and (22) is expressibl&as= VV*, by V* andV, respectively, shows that
B e CEP = Wy Wi +WiuWiy =1, and Wi W5y + WiaWa, = 0. (24)
Consequently, combining (20) with (24) yieldls;; W, = I, andW;; W3, = 0. On account of the nonsingularity &f7,, the latter

of these equalities entail¥>; = 0, and then from (20) it follows that = 0. It is seen, therefore, thd takes again the form as in
the first part of (17), which means thAt; B. m]

We conclude our solution by pointing out that the assumption of the left-star drdex B in part (b) of the theorem cannot in
general be weakened to the minus ordex B asin part (a). A counterexample is provided by the matrices

1 1 1 0
A( ) and B( )
0 0 01

obviously satisfying the conditiond B = BA andB € C5P along with A < B, but not satisfying the equalitg*A = A*B, and
therefore not being even left-star ordered, which according to (15) is necessalrﬁfdﬁ.

References
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R. E. Hartwig & G. P. H. Styan (1986). On some characterizations of the "star” partial ordering for matrices and rank subttactaityAlgebra
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Solution 30-1.2by Nir COHEN, Campinas State University, Campinas, Brarit@ime.unicamp.br

A part of the assertion in Problem 30-1 can be seen by checking that both

o) =)
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are EP matrices which satisf{+ < B, but not the commutativity properfyl, B] = 0. The second example, in which

( 1 1) (O 2)
A= B B = 5
-1 -1 -2 0

shows that ifB is EP butA is not, then4 % B does not necessarily imp[y, B] = 0. It is correct, however, that ifl is EP and
A« < B, then[A, B] = 0. We shall show a stronger result.

PropPosITION If Ais EP andA ; B, thenR 4 is a reducing subspace f@ and B|R4 = A|R 4. (This implies thatAB = BA =
A2, hence in particulad and B commute.)

PROOF Indeed, sinced is EP, there exist a unitary x n matrix U and an invertible x r matrix A;; (with » = rank A) such that

- Bll BlZ
A=U*(A11 ®0)U (easy). WritingB = U* U, we get
B21 B22

A*(B-A)=0 = Bu=An, Bp=0,

(B — A)A* =0 = B = All; By, = 0.
HenceB = U*(A;1 @ Ba22)U, proving the assertion. 0

Solution 30-1.3by Hans Joachim WWRNER, Universiit Bonn, Bonn, Germanyverner@united.econ.uni-bonn.de

For a complex matrixC, letrank(C), C*, R(C), N(C), and Pr (¢ denote the rank, the conjugate transpose, the range (column
space), the null space, and the orthogonal projector Bi@) [along its usual orthogonal complemeXit{ C*)], respectively, olC.
Recall that any orthogonal projector is Hermitian and tRatc) may be defined bz )z = z if 2 € R(C) and Pr¢yz = 0 if

x € N(C*).

We offer the following slightly more informative solution to the problem under study.

THEOREM. For square complex matrice$, A; and A, with A = A; + A, we have the following results:

(@ Ay x < Aifand only if Pr4) = Pr(a,) + Pr(a,), in Which case, in particulara, ; Aie,R(A) =R(A1) ® R(Aq) or,
equivalentlyR(A*) = R(A}) & R(A%), whered indicates a direct sum.

(b) When4, x < A, then4d; A = AA; ifandonly if A; Ay = 0 = Ay A;.

(c) WhenA; x < Aand A1 A = AA,, thenA is EP if and only ifA; and A5 are both EP.

(d) WhenA; is EP andA; A = AA,, thenA; x < Aifand only if A, % A.
(e) WhenA is EP and4; A = AA,, thenA; x < Aifand only if Ay % A.

PROOF. (a) By definition, A;x < A if and only if AfA; = 0 andR(A;) € R(A). Clearly,ATA; = 0 & R(Az) € N(A]), in
which caseR(A3) N R(A41) = {0}. Hence, wheneved; « < A, then necessarilR(4) = R(A41) @ R(A2). According to, e.g.,
Theorem 2.3 in Jain, Mitra & Werner (1996),

R(A) =R(A1) ® R(Az) & Ay <Ao rank(A) = rank(A;) + rank(4s) & R(A*) = R(A]) ® R(A3).

For completing the proof of (a), observe first thtd; = 0 < Pr(a,)A2 = 0 & Pr(a,)Pr(4,) = 0 & Pr(a,)Pra,) =0 &
A3A; = 0. Recall nextthalPr 4,y + Pr(a,) is an orthogonal projector if and only iz (4,)Pr(4,) = 0, in which case the sum
of these orthogonal projectors is the orthogonal projector &td,) ® R(As); see, e.g., Theorem 5.12 in Rao & Mitra (1971).
ConsequentlyPr 4y = Pr(a,) + Pr(a,) ifand only if R(A;) € R(A) andAj A, = 0, and so the proof of part (a) is complete.

(b): According to (a), wheneved, x+ < A, thenR(A;) N"R(Az) = {0}. Therefore, inview ofd; A = AA; & A1 Ay = Ay Ay,
clearlyA;A = AjAifandonly if Ay As = 0 = AxA;.

(c):Let Ay x < AandA;A = AA;. ThenAjA; = 0 or, equivalently,A54; = 0. Furthermore, in view of (a)Pr4) =
Pr(a)+Pr(a,) andR(A*) = R(A])©R(A3). Finally, according to (b)d>A; = 0 = A; A, or, equivalentlyAT A5 = 0 = A3 A7.
ConsequentlyA is EP< R(A) = R(A*) & PrayA* = A* & PrayAj = Af (i = 1,2) & PrapA; = A7 (1 = 1,2) &
R(AF) =R(A;) (i=1,2) & A, and A, are both EP.
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(d):Let Ay« < AandA;A = AA,. ThenA7A; = 0 and, in view of (b),42A4, = 0. Needless to say, ifl, is EP, i.e., if
R(A1) = R(A}), thenAz;A; = 0 & A AT = 0. In such a case we therefore hatéA, = 0 and A, A} = 0 or, equivalently,

A % A. The converse implication is trivial.
(e): This result follows directly from (c) and (d). O

We conclude with mentioning the following Corollary which is easy to prove by means of our Theorem.
COROLLARY. Let A := A; + A; be such thatd; x < A. Then any two of the following three conditions imply the remaining one:
(i) AisEP, (i) A; and A, are EP, (i) A1A = AA;.

References
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Problem 30-2: Class of (0, 1)-Matrices Containing Constant Column-Sum Submatrices
Proposed by Bernardetadtiro and Alexander KOVACEC, Universidade de Coimbra, Coimbra, Portugal:
bribeiro@dei.uc.pt kovacec@mat.uc.pt

For givenk, ..., k, € [n] = {1,2,...,n} define the{0, 1}-matrix A = A(k1,...,k,) = (a;;) by puttinga,; = 1iff j is one of
the firstk; entries of thex—tuple (4, + 1,...,n,1,2,...,i— 1). Show that there exists{@, 1} —row x and ak € [n — 1] such that
zA = kl,,wherel,, = (1,...,1).

Solution 30-2.1by Nir COHEN, Campinas State University, Campinas, Brarit@ime.unicamp.br

Define a functionf : [n] — [n] by f(i) = i + k; mod(n). We shall call a sef’ C [n] "stable” if f(C) = C. Obviously, the minimal
stable sets are closed chains of the faFma= {i1,... iy} with f(i;) =441 (j =1,---,m — 1) and f(i,,) = i1, With |C| = m.
A singleton may be a stable set. The existence of minimal stable sets is easily established by followinga ¢haifi(ix) until it
repeats itself. The minimal stable sets are pairwise disjoint.

With any minimal stable sef’ define the (0,1)-vectarc = ), e;, with the usual canonical bas{s;} in R". Cyclicity of
the chain implies tha} ;. f(i) = kon for some positive integetc, implying thatzc A = kol,,.

This settles affirmatively the question raised, but more can be said: Every (0,1)-y&dthryA = t1,, is supported on a disjoint
union of minimal stable subsets.

Indeed, letS be the support of. We claim thatf(S) C .S, henceS contains a minimal stable subset, unigss §.

Indeed, ifi but notf (i) were inS then(y; A);+x, would be smaller thafy; A);+,—1, Since the sequence b% in row i ends in
column £ (i), while no new sequence of ones would start there. But this would contradict the idgotity ¢11,,.

Let now C be the (non-trivial, disjoint) union of minimal stable subsetsSinand callz the vector supported on it. We have
xA = kl1,. The vectorz := y — x is a (0,1) vector with suppo \ C and satisfiesA = (¢ — k)1,,. However, the support of
contains no minimal stable subsets, hence by the previous claim, it is empty, implyirythat O

Solution 30-2.2by the Proposers BernardetesRIRO and Alexander KVACEC, Universidade de Coimbra, Coimbra, Portugal:
bribeiro@dei.uc.pt kovacec@mat.uc.pt

We define the involutive map ofR™ — R™ by op(a) = 1,, — a and first prove the following combinatorial lemma of interest in its
own right.

LEMMA. Letn € Z>1, 0 # X C R” be finite, andY” = op(X). Let f : X — Y be any map. Then there is a nonempty subSet
of X on whichf| X’ is injective and such that

S (e + f(@)) = [X']L,.

zeX’
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PROOF Inductively defineX, = X, Yy = f(Xo), and Xx1+1 = op(Yx), Ye+1 = f(Xk41), for k = 0,1,2,.... These sets are
nonempty. Note thak’; C X, henceY; C Y, henceX; C X, henceY, C Y7, etc. . By the finiteness of, Y and the injectivity
of op, there is & such tha{ X | = | X;41]. Thus forX’ = X andY’ = Y}, we haveX’ = X1, f|X’ : X’ — Y is a bijection,
andX’ = op(Y”). Consequently,

Y+ f@)=> 2+ y=> (y+opy) =D 1,=[X|1,,

reX'’ rzeX'’ yey’ yeyY’ yey’
as claimed. 0

We borrow from Matlab the notational devices to write A(l,J) for the submatrix obtained by restricting the set of row and column
indices to the sets |, J, assumed in their natural otdér,:) for thei—th row of a matrixA, s(j : j') for the (j* — j + 1)—tuple
made from entries in positiorysj + 1, ..., ;' of ann—tuples, etc.

The reader hopefully will get a rough idea of what is actually going on in the proof below, by following it with the example
given in Figure 1, where all blanks are zeroes. There 7, (k1,...,k7) = (4,5,6,4,5,3,4) respectively. With the definitions

I 1 1 11 1 11 1 1, 3, 2
1 I 11 11 1 1 1, 5 3 A 11
A= I 1 11 1 1, 6, 2 I 11
1 1 1 11 1, 7, 4 1 1 11
1 11 1, 5 111 11
I 1 1 1

Figure 1: Example

given in the proof below, we havk = {1,3,5,6,7}, R = {2,4}, ro = 3. The setX should be thought of essentially as being the
rows A(R, o : 7) that arise by replacing ones that come from left blocks of oneklixy zeroesexcepthe first row of that matrix,

and instead the roW;_,,; added. The rows of the middle matrix give the §ét,r(x),j(r(z)) : = € X}, and the rows of the

right matrix the set” of the present case. An idea is to add rows frdfR°, :) to the rows ofA(R,:) in such a manner that the
positions inR x [ro — 1] become filled with ones; the overflow of ones that can arise (or degenerate to be ‘empty’) to the positions
in R x (ro : n) defineamag : X — Y detailed in the proof. The arrows are intended to indicate that map.

PROOF OF CLAIMED PROPERTY OF MATRIXA(k1,...,k,). Let R = {r : a,1 = 1}. Clearlyl € R. If A has some row equal
to 1,,, then we are done. So we assume from now on that each relhaf a) and al. Thenl < |R| <n > 2.
For eachr € R we have gj(r) > 2 so that

A(1,:) =(1,1,...1,0,0,...,0), andA(r,:) = (1,1,...1,0,0,...,0, 1 ,1,...,1), if r #£1. (25)
N—— ——
i(1)-1 J(r)-1 "
Given anyj € {1,2,...,n} as an input consider the following algorithm:
s = (1.7'_1, On—‘j-&-l); I := RS R = @;
while there is an’ € I so that the leftmost 1 ofl(+/, :) is at the position of the leftmost 0 efdo
s=s+A(r'):); I=1I\{r'}; RR=R U{r'};
end
The algorithm returns a certaintuples = s/ and setR’ = R,
Claim: Letj > 2. Then:
(). RV C Rands’ = (11,0, j4+1) + > {A(r',:) : 7' € R"7}.
(ii). Eithers? = 1,, or there existsan € R\ {1} so thats’ = (1,_1,0,_,+1) € {0,1}".
(iii). If s7 # s’ thenR" N R = 0.



IMAGE 31: October 2003 page 35

(i). is an immediate consequence of the algorithm’s code. (ii). The leftmost 0 of arists iff s/ # 1,,. In this case the
definition of the algorithm prohibits for its position an integetif. Clearlyr > j > 2. So (ii) follows. (iii). If R andR"" would
have an element, say, in common, them (+/, :) was added to some intermediati the production o’ as well as to some sugh
in the production o . But this is seen to imply that the two referredre equal, and from there on all the following corresponding
s will be equal; in particulas’ = s7°, contradicting the hypothesis of (iii).

In the caseR = {1}, claim (ii) impliess’ = 1,, for everyj > 2. Hences’)) = 1,, and from (i) and (25) we get that, is
A(1,:)+a sum of rows ofA(R<, :) and are done. So we assume from nowBh> 2, putry := min(R \ {1}), and define

X = {(Or—rys Lnrsn) 7 € RA{LYU{n+ 13}, ¥ = {(Lr_rg, Onrrps) s 7 € R\ {1} U{n + 1}}.

Clearly X,Y C {0,1}" "+l andY = op(X). For anz € X \ {0,_,+1} consider the- = r(z) € R\ {1} that defines it, and
putr(0,,_po11) := 1. By claim (ii), z — f(z) := s7"@)(ry : n) yields a mapf : X — Y. Therefore, by the lemma, there exist
X'CX,Y' CYsothatf|X': X' — Y'is abijectionand__ . (z + f(z)) = |X'[1,_,+1. Then for everyr € X we have

2),)+ ) A v e BRIV = (0r_1,2) + Ljir@)-1: On—jir@p+1) + D_{A,2) :v € RITED}
0y . $)+Sj<7-<w)>
sE@N (17 — 1), 2 4+ 87 (rg 2 m))

170 1,L,ZT+ f( ))
Since thef(x), z € X', are all distinct, so are the—tupless’("(#)) so that by claim (iii), theR"/("(*)) are all disjoint. Thus

summing above expressions overale X', the left hand side yields a sum of rows 4f while the right hand side yields{’|1,,.
Since|X’| < |X| = |R| < n, the claim concerning!(k1, ..., k,) is proved. O

(
(
(
(

Problem 30-3: Singularity of a Toeplitz Matrix
Proposed by Wiland &HMALE, Universitat Oldenburg, Oldenburg, Germangchmale @uni-oldenburg.de
and Pramod K. 8ARMA, Devi Ahilya University, Indore, Indiapksharmal944@yahoo.com

Letn > 5,¢1,...,c,—1 € C\{0}, z an indeterminate over the complex numb&rand consider the Toeplitz matrix
c2 c1 x 0 - -+ 0
c3 c2c ¢ x 0 --- 0
M =
Cn—3 Cn_4 . . P
Cns Cnesz - - - - €1
Cno1 Cnez - - - .- cg

Prove that if the determinadet M = 0 in C[z] and5 < n < 9, then the first two columns ¥/ are dependent. [We do not know
if the implication is true fom > 10.]

We look forward to receiving solutions to Problem 30-3!

Problem 30-4: The Similarity of Two Block Matrices
Proposed by YonggelAN, Queen’s University, Kingston, Ontario, Canadaian@mast.queensu.ca

Let A and B be two idempotent matrices of the same sizand letM := A + B. Show that

<M A > o (M 0 )
is similar to .
0 —-M 0 -M
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Solution 30-4.1by Robert Reams, College of William and Mary, Williamsburg, Virginia, USAgsams@math.wm.edu

The given block matrices are similar, since
(I —X)(M 0 )(I X)_(M A )
0o I o -m)\o 1) \o -Mm)’

Solution 30-4.2by the Proposer YonggelAN, Queen’s University, Kingston, Ontario, Canadaian@mast.queensu.ca

whereX = (I + A - B).

It is easy to verify that
(A+B)(A-B)+(A-—B)(A+B)=24A—-2B=4A—-2(A+ B).
1
1

HenceM X + XM = A, whereX = ([, + A— B). Thus

I, X M A I, X\ ' I, X M A I, —X
<o Im><o —M)(o 1) - (o Im>(o —M)(o 1)
M A—-MX-XM
:(0 —M )

- (v )

Solution 30-4.3by Gotz TRENKLER, Universiét Dortmund, Dortmund, Germanytenkler@statistik.uni-dortmund.de

I YA-B+1T
DefineZ := (O il )

-1
that

The proof is complete.

). ThenZ is nonsingular with the inversg—! = Z. Some straightforward calculations show
(M A M 0
Z Z= ,
0 —M 0 —M

Solutions to Problem 30-4 were also received from Nir Cohen and from Alicja Smoktunowicz.

which proves the asserted similarity.

Problem 30-5: A Range Equality for the Difference of Orthogonal Projectors
Proposed by YonggelAN, Queen’s University, Kingston, Ontario, Canadaian@mast.queensu.ca

Let A and B be two orthogonal projectors of the same size. Showrthate [( A— B)' — (A — B)] = range (AB — BA), where
(A — B)' is the Moore—Penrose inverse 4f— B. Hence show thatA — B)! = A — Bifand only if AB = BA.

Solution 30-5.1by Jerzy K. BAKSALARY, Zielona Gora University, Zielona @ra, Poland:J.Baksalary@im.uz.zgora.p!
and Oskar Maria BKSALARY , Adam Mickiewicz University, PozhaPoland: baxx@amu.edu.pl

We establish a more general result, in which the assumption4ttzaitd B are orthogonal projectors is relaxed by referring to the
concept of an EP matrix. Let us recall that the set of EP matrices (range-Hermitian matrices) of isrdeecified as

CEP ={KeC,, RIK)=R(K*)} ={K €C,,: KK' = KTK}, (26)
whereK*, KT, andR(K) denote the conjugate transpose, Moore-Penrose inverse, and raiigeespectively.
THEOREM. Any idempotent matriced, B € C,, ,, such thatd — B € CEP and AB — BA € CEP satisfy

R[(A— B)' — (A— B)] = R(AB — BA). (27)
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PROOF. It can easily be verified that d — B € CEP, then
RI(A~B)' — (A~ B)] = R[(A~ B){(A~ B)* — (A~ B*] =R[(A - B) — (A~ B)¥].
Consequently, since the assumption of the idempotenegyarid B entails
(A-B)*>=(A—-B) - (ABA - BAB), (28)

it follows that (27) is equivalent to
R(ABA — BAB) = R(AB — BA). (29)

Hence, by referring to the orthogonal complements of the subspaces involved in (29), the proof reduces to showing that, for any
&€ E C’n,l!
2*AB =1"BA & 2*ABA = x"BAB.

But this is indeed the case.4f AB = x*BA, then
2*ABA = 2*BA? = ©*BA = 2*AB = 2*AB? = +* BAB.

Conversely, since in view of (26) the assumptiéB — BA € CEP can be expressed in the foAB — BA)* = (AB — BA)L for
someL € C,, ,,, it follows that

ABA = BAB = (AB — BA)(AB — BA)* = (AB — BA)’L = (BAB? — ABA — BAB + ABA*>)L. =0.  (30)

Hence itis seenthatif*ABA = 2* BAB, thenz*(AB— BA)(AB— BA)* = 0, which is obviously equivalent te* AB = z*BA.
O

Itis clear that ifA and B are orthogonal projectors, theh— B = (A — B)* andAB — BA = —(AB — BA)*, and thus the
conditionsA — B € CEP andAB — BA € CEP are fulfilled trivially. In addition to this observation it should be pointed out that a
generalization of the claim in Problem 30-5 given in the theorem above is substantial. For exam@ediB3 are projectors of the

form
1 1 1 0
A= and B = ,
0 0 1 0

0 1 1 -1
A—B:( ) and AB—BAz( >
-1 0 -1 -1

are both EP, and thereforeand B satisfy equality (27) although neither of them is an orthogonal projector.

From Thorem it immediately follows that, under the assumptions involved therein, the equality3)’ = A — B holds if and
only if the projectorsd and B commute. We extend this statement by referring to thé 4et B){1} of all generalized inverses of
A — B, i.e., matrices? € C,, ,, satisfying(A — B)G(A— B)=A— B.

then the matrices

COROLLARY. For any idempotent matriced, B € C,,,, such thatd — B € CE? and AB — BA € CEP, the following statements

are equivalent:
(@A—-B=(A-DB)!, (b)A—Be(A-B){1}, (c)AB= BA.

PROOF. The part (a)= (b) is an obvious consequence of the definitiong.4f— B)" and (A — B){1}. Further, on account of
specification of A — B){1} and (28), condition (b) is equivalent thBA = BAB, and then from (30) it is seen thatB — BA = 0,
which is (c). Finally, as already mentioned, the part£e)a) follows straightforwardly from Theorem. O

We conclude by pointing out that the result on commutativity of projectors given in Corollary is an interesting supplement to
several other characteristics of such a type derived by Baksalary and Baksalary (2002, Section 4).

Reference
J. K. Baksalary & O. M. Baksalary (2002). Commutativity of projectdiisiear Algebra and Its Application841, 129-142.

Solution 30-5.2by the Proposer YonggelAN, Queen’s University, Kingston, Ontario, Canadaian@mast.queensu.ca
We first show that if\/ is Hermitian, then
range(M — M) = range(M — M?®). (31)
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Recall that ifM is Hermitian, them/ Mt = MTM. Hence
(M — MYM? = M3 — MTM?* = M3 —M and (M3 - M)M'M" =M — M.

These two equalities imply (31). H and B are two orthogonal projectors of the same size, then the matrix3 is Hermitian and
A—B-(A-B)>=ABA - BAB. Thus by (31)

range[(A — B)' — (A — B)] = range(ABA — BAB). (32)
For any two idempotent matricesand B of orderm, it is easy to verify the following two identities:
AB—-BA=(A-B)(A+ B —1,),

ABA — BAB = (AB — BA)(A+ B —I,) = (A— B)(A+ B — I,,,)>.

If A andB are two orthogonal projectors of the same size, then the matrixB — I,,, is Hermitian. Thus
range[(A — B)(A+ B — I,,)?] = range[(A — B)(A + B — I,,,)] = range(AB — BA).

Hence
range(ABA — BAB) = range(AB — BA). (33)

Combining (32) and (33) yields the desired result.

Solution 30-5.3by Hans Joachim WWRNER, Universitit Bonn, Bonn, Germanyverner@united.econ.uni-bonn.de

We note that a matrixd € C™*" is an orthogonal projector if and only if2 = A = A*, whereA* denotes the conjugate transpose
of A. We further recall that for any3 € C™*" we haveR(B') = R(B*) and N (B') = N(B*), where B' indicates the
Moore-Penrose inverse @& andR(-) and N (-) stand for the range (column space) and the null space, respectively, tf B is
Hermitian, i.e., ifB = B*, then trivially R(B) = R(B*), i.e., B is an EP-matrix. Finally, we mention that for an EP-matixve
haveCTC = CCt, whence we ge€?CT = C = CTC? and (CT)2 C = C1. With these observations in mind, it is not difficult to
prove the following theorem.

THEOREM. Let A and B be orthogonal projectors such thatB is defined. Then the following conditions are equivalent:
@ zeN(A-B) - (A-DB)),
(b) = € N((A— B)® — (A~ B)),
(c) z € N(BAB ABA),
(d) x e N(AB — BA).

PROOF. (@)« (b): First, letx € N((A — B)! — (A — B)), i.e., let(A — B)z = (A — B)'z. Premultiplying by(A — B)? yields
(A-B)3x = (A-B)?(A-B)fx = (A—B)x or, equivalentlyy € N((A—B)3—(A—B)). Conversely, letA—B)x = (A—B)*z
Premultiplying by((A — B)")2 results in(A — B)'z = (A — B)x.

(b) & (c): This is a direct consequence©f — B)? — (A — B) = BAB — ABA.

(c) < (d): First, letx € N(BAB — ABA), i.e., letBABx = ABAz. Premultiplying byB yields BABx = BABAz or,
equivalently,BAB(I—A)x = 0. SinceBAB is honnegative definite and HermitiaBAB(I — A)x = 0 implies thatAB(I — A)x =
0 or, equivalently,ABx = ABAz. Analogously, premultiplyingBABx = ABAz by A, we obtainBAx = BABz. Since
ABAx = BABz, we now obtainABx = BAx. To prove the converse, letBx = BAxz. Premultiplying this equality by and
B, respectively, results il Bx = ABAx andBABx = BAx. HenceABAx = BABz, and so the proof is complete. a

Since the range of a matrix coincides with the orthogonal complement of the null space of its conjugate transpose (where the
orthogonal complement is with respect to the usual standard inner product), the claim in Problem 30-5 follows directly from our
theorem above. We conclude with emphasizing tha&{dp) holds for EP-matrices, while (B (c) holds for idempotent matrices.

Only our proof of (c)< (d) is based on the assumption tilaaind B are orthogonal projectors.
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Problem 30-6: A Matrix Related to an Idempotent Matrix
Proposed by Gtz TRENKLER, Universitit Dortmund, Dortmund, Germanyrenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix frof”*"™. What can be said about the matik = P(P + P*)~ P*, where(P + P*)” is a
generalized inverse df + P* and P* denotes the conjugate transpose’af

Solution 30-6.1by Jerzy K. BAKSALARY, Zielona Gora University, Zielona @ra, Poland:J.Baksalary@im.uz.zgora.pl
and Oskar Maria BKSALARY , Adam Mickiewicz University, PozhaPoland: baxx@amu.edu.pl

Our contribution to answering the question posed in Problem 30-6 is concerned with the concept of parallel summability. Let
us recall, following Rao and Mitra (1971, p. 188), that for matrice®3 € C™*™ the term "parallel sum” is attributed to the
expressiord(A + B)~ B whenever it is independent of the choice of a generalized invetse B)~, i.e., any matrix satisfying
(A+B)(A+B) " (A+B)=A+B.

PrROPOSITION For any idempotenP € C**", the matrixP(P + P*)~ P* is the parallel sum of and P*.

PROOF It is known that the product(A + B)~ B is invariant with respect to the choice @i + B)~ if and only if R(A*) C
R(A* + B*) andR(B) C R(A + B), whereR(.) denotes the range of a given matrix; cf., e.g., Rao and Mitra (1971, pp. 21 and
43). Consequently, a necessary and sufficient condition for parallel summabiltaofl P* is

R(P*) CR(P + P*). (34)
By referring to the orthogonal complements of the subspaces involved in (34), the proof consists in showing that; forGiny,
2 (P+P*)=0 = a2*P"=0.
But this follows by noting that
t*(P+P)=0 & z*(P+P")? =0 & z*(P+ PP*+P*P+ P*) =0,
and hence
e*(P+P*)=0 = z*(PP*+ P*P)=0 & a*(P:P*)(P:P*)*=0 & z*(P:P*)=0 = 2*P* =0,
as desired. O

Reference
C. R.Rao & S. K. Mitra (1971)Generalized Inverse of Matrices and its Applicatiovidley, New York.

Solution 30-6.2by the Proposer &tz TRENKLER, Universitit Dortmund, Dortmund, Germanytenkler@statistik.uni-dortmund.de

We show thaBR is the orthogonal projector oR(P) N R(P*), whereR(-) denotes the column space of a matrix. This follows
trivially if P is nonsingular, since then it must be the identity matrix of ordefo see this in general, we wrife in the form

I, K
P=u(y v
0 0

whereU is ann x n unitary matrix, I, is the identity matrix of order = rank(P), andK is anr x (n — r) matrix (see Hartwig
and Loewy, 1992). This implies
2I, K
per=u(Gl )

K* 0
Using Theorem 3.5.2 from Campbell and Meyer (1979), we get the Moore-Penrose invéYse Bf as
LI, - KK) Kt
P+pPyt=U(*" ) U
( ) ( KT —2(K*K)*
and consequently

(P+P)"(P+P")=(P+P)P+P )" =U <{) KgK) v
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Itis readily established th&P + P*)(P + P*)* P = P and(P + P*)(P + P*)*™ P* = P*, which implies the somewhat surprising
resultR(P) C R(P + P*) andR(P*) C R(P + P*). HenceP(P + P*)~ P* is invariant under the choice of the g-inverse
(P + P*)~, that is, we get the parallel sum #fand P* asP + P* = P(P + P*)~ P* = P(P + P*)* P*. According to Rao and
Mitra (1971, Theorem 10.1.8e), we haRé P = P*) = R(P) N R(P*). However, further calculations give

LI, —KK*) o
P(P 4 P*)*p* :U<2( ) )U*,

0 0
such tha2 P = P* is the orthogonal projector dR(P) N R(P*).

References

S. L. Campbell & C. D. Meyer (1979%Generalized Inverses of Linear TransformatioRgman, London.

R. E. Hartwig & R. Loewy (1992). Maximal elements under the three partial ortarsar Algebra and Its Applicationd 75 39—-61.
C.R.Rao & S. K. Mitra (1971)Generalized Inverse of Matrices and its Applicatiovéley, New York.

Solution 30-6.3by Hans Joachim WWRNER, Universi&t Bonn, Bonn, Germanyverner@united.econ.uni-bonn.de

For a complexm x n matrix A4, let A*, A=, R(A), and N (A) denote the conjugate transpose, a generalized inverse, the range
(column space), and the null space, respectivelyd ofif M is a linear subspace @", then we denote by, the orthogonal
projector ontoM along M=, with the orthogonal complemenitt+ of M being defined with respect to the usual standard inner
product inC™. We note that the projectd?,, may be defined bz = = if € M andPyx = 0if z € M*. If M and\ are

two linear subspaces if", then we recall thatM N A" = ML + AL, We also mention thaR (A)+ = A/(A%).

THEOREM. Let P be a (complex) idempotent matrix, i.e., J&t = P. Then:
@ NP+ P*)=N(P)NN(P*)andR(P + P)* = R(P) + R(P*).
(b) P(P + P*)~P* = P(P + P*)'P*, irrespective of the choice ¢f)~, with (-)T indicating the Moore-Penrose inverse of.
Moreover,P(P + P*)~ P* is Hermitian andP(P + P*)~ P* = P*(P + P*)" P.
(¢) 2P(P + P*)” P* = Pr(p)nr(P*)-

PROOF. (a): From Theorem in Werner (2003) we know the{ P + P*) = N'(P) N N (P*). Taking orthogonal complements+
in this set equation results R(P + P*) = R(P) + R(P*).

(b): In view of (a), clearlyR(P) C R(P + P*) andR(P*) C R(P + P*). From the theory of generalized inversion, see,
e. g., Rao & Mitra (1971), we then know thB(P + P*)~ P* is independent of the choice of the g-inve(ge+ P*)~. Therefore,
P(P + P*)~P* = P(P + P*)TP*. Since(P + P*)(P + P*)~ is a projector ont®R(P) + R(P*) whereag P + P*)~ (P + P*)
is a projector alongV'(P) N N (P*), it is now not difficult to see that

P(P+ P*)"P*=P*— P*(P+P*)"P*=P— P(P+P*)"P=P*(P+P*) P, (35)

where all expressions are again independent of the choice of the g-iffiy@rseP*)~. Hence, in particularP(P + P*)~ P* =
P*(P + P*)~ P. Since(P + P*)' is Hermitian, it is further clear tha®(P + P*)~ P* is also Hermitian.

(c): For convenience, pul := P(P + P*)~P*. By means of (b) and (35) check tha? = A — A2. HenceA? = 14 or,
equivalently,(24)? = 2A4. Since2A is also Hermitian2A is an orthogonal projector, and so it remains to show BR&A) =
R(P) NR(P*). Inview of P(P 4+ P*)~ P* = P*(P + P*)” P, clearlyR(24) C R(P) N R(P*). That the converse inclusion,
namelyR(P) N R(P*) C R(2A4) is also true is seen as follows. Lete R(P) N R(P*). Thenx = Pz = P*z and so
2Ax = A(P + P*)x = P(P + P*)~ (P + P*)x = Px = x. This completes our proof. O

We conclude with mentioning that in the literature the mai(° + P*)~ P* is called the parallel sum d? and P* and is often
denoted byP = P*; cf. Rao & Mitra (1971, pp. 188-192). Th&(P £ P*) = R(P)N'R(P*) is shown in Theorem 10.1.8(e) in Rao
& Mitra for more general classes of matrices.

References
C. R.Rao & S. K. Mitra (1971)Generalized Inverse of Matrices and its Applicatiowéley, New York.

H. J. Werner (2003). A range equality involving an idempotent matrix. Solution 28vBA&E: The Bulletin of the International Linear Algebra
Society no. 30 (April 2003), 28.
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Problem 30-7: A Condition for an Idempotent Matrix to be Hermitian
Proposed by Gtz TRENKLER, Universitit Dortmund, Dortmund, Germanyrenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix frof8”*". Show thatP is Hermitian if and only if the Moore—Penrose inverseR{ff — P*) is
idempotent, wheré”* denotes the conjugate transpose&of

Solution 30-7.1by Jerzy K. BAKSALARY, Zielona Gora University, Zielona @ra, Poland:J.Baksalary@im.uz.zgora.pl
and Oskar Maria BKSALARY , Adam Mickiewicz University, PozhaPoland: baxx@amu.edu.pl

Let A= P — PP*. SinceP = P?, it follows thatP = P* < A = 0. Moreover, forAf denoting the Moore-Penrose inverseff
AT = (A1)? o A(ATAA*) = AAT(ATAAY) & AA* = AATA*,
Consequently, the statement in Problem 30-7 may be reformulated as
AA* = AATA* & A=0. (36)

The "< part” is trivial, as well as the converse implication whBris nonsingular (in which casP must be equal to the identity
matrix I,,). For establishing the= part” in general, it is therefore assumed tlfais a singular idempotent matrix (of rapi say,

p < m) having a representation of the form
I, K
P=U U~ (37)
0 0

whereU*U = I, and K is any matrix of ordep x (n — p); see Hartwig and Loewy (1992) and comments in Trenkler (1994, p.
260). From (37) it follows that

I, K I+ KK* 0 ~KK* K
A=U Ur—U Ur=U U*. (38)
0 0 0 0 0 0

Hence it is seen that the range Afkatisfies

and therefore the orthogonal projectéA’ ontoR(A) is of the form

KKt 0
AAT =T ( ) U*. (39)
0 0
On account of (38) and (39),
(KK*)? + KK* 0 ~KK* 0 )
AA* = AATA* & U 0 0 U*=U 0 0 U* & (KK*)? +2KK* =0. (40)

SinceK K* is obviously a nonnegative definite matrix, it is clear from (40) that* = AATA* & KK* = 0« K = 0, whichin
view of (38) means thatl = 0, as required in (36).

References

R. E. Hartwig & R. Loewy (1992). Maximal elements under the three partial ortérsar Algebra and Its Applicationd 75 39—-61.

G. Trenkler (1994). Characterizations of oblique and orthogonal projectoRrotreedings of the International Conference on Linear Statistical
Inference LINSTAT'98T. Calihski & R. Kala, eds.), Kluwer, Dordrecht, pp. 255-270.

Solution 30-7.2by William F. TRENCH, Trinity University, San Antonio, Texas, US#trench@trinity.edu

LetQ = [P(I — P*)]'. If P = P*, thenQ = 0 = QT, soQ" is idempotent. For the converse note that the conditions defining the
Moore-Penrose inverse imply
P(I-P")Q=Q"(I—P)P, (41)

QP(I - P")=(I-P)PQ, (42)
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QP(I-P)Q =@, (43)
P(I - P*)QP(I—P*)=P(I-P"). (44)

From (42),PQP(I — P*) = 0, so (43) implies thaPQ = 0 = Q* P*. Hence, (44) simplifies to
—PP*QP(I — P*) = P(I — P¥) (45)

and (41) simplifies t° P*Q = (PP*Q)*. Therefore, ifQ? = Q, thenPP*Q = [(PP*Q)Q]* = Q* PP*(Q is positive semidefinite,
S0 (45) implies thaP(I — P*) = 0. HenceP = PP* is Hermitian.

Solution 30-7.3by the Proposer &z TRENKLER, Universi&t Dortmund, Dortmund, Germanytenkler@statistik.uni-dortmund.de

Necessity is trivial. Conversely, let the Moore-Penrose inverde(6f— P*) be idempotent. Sinc® is idempotent, it can be written
as
I, K
P=U U~,
0 0

wherel,. is the identity matrix of order = rank P, K is anr x (n — r) matrix andU is a unitary matrix (see Hartwig and Loewy,
1992). By some straightforward computations one finds that

—G(KK*)* 0) .

[PU = P1IT = U<K+G(KK*)+ 0

whereG = [I, + (KK*)*]~!. SinceG and (K K*)* commute, the idempotency 6P(I — P*)]* entailsK = 0, so thatP is
Hermitian.

Reference
R.E. Hartwig & R. Loewy (1992). Maximal elements under the three partial ortlerear Algebra and its Applicationd 75 39-61.

Solution 30-7.4by Hans Joachim WWRNER, Universitit Bonn, Bonn, Germanyverner@united.econ.uni-bonn.de

Our solution offers additional insights into the theory of projectors. We begin with charactefizifgg= AT in terms of the matrix
A and its conjugate transpose.

THEOREM 1. Let A be a square complex matrix. Then the Moore-Penrose invéisef A is idempotent, i.e(A)? = AT, if and
only if A2 = AA*A.

PROOF. We note that the Moore-Penrose inverseldfatisfies the following well-known properties: (@jAAT = AT, (b)) R(AT) =
R(A*), and (c)NV'(AT) = N(A*), with R(-) and/(-) denoting the range (column space) and the null space, respectivély, of
cf. Theorem 2 in Werner (2003b). By means of (a), (b), and (c) it is now easy to seeifhdt= AT < AT(1 — A)AT = 0 <
A (I — A)A* =0 A(I — A*)A =0 A2 = AA*A. 0

This powerful characterization has a series of direct implications. Here we only mention the following.

COROLLARY 2. Let A be a square complex matrix. Then we have:
(@) If Ais an EP-matrix, i.e., ifR(A) = R(A*), thenA' is idempotent if and only ifi is idempotent and Hermitian, in which
cased? = A= A* = A,
(b) If Ais idempotent, ther is idempotent if and only ifi is a partial isometry, i.e., if and only il = AA* A, in which case
A? = A= A" = At
(c) Al isidempotent only ifndex(A) < 1. Moreover, ifA is idempotent andi? = 0, then necessarilyl = 0.

PROOF. (a):Let A be an EP-matrix. Sincd!A is the orthogonal projector on®(A*), clearly ATAA*A = A*A. SinceATA =
AAT is equivalent toA being an EP-matrix, alsdfA? = AATA = A. According to Theorem 1, thereforéA?)? = AT <
A2 = AA*A = ATA? = ATAA*A & A= A*A e A= A = A2

(b): Let A be idempotent, i. e4?> = A. Then, in view of Theorem 1, clearlyd™)? = Af < A = AA*A. From Theorem in
Werner (2003a) it follows that this is equivalentdo= A*.
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(c): According to Theorem 1(AT)? = At if and only if A> = AA*A. SinceR(AA*A) = R(A), necessarilyR(A4%) = R(A)
or, equivalentlyindex(4) < 1. Hence, wheneveAdt)? = At andA? = 0, then necessarilyl = 0. O

Part (c) of Corollary 2 enables us now to give a very brief solution to the stated problem.

THEOREM 3. Let P be an idempotent matrix, and 1€ := P(I — P*). Then(Q)? = QT if and only ifQ? = 0 or, equivalently, if
and only ifP = P*.

PrROOF According to Theorem 1Q)? = Qf & Q% = QQ*Q < Q(I — Q*)Q = 0. Check tha(I — Q*)Q = (I + PP*)Q>.
Sincel + PP* is a positive definite Hermitian matrix, it is nonsingular, and so weét— Q*)Q = 0 < Q2 = 0, which, in virtue
of Corollary 2(c), can happen only@ = 0. But thenP = PP* or, equivalently,P = P*. O

We conclude with mentioning that a completely different proof for the characterization given in part (b) of Corollary 2 can be
found in Werner (2003c).
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IMAGE Problem Corner: More New Problems

Problem 31-6: A Full Rank Factorization of a Skew-Symmetric Matrix
Proposed by Gtz TRENKLER, Universitit Dortmund, Dortmund, Germanyrenkler@statistik.uni-dortmund.de

Determine a full rank factorization of the matrix

0 —C3 C2
C= C3 0 —C1 s
—C2 C1 0

with real entries:;,i = 1,2, 3. (Observe that for = (z1, 22, 23) € R3 the identityCz = ¢ x x, wherec = (c1, ¢z, c3)’, defines
the vector cross product ®3.)

Problem 31-7: On the Product of Orthogonal Projectors
Proposed by Gtz TRENKLER, Universitit Dortmund, Dortmund, Germanyrenkler@statistik.uni-dortmund.de

Let P and@ be orthogonal projectors of the same order with complex entries arddenote their product. Show that the following
conditions are equivalent:
(i) Aisan orthogonal projector, i.el = AA*,

(i) Ais Hermitian, i.e.A = A*,

(i) Aisnormal,i.e AA* = A*A,

(iv) AISEP,i.e. AAT = AT A,

(v) Aisbi-EP,i.e. AATATA=ATAAAT,

(vi) Aisbi-normal,i.e AA*A*A = A*AAA*,

(vii) Ais bi-dagger, i.e(AT)? = (A?)*.

Problem 31-8: Eigenvalues and Eigenvectors of a Particular Tridiagonal Matrix

Proposed by FuzhenHaNG, Nova Southeastern University, Fort Lauderdale, Florida, US#fing@nova.edu

Let A be then-by-n tridiagonal matrix with 2 on diagonal and 1 on super- and sub-diagonals. Thatis,2, a;; = 1if j =i+ 1
orj =i—1,anda;; = 0 otherwisey, j = 1,2, ---,n. Find all eigenvalues and corresponding eigenvectors. of

Problems 31-1 through 31-5 are on page 44.
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IMAGE Problem Corner: New Problems

Please submit solutions, as well as new problems, @)tim macro-freeAIEX by e-mail to werner@united.econ.uni-bonn.de, preferably embedded
as text, andb) with two paper copies by regular mail to Hans Joachim WernnxGE Editor-in-Chief, Department of Statistics, Faculty of
Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, GerrRanlylems 31-6 through 31-8 are on page 43.

Problem 31-1: A Property of Linear Subspaces
Proposed byikgen QRO and Btz TRENKLER, Universitit Dortmund, Dortmund, Germany:
gross@statistik.uni-dortmund.de trenkler@statistik.uni-dortmund.de

In Grol3 (1999, Corollary 2) the following is stated:UfandV are linear subspaces Gf", then

C"=[UnUt+VHle Ve Utnvh),
where ‘B" indicates the direct sum of two subspaces and lenotes the orthogonal complement. Is this decomposition also valid
in a Hilbert space? The Proposers of the problem have no answer to this question.

Reference

J. GroR3 (1999). On oblique projection, rank additivity and the Moore-Penrose inverse of the sum of two matréasand Multilinear Algebra
46, 265-275.

Problem 31-2: Matrices Commuting with All Nilpotent Matrices
Proposed by Henry RARDO, Medgar Evers College (CUNY) Brooklyn, New York, New York, é8&dude@yahoo.com

If an n x n matrix A commutes with alh x n nilpotent matrices, must be nilpotent? Determine the whole class of these matrices.
(We recall that a square matriX is said to be nilpotent whenevaf* = 0 for some positive integek.)

Problem 31-3: A Range Equality for Block Matrices
Proposed by Yonggel&AN, Queen’s University, Kingston, Canadgtian@mast.queensu.ca
Let A and B be two nonnegative definite complex matrices of the same size. Show that
A B A+B
range = range ,
A B A+ B

nx(n+1) nxn

where all blanks are zero matrices.

Problem 31-4: Two Equalities for Ideals Generated by Idempotents
Proposed by YonggelAN, Queen’s University, Kingston, Canadgian@mast.queensu.ca

Let R be a ring with unityl and leta, b € R be two idempotents, i.ea? = a andb? = b. Show that
(ab—ba)R=(a—b)RN(a+b—1)R and R(ab—ba)=R(a—b)NR(a+b—1).

Problem 31-5: A Norm Inequality for the Commutator AA* — A*A
Proposed by Yonggel&N, Queen’s University, Kingston, Canadgtian@mast.queensu.ca
and Xiaoji Liu, University of Science and Technology of Suzhou, Suzhou, Cligéitiu72@yahoo.com.cn

Let A be a square matrix and let* and A" denote the conjugate transpose and the Moore-Penrose invefseaspectively. A
well-known result asserts thatd* = A* A if and only if AAT = ATA andA* At = AT A*, that is, A is normal if and only ifA is
both EP and star-dagger. Show that in general

| AA* — A*A|| < [|Al2(2]] AAY — ATA|| + || A" At — ATA" ),

where|| - || denotes the spectral norm of a matrix. This inequality shows that iff — ATA* — 0, AAT — ATA — 0, andA is
bounded, theA* — A*A — 0.





