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SEMYON ARONOVICH GERSHGORIN

by
Garry J. Tee
Department of Mathematics
University of Auckland
Private Bag 92019, Auckland New Zealand

Introduction

Several people have asked me for information about Gershgorin—nothing about him seems to have been published in English.
The standard reference work [1] for mathematics in the USSR is History of our Nation’s Mathematics (in Russian) produced by
the Academy of Sciences of the USSR and the Academy of Sciences of the Ukrainian SSR, published in 4 volumes by Naukova
Dumka, Kiev, 1966-1970.

The biographical article on Semyon Aronovich Gershgorin [1, Volume 4, part 2, p.568] tells that he was born on 1901-8-24 at
Pruzhany (in the Brest district), and that he died on 1933—5-30. He studied at Petrograd Technological Institute starting in 1923,
became Professor in 1930, and from 1930 he worked in the Leningrad Mechanical Engineering Institute on algebra, theory of
functions of complex variable, approximate and numerical methods, and differential equations.

Three papers by Gershgorin [7, 11, 15] are discussed in [1], and his 1931 paper [13] on eigenvalues was cited by Olga Taussky
[17, p.296] and by D. K. Faddeyev and V. N. Faddeyeva [2, p.679]. Nine other papers are listed here, from the bibliography in
Richard S. Varga’s forthcoming treatise [19].

In 1925, Gershgorin proposed [1, Volume 4, part 2, p.378] an original and intricate mechanism for solving the Laplace equation,
and he described such a device in detail [3]. J. J. Sylvester had proved that any algebraic relation between real variables could be
modelled by linkage mechanisms, but he had not mentioned the possibility of actually constructing such mechanisms. In Gersh-
gorin’s 1926 paper [6], he described linkage mechanisms implementing the complex arithmetic operations of addition, subtraction,
multiplication and division. He described mechanisms for constructing the complex relations w = 22 and w = 23, which could
also be applied for extracting square roots and cube roots. Gershgorin proposed that linkage mechanisms be constructed for various
standard functions, which could then be assembled into larger mechanisms for more complicated functions. Later he became the
first person to construct analogue devices applying complex variables to the theory of mechanisms [1, Volume 4, part 2, p.326].
In 1928 he described devices modelling the aerofoil profiles of Zhukovskii and von Mises [10], and those analogue devices had
practical value.

In 1910, Lewis Fry Richardson founded the finite-difference method for numerical approximation to the solution of partial
differential equations [16]. In 1927, Gershgorin greatly advanced finite-difference methods [7]. For the 2-dimensional Poisson
equation in u over a plane region, with the solution specified on the boundary I' as a function of position x,

Au=—f, ulr = p(z),

he used finite-difference approximations A to the Laplace operator A on regular nets w;, with mesh-size h over the region:

Ay = —o, y|Fh = /u'(x)7

where ¢ = f at internal mesh-points, and the mesh-points on the boundary are denoted by I';,. He used a method of majorants to
prove that the truncation error between the analytical solution u and the finite-difference solution y is O(h) for regular hexagonal
nets with 4-point finite-difference arrays, is O(h?) for regular square nets with 5-point finite-difference arrays, and is O(h*) for
regular triangular nets with 7-point finite-difference arrays [1, Volume 4, part 2, pages 85-86]. Gershgorin’s method of majorants
was later generalized to dimensions greater than 2, and to other types of boundary condition [1, Volume 4, part 2, p.88].

In Gershgorin’s 1929 paper [11], he first proposed solving finite-difference approximations to partial differential equations, by
modelling them with networks of electrical components. [1, Volume 4, part 2, p.378.]

Above all, in Gershgorin’s 1931 paper ‘Uber die Abgrenzung der Eigenwerte einer Matrix’ [13, in German], he gave very
powerful estimates for eigenvalues of matrices:
THEOREM 1. For every square matrix A of order n, every eigenvalue lies in at least one of the n circular disks with centres a;;
and radii 3, ; |aijl.

Cont’d on page 3
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Gershgorin cont’d from page 2

THEOREM 2. If's of the Gershgorin disks in Theorem 1 form a connected domain which is isolated from the other n — s disks, then
there are exactly s eigenvalues of A within that connected domain.

A significant refinement was made by Olga Taussky' [17, p.286], which can sometimes be used to prove that a matrix is
nonsingular:

THEOREM 3. If A is irreducible then all eigenvalues lie inside the union of the Gershgorin disks, except that any eigenvalue on the
boundary of any Gershgorin disk is on the boundary of all n disks.

Hence, for irreducible A, if any Gershgorin disk has 2 distinct eigenvalues on its boundary, then the boundaries of all n disks
pass through those 2 eigenvalues; and if any Gershgorin disk has 3 distinct eigenvalues on its boundary, then all n disks coincide.

James H. Wilkinson made very effective use of Gershgorin’s Theorem 2 for refined estimation of eigenvalues, by applying
similarity transforms to A (as Gershgorin had suggested) to isolate a single disk from the others, so that exactly one eigenvalue is
contained in that isolated disk [20, pp. 71-81 & 638-646]. Gershgorin’s seminal work on eigenvalues is cited in my recent paper
[18, p.10].

Gershgorin’s final paper [15] ‘On conformal transformation of a simply-connected region onto a circle’ (in Russian) was pub-
lished in 1933. L. Lichtenstein had reduced that important problem to the solution of a Fredholm integral equation. Independently
of Lichtenstein, Gershgorin utilised Nystrdom’s method and reduced that conformal transformation problem to the same Fredholm
integral equation. Later, A. M. Banin solved the Lichtenstein-Gershgorin integral equation approximately, by reducing it to a finite
system of linear differential equations. [1, Volume 4 Part 1, p.365, & Volume 4, Part 2, p.146].

Semyon Aronovich Gershgorin died on 1933-5-30, at the age of 31.
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TLAS Information Center Call for Submissions to IMAGE
The electronic ILAS INFORMATION CENTER (IIC)
provides current information on international conferences in
linear algebra, other linear algebra activities, linear algebra
journals, and ILAS-NET notices. The primary website can
be found at:
http://www.ilasic.math.uregina.ca/iic/index 1.html

As always, IMAGE welcomes announcements of
upcoming meetings, reports on past conferences, historical
essays on linear algebra, book reviews, essays on the
development of Linear Algebra in a certain country or region,
and letters to the editor or signed columns of opinion.
IMAGE would like to slightly expand its scope by including
general audience articles that highlight emerging applications
and topics in Linear Algebra. Contributions for IMAGE
should be sent to Bryan Shader (bshader@uwyo.edu) or
Hans Joachim Werner (werner@united.econ.uni-bonn.de).
The deadlines are October 1 for the fall issue, and April 1 for
the spring issue.

and mirror sites are located at:

htpp://www.math.technion.ac.il/iic/index 1.html
htpp://wftp.tu-chemnitz.de/pub/iic/index 1.html
htpp://hermite.cii.fc.ul.pt/iic/index 1.html
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ILAS 2003 - 2004 Treasurer’s Report

Net Account Balances on February 28, 2003

Vanguard (ST Fed. Bond Fund 1165.096 Shares)

(72% Schneider Fund and 28% Todd Fund) 12,489.83
Checking account 68,997.91
Pending checks 940.00
Pending VISA/Mastercard 2124.00
Outstanding check to UW Madison (2,000.00) $82,551.74
General Fund 33,962.88
Conference Fund 10,518.94
ILAS/LAA Fund 5,840.00
Olga Taussky Todd/John Todd Fund 8,797.39
Frank Uhlig Education Fund 3,685.98
Hans Schneider Prize Fund 19,746.55 $82,551.74
March 1, 2003 through February 29, 2004
Income:
Dues 2750.00
Corporate Dues 1000.00
Book Sales 31.00
General Fund 388.10
Conference Fund 80.71
ILAS\LAA Fund 1037.10 Prepared by:
Taussky-Todd Fund 947.24
Uhlig Education Fund 33.35 Jeffrey L. Stuart
Schneider Prize Fund 490.70 6,758.20 ILAS Secretary-Treasurer
jeffrey.stuart@plu.edu
Expenses: PLU Math Department
IMAGE (2 issues) 3442.51 Tacoma, WA 98447 USA
Speakers (2) 800.00
Credit Card Fees 251.60
License Fees 61.25
Labor - Mailing & Conference 257.00
Postage 518.06
Supplies and Copying 565.32 5,895.74

February 29, 2004 Checking Account Balance

Net Account Balances on February 29, 2004

Vanguard (ST Fed. Bond Fund 3554.076 Shares)

(10.60% Each: General Fund, Conference Fund and ILAS/LAA Fund,

17.40% Taussky Todd Fund, 7.95% Uhlig Fund, 42.85% Schneider Fund)

$37,815.37
Checking account $43,756.83
Pending checks $ 1,600.00
Pending VISA/Mastercard/ AMEX $ 200.00
Cash $  42.00 $83,414.20
General Fund $32,236.24
Conference Fund $10,599.65
ILAS/LAA Fund $ 6,877.10
Olga Taussky Todd/John Todd Fund $ 9,744.63
Frank Uhlig Education Fund $ 3,719.33
Hans Schneider Prize Fund $20,237.25 $83,414.20
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ILAS President/Vice President Annual
Report: April 2004

1) The following were elected in the ILAS fall, 2003
elections to offices with terms that began on March 1, 2004
and end on February 28, 2007:

Vice President: Roger Horn (second term)
Board of Directors: Roy Mathias and Joao Filipe Queiro

2) The following continue in ILAS offices to which
they were previously elected:

President: Daniel Hershkowitz (term ends
February 28, 2005)

Secretary/Treasurer: Jeff Stuart (term ends
February 28, 2006)

Board of Directors:

Ravindra Bapat (term ends February 28, 2005)
Rafael Bru (term ends February 28, 2006)
Michael Neumann (term ends February 28, 2005)
Hugo Woerdeman (term ends February 28, 2006)

Tom Markham and Daniel Szyld completed their three-
year terms on the ILAS Board of Directors on February 29,
2004.

President Hershkowitz appointed Jane Day as Chair of
the Education Committee, replacing Guershon Harel, who
resigned for personal reasons.

3) With the advice of the ILAS Executive Board,
President Hershkowitz appointed a committee to select a
recipient of the Hans Schneider Prize in Linear Algebra to
be awarded at the 12™ ILAS Conference, Regina, Canada,
June 26-29, 2005. Chaired by Michael Neumann, the
committee consists of Heike Fassbender, Miroslav Fiedler,
Robert Guralnick, Danny Hershkowitz (ex-officio), and
Eduardo Marques de S4. Nominations may be made
by any ILAS member and should be sent to the Chair
(neumann@math.uconn.edu) before November 15, 2004.

4) Three ILAS-endorsed meetings took place during
the last year:

The SIAM SIAG\LA Conference on Applied
Linear Algebra, July 15-19, 2003, Williamsburg, Virginia,
USA. Judi MacDonald and Bryan Shader were the ILAS
Lecturers.

The 12th International Workshop on Matrices and
Statistics (IWMS-2003), August 5-8, 2003 Dortmund,
Germany. Jerszy Baksalary was the ILAS Lecturer.
The International Conference on Matrix Analysis and

Applications, December 14-16, 2003 Fort Lauderdale, USA.
Roger Horn was the ILAS Lecturer.

5) The 11th ILAS Conference will take place in
Coimbra, Portugal, July 19-22, 2004. Professor Peter
Lancaster will be presented with the 2002 ILAS Hans
Schneider Prize in Linear Algebra, and he will deliver the
Prize Lecture. T. Ando was also a recepient of the 2002
H.S. prize, and gave his lecture at the Atlanta 2002 meeting.
Professor Peter Semrl will present the Olga Taussky-John
Todd Lecture. The two SIAM SIAM\LA speakers will be
Beatrice Meini and Julio Moro. Sixteen additional plenary
speakers and several mini-symposia are scheduled. The
chairman of the organizing committee is Joao Filipe Queiro.
For more information visit http://www.mat.uc.pt/ilas2004/
Body.html.

6) ILAS has endorsed the following conferences of
interest to ILAS members:

The Directions in Combinatorial Matrix Theory, a two-
day workshop at the Banff International Research Station
(BIRS), Banff, Canada, May 6-8, 2004.

The 13th International Workshop on Matrices and Statistics,
Poznan, Poland, August 18-21, 2004.

The 2005 Haifa Matrix Theory Conference to be held at The
Technion during January 3-7, 2005. The ILAS Lecturer will
be Michael Neumann.

The Householder Meeting on Numerical Linear Algebra,
Campion, USA, May 23-27, 2005

7) The following ILAS conferences are scheduled:

The 12th ILAS Conference, Regina, Saskatchewan, Canada,
June 26-29, 2005 (for details see http://www.math.uregina.ca/
~ilas2005/).

The 13th ILAS Conference, Amsterdam, The Netherlands,
July 19-22, 2006 (Chairman of the organizing committee is
Andre Ran. Local organizers: Andre Ran, Andre Klein, Peter
Spreij and Jan Brandts).

The 14th ILAS Conference, Shanghai, China, summer, 2007
(Organizing Committee: Richard Brualdi - co-chair, Erxiong
Jiang - co-chair, Raymond Chan, Chuanqing Gu, Danny
Hershkowitz - ILAS President, Roger Horn, Ilse Ipsen, Julio
Moro, Peter Semrl, J ia-yu Shao and Pei Yuan Wu).

The 15th ILAS Conference, Cancun, Mexico, June 16-
20, 2008 (Chairman of the organizing committee is Luis
Verde).

Cont’d on page 10
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ILAS Report, cont’d from page 9

8) ELA : The Electronic Journal of Linear Algebra is
now in its eleventh volume. Its editors-in-chief are Ludwig
Elsner and Danny Hershkowitz.

Volume 1, published in 1996, contained 6 papers.
Volume 2, published in 1997, contained 2 papers.

Volume 3, the Hans Schneider issue, published in 1998,
contained 13 papers.

Volume 4, published in 1998 as well, contained 5 papers.
Volume 35, published in 1999, contained 8 papers.

Volume 6, Proceedings of the Eleventh Haifa Matrix
Theory Conference, published in 1999 and 2000,
contained 8 papers.

Volume 7, published in 2000, contained 14 papers.
Volume 8, published in 2001, contained 12 papers.
Volume 9, published in 2002, contained 24 papers.
Volume 10, published in 2003, contained 25 papers.

Volume 11, is being published now. As of April 13, 2004,
it contains 7 papers.

The rejection rate in ELA is currently 39%. ELA’s
primary site is at the Technion. Mirror sites are located in
Temple University, in the University of Chemnitz, in the
University of Lisbon, in EMIS - The European Mathematical
Information Service offered by the European Mathematical
Society, and in EMIS’ 36 mirror sites.

Volumes 1-7 (1996-2000) of ELA are in print, bound as
two separate books: vol. 1-4, and 5-7. Copies can be ordered
from Jim Weaver.

9) ILAS-NET is managed by Shaun Fallat, and now
has 485 subscribers. As of April 12, 2004, we have circulated
1342 ILAS-NET announcements.

10) The primary site of ILAS INFORMATION
CENTER (IIC) is at Regina. Mirror sites are locate in
the Technion, in Temple University, in the University of
Chemnitz and in the University of Lisbon.

Respectfully submitted,
Daniel Hershkowitz, ILAS President, hershkow

@tx.technion.ac.il; Roger Horn, ILAS Vice-President,
rhorn@math.utah.edu.

Call for Papers
Special Issue of LAA
11th ILAS Conference

Linear Algebra and its Applications will publish a
special issue devoted to papers presented at the 11" ILAS
Conference, Coimbra, 19-22 July 2004. Papers should be
submitted by 31 October 2004 to one of the special editors
whose names and addresses are listed below. The usual
standards of LAA will apply.

Graciano de Oliveira

Departmento de Mathematica

Apt. 3008, Universidade de Coimbra 3000
Coimbra, Portugal

gdoliv@mat.uc.pt

Joao Queird

Departmento de Mathematica

Apt. 3008, Universidade de Coimbra
Coimbra, Portugal

jfqueiro @mat.uc.pt

Bryan Shader
Mathematics Department
Ross Hall

University of Wyoming
Laramie, WY 82071, USA
bshader@uwyo.edu

Ion Zaballa

Departamento de Matematica Aplicada y EIO
Universidad del Pais Vasco

Apdo 644

48080. Bilbao, Spain

mepzatej @lg.chu.es

For details of the conference see http://www.mat.uc.pt/
ilas2004 .
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Book Report

Introduction to Linear Algebra (3™ edition), by Gilbert
Strang, Wellesley-Cambridge Press, 2003.
ISBN 0961408898

This book is the text for an introductory course in
Linear Algebra at MIT. The course is offered primarily
to students in disciplines other than mathematics. For this
purpose it is admirably suited. It is clear and interesting to
read. It has excellent treatments of things that are difficult
to explain. I found every section contains a charming
example or a fresh way of looking at something. Unlike
many math books, the author does not strive to remove
all evidence of the book being written by a human being.
However, not everyone will enjoy this book. For example,
a proponent of the Theorem-Proof-QED style of writing for
introductory texts will be disappointed by its informality.
The price of the text’s chattiness is a lack on concision. This
would be a poor reference book. Those who find “cute”
comments annoying will be annoyed. However, in my
experience, students tend to enjoy books that are written
more informally. I think that particularly for a lower level
course, taught to students in many disciplines, this is quite
an appropriate text.

Each section of each chapter obeys the following
structure: informal and often interesting comments; the
body of the section; a concise summary of key ideas worked
example; and problems, some of which have solutions in
the back of the text.

Chapter 1 is a review of the basic properties of vectors:
addition, scalar multiplication, dot products, the Schwarz
inequality. However, much of it is only done in two or
three dimensions. Chapter 2 covers basic matrix properties,
operations for square matrices, along with the solution of
square linear systems. This contains Strang’s exemplary
exposition of the connection between Gaussian Elimination
and LU Factorization: my favorite bit in the book.

Chapter 3 introduces vector spaces in R" for arbitrary
n. He discusses the vector spaces associated with a
rectangular matrix. Along with this he tackles the solution
of consistent rectangular linear systems. Chapter 4 discusses
orthogonality of vectors and subspaces of vectors, segueing
into orthogonal projections, least-squares problems and the
QR decomposition. Chapter 5 is devoted to determinants.

I do not know if I agree with the opening comment: “The
determinant contains an amazing amount of information
about the matrix.” I suppose if you were forced to

summarize a matrix with a single scalar you could do worse.

Granted, determinants must be discussed somewhere in
such a course, but perhaps they could be postponed till after
eigenvalues, as in Axler’s text on Linear Algebra. Chapter 6
covers eigenvalues, diagonalization, and linear differential
equations. One aspect of the treatment is a discussion of

the matrix exponential, something that I appreciate greatly
and is missing from other introductory texts. He goes on

to symmetric and positive definite matrices, similarity and
the SVD. An excellent example of Strang’s relaxed style
is given by his treatment of the spectral theorem. He states
the theorem, gives intuitive proofs for special cases, and

a compelling argument for why you can extend it to the
general case. Chapter 7 is devoted to the concept of Linear
transformations. Here the fiddly topic of change of basis
matrices is covered. (An eminent group theorist once told
me he found this subject more difficult to get straight than
the most difficult issues in his research.) He uses the Haar
wavelets as a motivating example. I am not sure if this is a
stroke of genius—in that it is an important and interesting
application—or rather a confusing digression in an already
confusing topic. Other interesting items in this chapter are
the polar decomposition and the pseudoinverse.

Chapter 8 has six sections each of which covers
an application of linear algebra. The selection is good,
covering both the usual topics (Markov matrices and
computer graphics) but also some less common ones such as
linear programming. In case you were wondering what “the
most fundamental law of applied mathematics” is, according
to Strang it is the “balance equations” (total force on a static
object is zero). Even if you do not agree with this, you may
still enjoy the section in which he discusses this as part of an
interesting introduction to structural mechanics. In Chapter
9 Strang delves into numerical linear algebra in more detail
than he does elsewhere in the book. Though I personally
like this subject, I found this short chapter to be not very
interesting. Most of the topics usually placed under the
rubric of numerical linear algebra are covered elsewhere and
most readers could skip this chapter.

The final chapter considers issues related to complex
numbers, that is, both real matrices with complex
eigenvalues and matrices that are complex to begin with.
There is a section on the properties of complex numbers
that a lecturer may want to refer to earlier in the course if
need be. Of particular interest to some users of the book is a
section on the Fast Fourier Transform.

Strang ends the book by thanking the reader for
studying linear algebra. My impression is that this is a
great text for teaching scientists and engineers. I have
some misgivings about this being used as a text for
mathematicians, applied or otherwise. It is important that
mathematics students are exposed to an axiomatic treatment
of linear algebra at some point, and this text does not do
a thorough job of that—nor is it intended to. On the other
hand, an introductory course based on this book would be
far more interesting than a more rigorously oriented course,
and would give mathematics students a much-needed
introduction to applied mathematics early on.

Reviewed by Paul Tupper

Department of Mathematics and Statistics
McGill University

Montreal, QC H3A 2K6 CANADA
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The Hans Schneider Prize in Linear Algebra

Call for Nominations

The Hans Schneider Prize in Linear Algebra is awarded
by The International Linear Algebra Society for research
contributions, and achievements at the highest level of Linear
Algebra. The Prize may be awarded for either an outstanding
scientific achievement or for a lifetime contribution.

According to its specifications, the Prize is awarded every
three years at an appropriate ILAS conference. The last prize
was awarded in June 2002 at the ILAS Meeting in Auburn
jointly to Tsuyoshi Ando and Peter Lancaster and thus it is
appropriate to award the prize again at the ILAS Regina,
Canada meeting, June 26-29, 2005. The prize guidelines can
be found at

http://www.ilasic.math.uregina.ca/iic/ILASPRIZE.html
or
http://www.math.technion.ac.il/iic/ILASPRIZE.html

The committee appointed by the ILAS president upon
the advice of the ILAS Executive Board consists of Heike
Fassbender, Mirek Fiedler, Bob Guralnick, Danny Hershkowitz
(ILAS president - ex-officio member), Miki Neumann (chair),
and Eduardo Marques de Sa.

Nominations, of distinguished individuals judged worthy
of consideration for the Prize, are now being invited from
members of ILAS and the linear algebra community in general.
In nominating an individual, the nominator should include:

(1) a brief biographical sketch of the nominee, and

(2) a statement explaining why the nominee is considered
worthy of the prize, including references to publications or
other contributions of the nominee which are considered
most significant in making this assessment.

Nominations are open until November 15, 2004 and should
be sent to the Chair, Michael Neumann, of the committee at the
address below. The committee may ask the nominator to supply
additional information.

Professor Michael Neumann
Department of Mathematics
University of Connecticut

Storrs, Connecticut 06269-3009 USA
email: neumann@math.uconn.edu

Recent Releases of Interest

Dover Publications have recently published a new edition
of the classic Lambda-Matrices and Vibrating Systems by Peter
Lancaster. It was first published by Pergamon press in 1966 and
has been out of print for many years.

Jonathan Golan has recently written a book entitled The
Linear Algebra a Beginning Graduate Student Ought to Know
(Kluwer Academic Publishes, 2004, ISBN: 1-4020-1824-X).
The book is intended either as a textbook for an advanced-
undergraduate or first-year graduate course in linear algebra,
or as a reference and self-study guide for preliminary exams
in linear algebra, and contains both theoretical material and
material on computational matrix theory. A review of this book
will appear in the next issue of IMAGE.

Morris Newman Conference

Report by Fuzhen Zhang

A math conference in honor of Dr. Morris Newman’s
80th birthday was held on April 17th and 18th, 2004, at the
University of California-Santa Barbara. Dr. Newman well
known for his research in number theory, linear algebra,
scientific computation, and group theory.

The following people attended the conference: Doug
Moore, Ben Fine, Fuzhen Zhang, Ion Zaballa, Karl Rubin,
Montserrat Alsina, Charles Johnson, Edward Ordman,
Wasin So, Matt Boylan, Charles Ryavec Larry Gerstein,
Marvin Knopp, Ahmad EIl-Guindy, Adrian Stanger, Russell
Merris, Timothy Redmond, Cindy Wyels, Steve Pierce, Chris
Agh, Markus Sandy, Jeffrey Stopple, Basil Gordon, and Bob
Guralnick.

Doug Moore, Morris Newman and Charlie Johnson
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International Conference on Matrix Analysis
and Applications

Report by Fuzhen Zhang

The International Conference on Matrix Analysis
and Applications was held on the main campus of Nova
Southeastern University (NSU), Fort Lauderdale, Florida,
December 14-16, 2003. Eighty-five mathematicians
participated in the three-day event and sixty-eight contributed
talks were presented.

The conference was co-sponsored by NSU’s Farquhar
College of Arts and Sciences and the International Linear
Algebra Society (ILAS). The featured guest lecturer Roger
Horn, Research Professor of Mathematics at the University
of Utah, and one of the most respected and renowned
mathematicians in the field of matrix analysis.

The organizing committee for the conference consisted
of Tsuyoshi Ando (Hokkaido University), Chi-Kwong Li
(College of William and Mary), George P.H. Styan (McGill
University), Hugo Woerdeman (College of William and
Mary, and Catholic University) and Fuzhen Zhang (Nova
Southeastern University).

The goals of the conference were to stimulate research
and interaction of researchers interested in all aspects of linear
and multilinear algebra, matrix analysis and applications, as
well as to provide an opportunity to exchange ideas, recent
results and developments on the subjects. The pool party in
the evening of the 15th was a great joy.

For more information and conference photos, please visit
the website at www.resnet.wm.edu/~cklixx/nova03.html.

HIRIATE

First Workshop on Matrix Analysis

Report by Mohammad Sal Moslehian

The First Workshop on Matrix Analysis sponsored by
the Ferdowsi University was held on March 11-12, 2004.
This workshop took place in the Mathematics Department of
Ferdowsi University of Mashhad in Iran, and was organized
to benefit graduate students. The following eight talks
on matrix norms and related topics were presented:

Dr. Madjid Mirzavaziri: “Vector Norms, Matrix Norms
and Induced Norm Problem,” and “Absolute Norms,
Monotone Norms and Symmetric Norms.”

Dr. Shirin  Hejazian: “Spectral Radius, Numerical
Radius and Matrix Norm,” and “Dual Norms and Self-
adjoint Norms.”

Dr. Mohammad Sal Moslehian (Organizer): “Minimal
Matrix Norms,” and “Unitarily invariant Norms.”

Dr. Assad Niknam: “Contraction Matrix Norms,” and
“Matrix Norms and Graph Theory. ”

There were 32 participants, some of whom were
supported. Participants actively exchanged many ideas on
the subject in a good atmosphere, and all look forward to
future workshops.

14-16, 2003, Ft. Lauderdale
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The Sharpest Cut: The Impact
of Manfred Padberg and His Work

Discrete
Convex Analysis
Kazuo Murota

Laxczos Mem

Edited by Martin Grotschel

MPS-SIAM Series on Optimization 4 ié\é\\%

The Sharpest Cut is written in honor of Manfred
Padberg, who has made fundamental contributions to
both the theoretical and computational sides of integer
programming and combinatorial optimization. This
outstanding collection presents recent results in these areas

that are closely connected to Padberg’s research. His deep
commitment to the geometrical approach to combinatorial

optimization can be felt throughout this volume; his search for
increasingly better and computationally efficient cutting planes
gave rise to its title.

The peer-reviewed papers contained here are based on
invited lectures given at a workshop held in October 2001 to
celebrate Padberg’s 60th birthday. Grouped by topic, many of the
papers set out to solve challenges set forth in Padberg’s work. The
book also shows how Padberg’s ideas on cutting planes have
influenced modern commercial optimization software.

Available June 2004 - Approx. xii + 380 - Hardcover - ISBN 0-89871-552-0
List Price $99.00 - SIAM Member Price $64.30 - Order Code MP04

The Lanczos Method:
Evolution and Application
Louis Komzsik

“...I recommend this book to anyone who wants to appreciate the
often subtle interactions between algorithm research and engineering
applications....”
—Horst Simon, Director, NERSC Division,
Berkeley National Laboratory.

2003 - xii + 87 pages - Softcover - ISBN 0-89871-537-7
List Price $42.00 - SIAM Member Price $29.40 - Order Code SEI5

Iterative Methods for Sparse
Linear Systems, Second Edition
Yousef Saad

Gives an in-depth, up-to-date view of practical algorithms for
solving large-scale linear systems of equations. This new edition
includes a wide range of the best methods available today.

2003 - xviii + 528 pages - Softcover - ISBN 0-89871-534-2
List Price $89.00 - SIAM Member Price $62.30 - Order Code OT82

=% TO ORDER
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Monographs on Discrete Mathematics

and Applications 10

Discrete Convex Analysis is a novel

paradigm for discrete optimization

that combines the ideas in

continuous optimization (convex
analysis) and combinatorial optimization
(matroid/submodular function theory) to
establish a unified theoretical framework for

nonlinear discrete optimization. The study of this theory is
expanding with the development of efficient algorithms and
applications to a number of diverse disciplines like matrix theory,
operations research, and economics. This self-contained book is
designed to provide a novel insight into optimization on discrete
structures and should reveal unexpected links among different
disciplines. It is the first and only English-language monograph
on the theory and applications of discrete convex analysis.

2003 - xxii + 389 pages - Hardcover - ISBN 0-89871-540-7
List Price $111.00 - SIAM Member Price $77.70 - Order Code DTI10

Matrix Analysis and
Applied Linear Algebra
Carl D. Meyer

“Carl Meyer’s book is an outstanding addition to the vast literature in
this area....If this textbook will not succeed in awakening your
students’ interest in matrices and their uses, nothing else will.”
— Michele Benzi, Department of Mathematics
and Computer Science, Emory University.

2000 - xii + 718 pages - Hardcover - ISBN 0-89871-454-0
List Price $80.50 - SIAM Member Price $56.35 - Order Code OT71
Includes CD-ROM and Solutions Manual

Matrix Algorithms
Volume II: Eigensystems
G.W. Stewart

This volume treats the numerical solution of dense and large-
scale eigenvalue problems with an emphasis on algorithms and
the theoretical background required to understand them.

2001 - xix + 469 pages - ISBN 0-89871-503-2 - Softcover
List Price $54.50 - SIAM Member Price $38.15 - Order Code OT77

¢ Use your credit card (AMEX, MC, and VISA): Go to www.siam.org/catalog * Call toll-free in USA/Canada:
800-447-SIAM - Worldwide, call: 215-382-9800 ¢ Fax: 215-386-7999 * E-mail: service@siam.org. Send check
or money order to: SIAM, Dept. BKIL04, 3600 University City Science Center, Philadelphia, PA 19104-2688.
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Forthcoming Conferences and Workshops in Linear Algebra

4th GAMM Workshop on Applied and
Numerical Linear Algebra

Hagen, Germany: 2-3 July, 2004

The special emphasis of this workshop is on “Linear
Algebra in Systems and Control Theory”, but all other
aspects of applied and numerical linear algebra are most
welcome. The workshop follows up the closely related Sth
International Workshop on Accurate Solution of Eigenvalue
Problems (IWASEP 5, June 28-July 1) at the same location.

Confirmed invited speakers are: Chris Beattie (Virginia
Tech, USA), Ralph Byers (University of Kansas, USA),
Diederich Hinrichsen (Universitat Bremen, Germany).

The workshop will consist of three invited talks and
contributed talks of 25 minutes. Abstracts can be submitted
via the conference webpage:

http://www.math.tu-berlin.de/~kressner/ GAMMO04

More information on the conference location and
registration can be found on this web page.

Important dates:

Submission of abstracts: 15.05.04
Notification of acceptance: 01.06.04
Registration: 15.05.04

The organizers are: Volker Mehrmann (TU Berlin,
mehrmann @math.tu.-berlin.de) and Heike Fassbender (TU
Braunschweig, Germany, h.fassbender @tu-bs.de).

6th International Conference
on Matrix Theory and Its
Applications in China

Harbin, China: 17-22 July 2004

The 6th International Conference on Matrix Theory and

Its Applications in China will be held July 17—22, 2004, at
Helongjiang University in Harbin, Helongjiang Province,
China.

The meeting is an international conference on Matrix
Theory and its Applications held in China every even year.
The conference provides a forum for researchers from various
countries to exchange new ideas, recent developments and
results on Matrix Theory and its Applications, including
traditional linear algebra, combinational linear algebra,

numerical linear algebra and related areas.

The Honorary Conference Chairs are Professor
Erxiong Jiang (Shanghai University, China), and Professors
Chongguang Cao, and Prof. Shaowu Liu (Heilongjiang
University, China). The Program Chairs are Professors
Chongguang Cao, Prof. Shaowu Liu, Dayuan Zheng
(Heilongjiang University, China). The Conference Secretary-
generals are Dr. Kun Jiang, Dr. Xiaomin Tang, and Yahong
Guo (Heilongjiang University, China)

Registration

The registration fee is US$100 per person for faculty,
and US$80 per for students. The registration fee includes
5 breakfasts, 5 lunches and 5 dinners (at the University
restaurants), as well as a local tour and conference materials.

Call for papers

Papers of outstanding quality that are presented at the
conference will be selected for publication in Journal of
Natural Science of Heilongjiang University.

Full papers in English containing original and
unpublished results are solicited. The maximum length of
each paper is limited to 6 double spaced pages. Electronic
submission is required. Acceptable formats for submission
are Word, PDF, and Postcript.

The cover page must include the name, address,
telephone number, and e-mail address of the corresponding
author, and the affiliation of all authors. The information on
the cover page must also be submitted by e-mail in a plain
text file.

To submit a paper, send the paper by e-mail to
matrix2004 @hlju.edu.cn by May 15, 2004. Submission will
be acknowledged within seven days.

Deadlines
Full paper submission: May 15, 2004
Notification of Acceptance: May 31, 2004
Camera-ready copy due: June 20, 2004

California Matrix Meeting

San Jose, CA: 13 November 2004

A California Matrix Meeting will be held at San Jose
State University, San Jose, CA on Saturday, Nov. 13,
2004. There is no registration fee, and contributed papers
are welcome. More details will be provided later on the
ILAS-net, and other venues. The organizers are Wasin So
(so@math.sjsu.edu) and Jane Day (day @math.sjsu.edu).
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The 2004 NZIMA Conference in
Combinatorics and its Applications
and
The 29th Australasian Conference in
Combinatorial Mathematics and
Combinatorial Computing

Lake Taupo, New Zealand: 13-18 December 2004

The 2004 New Zealand Institute of Mathematics and its
Applications (NZIMA) Conference in Combinatorics and
its Applications, and the 20™ Australasian Conference in
Combinatorial Mathematics and Combinatorial Computing
will be jointly held 13—18 December 2004 in the Lake Taupo
district of New Zealand.

Conference topics include: Graph Theory, Matroid
Theory, Design Theory, Coding Theory, Enumerative
Combinatorics, Combinatorial Optimization, Combinatorial
Computing and Theoretical Computer Science, and
Combinatorial Matrix Theory.

A tentative list of invited speakers includes: Dan
Archdeacon (University of Vermont), Richard Brualdi
(University of Wisconsin), Darryn Bryant (University of
Queensland), Peter Cameron (Queen Mary, University of
London), Bruno Courcelle (Bordeaux University), Catherine
Greenhill (University of New South Wales), Bojan Mohar
(University of Ljubljana), Bruce Richter (University
of Waterloo), Neil Robertson (Ohio State University),
Robin Thomas (Georgia Institute of Technology), Carsten
Thomassen (Technical University of Denmark), Mark
Watkins (University of Syracuse) and Dominic Welsh
(Oxford University).

There will be slots in the program for contributed talks
by participants. It is expected that this slots will be 20 minutes
in length with a limited number of 30-minute slots available
on request. Deadlines for registration, titles and abstracts of
contributed talks will be announced shortly.

Additional  information about the conference
can be found on the conference web page: http://
www.nzima.auckland.ac.nz/combinatorics/conference.html

The 2005 Haifa Matrix Theory Conference

Haifa, Israel: 3-7 January, 2005

The conference plans to cover all aspects of matrix
theory, linear algebra, and their applications.

The following have confirmed speaking at the
conference: Ron Adin, Daniel Alpay, Jonathan Arazy,
Ravindra Bapat, Harm Bart, Genrich Belitsky, Adi Ben-
Israel, Alfred Bruckstein, Yair Censor, David Chillag, Harry
Dym, Ludwig Elsner, Yuly Eidelman, Karl-Heinz Foerster,
Shmuel Friedland, Paul Fuhrman, Israel Gohberg, Roger
Horn, Tomas Kosir, Thomas Laffey, Yuri Lyubich, Alexander
Markus, Volker Mehrmann, Roy Meshulam, Michael
Neumann (ILAS speaker), Vadim Olshevsky, Allan Pinkus,
Robert Plemmons, Leiba Rodman, Uriel Rothblum, Hans
Schneider, Bryan Shader, Naomi Shaked-Monderer, Robert
Shorten, Avram Sidi, Bit-Shun Tam, Michael Tsatsomeros,
Eugene Tyrtyshnikov, Victor Vinnikov, William Watkins,
Hans Joachim Werner, and Hugo Woerdeman.

The organizing committee consists of Abraham Berman
(Chair), Moshe Goldberg, Daniel Hershkowitz, Leonid
Lerer, and Raphael Loewy.

Call for papers

Titles and abstracts should be submitted to Ms. Sylvia
Schur, conference secretary, at the address below, no later
than October 1, 2004. Abstracts should be up to one page in
length, and can be sent either by e-mail in Tex/Latex, or by
mail.

Proceedings

The journal Linear Algebra and Its Applications will
publish a special issue devoted to papers presented at the
conference. The special editors are Abraham Berman,
Leonid Lerer and Raphael Loewy. The usual standards
of LAA will apply. The submission deadline is April 30,
2005. Further details will appear in due course at http:
/Iwww.math.wisc.edu/~hans/speciss.html

For further information, please contact:
Ms. Sylvia Schur (Secretary)
Department of Mathematics
Technion-Israel Institute of Technology
Haifa 32000, Israel

email: cms @math.technion.ac.il
Phone: 972 4 829 4278

Fax: 972 4 829 3388

Please feel free to forward this announcement to your
colleagues!
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428pp
981-238-779-X

Apr 2004
us$72  £44

Co-Published with Singapore University Press

JOURMNAL SITE

WorldSci et

www.worldscinet.com

www.worldscinet.com/jaa.html)

DURNAL OF
ALGEBRA AND
ITS APPLICATIONS

JOURNAL OF ALGEBRA AND ITS
APPLICATIONS (JAA)

Executive Editors

S K Jain

Ohio University

E-mail: jain@math.ohiou.edu

S R L6pez-Permouth
Ohio University
E-mail: slopez@math.ohiou.edu

Aims and Scope

The Journal of Algebra and Its Applications will publish high quality research on
pure algebra and applied aspects of Algebra; papers that point out innovative links
between areas of Algebra and fields of application are of special interest. Areas of
application include, but are not limited to, Information Theory, Cryptography, Coding
Theory and Computer Science. Occasionally, extraordinary expository articles
presenting the state of the art on a specific subject will be considered.

Selected Papers

Infinite Cogalois Theory, Clifford Extensions, and Hopf Algebras
T Albu

Profinite Identities for Finite Semigroups Whose Subgroups Belong
to a Given Pseudovariety
J Almeida & M V Volkov

LECTURES ON FINITE FIELDS AND GALOIS RINGS
by Zhe-Xian Wan (Chinese Academy of Sciences, China)

This is a textbook for graduate and upper level undergraduate students in mathematics,
computer science, communication engineering and other fields. The explicit construction
of finite fields and the computation in finite fields are emphasised. In particular, the
construction of irreducible polynomials and the normal basis of finite fields are included.
The essentials of Galois rings are also presented. This invaluable book has been written
in a friendly style, so that lecturers can easily use it as a text and students can use it for
self-study. A great number of exercises have been incorporated.

352pp
981-238-504-5
981-238-570-3(pbk)

Aug 2003
Us$68 £50
Us$38 £28

COMPLETELY POSITIVE MATRICES
by Abraham Berman (Technion - Israel Institute of Technology) &
Naomi Shaked-Monderer (Emek Yezteel College, Israel)

A real matrix is positive semidefinite if it can be decomposed as A=BB’. In some
applications the matrix B has to be elementwise nonnegative. If such a matrix exists,
A'is called completely positive. The smallest number of columns of a nonnegative matrix
B such that A=BB’ is known as the cp-rank of A.

This invaluable book focuses on necessary conditions and sufficient conditions for
complete positivity, as well as bounds for the cp-rank. The methods are combinatorial,
geometric and algebraic. The required background on nonnegative matrices, cones,
graphs and Schur complements is outlined.

216pp
981-238-368-9

Apr 2003
US$46  £34



IMAGE 32: April 2004 Page 19

IMAGE Problem Corner: Old Problems, Most With Solutions

We present solutions to IMAGE Problems 28-3 [IMAGE 28 (April 2002), p. 36], and 31-1 through 31-8 [IMAGE 31 (October 2003), pp. 44 & 43].
Problem 30-3 is repeated below without solution; we are still hoping to receive a solution to this problem. We introduce 7 new problems on pp. 40
& 39 and invite readers to submit solutions to these problems as well as new problems for publication in IMAGE. Please submit all material both (a)
in macro-free IATEX by e-mail, preferably embedded as text, to ujw902@uni-bonn.de and (b) two paper copies (nicely printed please) by classical
p-mail to Hans Joachim Werner, IMAGE Editor-in-Chief, Department of Statistics, Faculty of Economics, University of Bonn, Adenauerallee 24-42,
D-53113 Bonn, Germany. Please make sure that your name as well as your e-mail and classical p-mail addresses (in full) are included in both (a)
and (b)!

Problem 28-3: Ranks of Nonzero Linear Combinations of Certain Matrices.
Proposed by Shmuel FRIEDLAND, University of lllinois at Chicago, Chicago, Illinois, USA: friedlan@uic.edu
and Raphael LOEWY, Technion—Israel Institute of Technology, Haifa, Israel: loewy@technunix.technion.ac.il

Let
1 0 0 1 01 O 0 01 1 0 0 0 O 1
00 1 1 1 0 1 0 1 1 0 0 01 1 0
By = , Bs= , Bs= , Bi=
01 1 0 o1 1 -1 1 0 1 -1 01 0 -1
1 1 0 -1 o0 -1 -1 00 -1 0 1 0 -1 0

Show that any nonzero real linear combination of these four matrices has rank at least 3.

Solution 28-3.1 by S. W. DRURY, McGill University, Montréal (Québec), Canada: drury@math.mcgill.ca

Let B = t1 By +t2 By +t3Bs+t4B, and let C be the classical adjoint of B. The entries of C' are cubic polynomials in (¢1, to, t3,t4).

Now, consider
998 401 213 560

401 600 459 296
213 459 484 303
560 296 303 614
which is easily checked to be a positive definite matrix and let
q = 998t1° + 802t1to + 426t5t; + 1120t4t; + 600ts” + 9185ty + 592tats + 484t5> + 6065ty + 614t4°
be the quadratic form that it defines. Then, calculations show that
to g = 36C1 1 4+ 94C, 2 — 58C 3 + 58C5 2 + 13003 3 — 94C5 4 + 246C5 3 — 108C5 4 + 36C4 4

and
t3q = *940171 + 940172 + 5801,3 — 3601_]4 — 1300272 — 1880273 + 720274 — 940373 — 940474.

Now assume that B has rank strictly less than 3 and that not all the ¢; are zero. Then C is identically zero and g is strictly positive.
We conclude that t5 = t3 = 0. But now we have

Crq = —ty(ts®> + 12 +taty) and Cyy = —t1 (142 + 112 + taty).

Repeating the above idea on a smaller scale, we see that ta? + 112 + ta4t; > Ounless t; = t4 = 0. But again since C' is identically
zero, we are forced to conclude that t; = t4 = 0 anyway.

Problem 30-3: Singularity of a Toeplitz Matrix
Proposed by Wiland SCHMALE, Universitdit Oldenburg, Oldenburg, Germany: schmale@uni-oldenburg.de
and Pramod K. SHARMA, Devi Ahilya University, Indore, India: pksharmal944@yahoo.com

Letn > 5, ¢1,...,cn—1 € C\{0}, x an indeterminate over the complex numbers C and consider the Toeplitz matrix
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C2 c1 z 0 - - 0
C3 (&) ci =z O 0
M =
Cn—3 Cn—a - - - o 2
Cnea Cn_z - - - -
Cno1 Cn—o + - - e co

Prove that if the determinant det M = 0 in C[z] and 5 < n < 9, then the first two columns of M are dependent. [We do not know
if the implication is true for n > 10.]

We look forward to receiving solutions to Problem 30-3!

Problem 31-1: A Property of Linear Subspaces
Proposed by Jiirgen GROB and Gotz TRENKLER, Universitdt Dortmund, Dortmund, Germany:
gross@statistik.uni-dortmund.de trenkler@statistik.uni-dortmund.de

In GroB (1999, Corollary 2) the following is stated: If U and V are linear subspaces of C™, then
C"=[UnUtr+vhle Ve Utnvi,

where “@” indicates the direct sum of two subspaces and “_L” denotes the orthogonal complement. Is this decomposition also valid
in a Hilbert space? The Proposers of the problem have no answer to this question.

Reference

J. Grof} (1999). On oblique projection, rank additivity and the Moore-Penrose inverse of the sum of two matrices. Linear and Multilinear Algebra,
46, 265-275.

Solution 31-1.1 by Leo L1VSHITS, Colby College, Waterville, Maine, USA: llivshi@colby.edu

The theorem is not true as stated in the infinite-dimensional Hilbert space setting. The obstruction is due to the fact that the sum of
two closed subspaces in an infinite-dimensional Hilbert space is a subspace that may not be closed. For a concise discussion of this
phenomena see Problem 52 in “A Hilbert Space Problem Book” by P. R. Halmos. We shall base our counterexample on it.

The strategy for constructing a counterexample becomes apparent when one notes that

U+V=[UnUnV)eUnW]+[[VnUnV)eUnV)],

so that .
U+V=UnUNV)+V,
and consequently
H=[[Un@nv)*+V]e U+

where U, V are closed subspaces of the Hilbert space H, @ stands for orthogonal direct sum, and + stands for linear direct sum.
Furthermore, (U + V)L = U+ NV+,and U+ + VL C (UN V)L, and the last inclusion may be strict since U+ + V+ may not
be closed.

Let A : ¢? — ¢? be defined by
xr1 T2 X3

1 ) 7, ?’ .. .).
Then A is a continuous linear function whose range contains all finitely non-zero sequences, but not the sequence h = (%, %, %, o).
Therefore range(A) is a proper dense subspace of £2. Let U = {(0,y)|y € ¢*} and V = {(z, Az)|x € ¢2}*+. Clearly U and V are
closed subspaces of the Hilbert space ¢? & ¢2. Consequently (making use of the Closed Graph Theorem) one concludes that

A([L‘l,xg,xg, .. ) = (

U +V*E = {(x,y)lz € £,y € range(4)}
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UNU*+ V") ={(0,y)|y € range(A)}
Utnvt ={(0,0)},

so that
UNU+VH+V+ U NV =[UnU0+VH+V

In particular, [U N (U+ + V1) +V 4 (U*+ N V+) does not contain (0, h) (and hence is a proper subspace of £2 @ ¢2). Indeed, if
(0,h) — (0,y) € {(x, Az)|z € ¢?}* for some y € range(A), then h — y € (range(A))~ = {0}, so that h = y € range(A), which
is a contradiction.

Reference
P. R. Halmos (1967). A Hilbert Space Problem Book. Van Nostrand Comp., Princeton, N. J.

Problem 31-2: Matrices Commuting with All Nilpotent Matrices
Proposed by Henry RICARDO, Medgar Evers College (CUNY) Brooklyn, New York, New York, USA: odedude@yahoo.com

If an n x n matrix A commutes with all n x n nilpotent matrices, must A be nilpotent? Determine the whole class of these matrices.
(We recall that a square matrix NV is said to be nilpotent whenever N* = 0 for some positive integer k.)

Solution 31-2.1 by Jerzy K. BAKSALARY, Zielona Gora University, Zielona Gora, Poland: J.Baksalary@im.uz.zgora.pl
Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznan, Poland: baxx@amu.edu.pl
and Xiaoji L1u, University of Science and Technology of Suzhou, Suzhou, People’s Republic of China: xiaojiliu72@yahoo.com.cn

Let C,, ,, be the set of n x n complex matrices and let a;;, 4, j = 1, ..., n, denote the successive entries of A € C,, ,,. The answer to
the first question is obviously negative. The identity matrix A = I, constitutes a trivial counterexample. The answer to the second
question will be obtained as a simple corollary to the theorem below, which characterizes A € C,, ,, satisfying AN = N A for all
nilpotent N € C,, ,, and in addition shows that this property is actually equivalent to the commutativity of A with suitably selected
n nilpotent matrices N;; € C,, ,, only. Here N;; (with ¢ € {1,...,n}, j € {1,...,n}, and ¢ # j) stands for the matrix whose the
(i, j)th entry is equal to one and all the remaining entries are zeros, so that it is nilpotent of index 2.

THEOREM. For any A € C,, ,,, the following statements are equivalent:
(a) AN = N A for every nilpotent N € C,, ,,
(b) AN;; = N;;A for every N;; from a given set of n nilpotent matrices {N;,j,,...,N;, ;. } indexed by the pairs (im, jm),
which are selected so that {iy,...,in} = {1,...,n} or {j1,...,Jn} = {1,...,n} and that at least n — 1 of them satisfy
(ims Jm) # (Jmyim), m € {1,...,n},
(¢) A= al, for some a € C.

PROOF. It is obvious that (a) = (b) and (c) = (a), and thus the proof reduces to establishing the part (b) = (c). It can easily be
observed that the jth column of the matrix AN;; coincides with the ith column of A and the ith row of the matrix N;; A coincides
with the jth row of A, with all the remaining entries of AV;; and N;; A being equal to zero. This means that, for any given ¢ and j,
the (k, [)th entry of AN;; is ax; when | = j and zero otherwise, while the corresponding entry of N;;A is a;; when k = i and zero
otherwise, k,l = 1, ..., n. Hence if follows that the equality AN;; = N;; A holds if and only if

Qi = Qjj, )
ar; =0 forevery k =1,...,n; k # 1, )
aj; =0 foreveryl =1,...,n;1 # j. (3)

From any set of n(n — 1) conditions obtained by replacing 4 in (2) by i1, ..., i,, such that {41, ..., 4, } = {1, ..., n} or by replacing j
in (3) by ji, ..., jn such that {j1, ..., 5, } = {1, ..., n} it follows that all the off-diagonal entries of A are equal to zero. Consequently,
to complete the proof it remains to notice that if the equations

Qiipe = g (With 6y # 3), m=1,..n, 4
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implied by (1) contain no more than one reduplication, then they are fulfilled simultaneously for {iy,...,i,} = {1,...,n} or
{1y, gn} = {1,..,n} if and only if a1; = ... = an, (= «, say). The assumption restricting the number of reduplications
corresponds to the latter part of the description of a set of indices involved in (b) and shows, for instance, that for n = 4 the choice
of {N12, Na1, N34, N3} is not a proper one, for then it only follows that a;; = a2z and ags = a4, which in general is insufficient
for ai11 = a2 = az3 = a4. On the other hand, it seems noteworthy to point out that a simple example of the choice of matrices N
in (b) which imply (c) is { N12, No1, ..., Nu1}

In general, under the condition {iy, ...,i,} = {1, ...,n} the set (4) can clearly be reexpressed as

Qii = Qj, 5, (Wlch #* ji)7 t=1,...,n; j; € {1, ,n} &)

It is obvious that for n = 2 the two equations in (5) become reduplications one of the other, and lead to a11 = a9s, as desired. Now
assume that if the equations in (5) hold fori = 1,...,n — 1 and j; € {1,...,n — 1}, then

ailp = ... = Gp—-1,n—1, (6)

and consider the full set of equations given therein. If j1, ..., j,—1 € {1,...,n — 1}, then the assumption above entails (6), and since
the nth equation must be of the form a,,,, = a;, j, with j, € {1,...,n — 1}, it follows that a11 = ... = a,,,. Otherwise, if the set

A11 = Qjyjys o Qn—1,n—1 = Qjy_1j,_1 (7

contains an equation (or equations) of the form a;; = ay,,, for some ¢ € {1,...,n — 1}, then replacing a,,, in (7) by a;, ;, where
Jn must belong to {1,...,n — 1}, leads to the situation considered above, and hence to (6). Combining (6) and a,,, = a;, ;.
with j,, € {1,...,n — 1} yields a;; = ... = apy. Clearly, analogous arguments lead to the same conclusion when the condition
{#1,.ryin} = {1,...,n} isreplaced by {j1, ..., 4n} = {1,...,n}. 0

COROLLARY. When A € C,, ,, commutes with all nilpotent matrices, then it is nilpotent itself if and only if A = 0.

PROOF. The result follows straightforwardly by noting that A of the form A = «/,, cannot be nilpotent unless o = 0. a

Solution 31-2.2 by Leo L1VSHITS, Colby College, Waterville, Maine, USA: livshi@colby.edu

Since any scalar multiple of the n x n identity I,, commutes with every n x m matrix, the commutant of the set ,, of nilpotent
n X n matrices contains every scalar multiple of 7,, (and hence non-nilpotent members). In fact these are the only elements of the
commutant of \V,,. Indeed, assuming that n > 2 for non-triviality, each element A of the commutant commutes with every matrix
of the form zy”, where z,yy € C™ are column vectors and y” 2 = 0. In particular, (Az)y” = x(ATy)T for any such pair z,y. It
follows that each non-zero x € C™ is an eigenvector of A. Hence A is a scalar multiple of I,,.

Solution 31-2.3 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: ujw902@uni-bonn.de

Our offered solution to this problem is based on the following two interesting observations. Their elementary proofs are left to the
reader.

THEOREM 1. Let N be the n x n matrix with one on the super-diagonal and zeros everywhere else, that is, n;; = 1if j = i+ 1 and
i=1,2,---,n— 1and n;; = 0 in all the remaining cases. Then TN = NT if and only if T' is an upper-diagonal Toeplitz matrix,
i.e., if and only if

to t1 ta 0 tpoa

0 to t1 -+ tpn_o
T=10 0 tog - tpn_3

0 O o --- to

THEOREM 2. Let T' be an upper-diagonal n x n Toeplitz matrix and, for j = 1,2, let e; denote the jth unit column vector with a
one in the jth position and zeros everywhere else. Consider the matrix M = egel. Then TM = MT if and only if T is a scalar
diagonal matrix, i.e., if and only if T = ty1,, for some scalar ty, with I,, denoting as usual the identity matrix of order n.

The matrices NV and M defined in Theorems 1 and 2, respectively, are both nilpotent. Whereas N is nilpotent of index n, the matrix
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M is nilpotent of index 2. With the above two theorems in mind, it is therefore clear that the set of n x n matrices commuting with
all n x n nilpotent matrices consists of all n x n scalar diagonal matrices.

A solution to Problem 31-2 was also received from Julio Benitez and Néstor Thome.

Problem 31-3: A Range Equality for Block Matrices
Proposed by Yongge TIAN, Queen’s University, Kingston, Canada: ytian@mast.queensu.ca

Let A and B be two nonnegative definite complex matrices of the same size. Show that
A B A+ B
range = range ,
A B A+ B

nx(n+1) nxn

where all blanks are zero matrices.

Solution 31-3.1 by Jerzy K. BAKSALARY, Zielona Gora University, Zielona Gora, Poland: J.Baksalary@im.uz.zgora.pl

Let C,,, be the set of p x ¢ complex matrices. The symbols K*, KT, R(K), and N(K) will stand throughout for the conjugate

transpose, Moore-Penrose inverse, range (column space), and null space, respectively, of K € C, ,. Moreover, let CH, and CZ,

denote the subsets of C,,, ,,, consisting of Hermitian and Hermitian nonnegative definite matrices, and let S be the set of pairs of
Hermitian matrices defined by

S={(A,B):A,BeCl A+BecCZ, R(A) CR(A+ B), R(B) C R(A+ B)}. (8)

If A, B € CZ, then clearly (A, B) € S, but not the other way around. A simple counterexample is provided by the matrices

11 0 -1
A= and B = ,
1 0 -1 1
which form a pair contained in S although neither of them is nonnegative definite. This shows that establishing the result under the
assumption (A, B) € S instead of A, B € CZ, strengthens the statement in Problem 31-3 essentially.

Given (A, B) € S, the matrices M € C,,,, (n41)m and My € CZ,  are specified as

nm

A B A+ B
M = and M, = ’
A B A+ B

where all blanks are null matrices. It is clear that if n = 1, then R(M) = R(Mp) reduces to the equality R((A B)) = R(A+B),
whose validity is a simple consequence of the assumption (A, B) € S. In the proof for n > 2 we will refer to the following auxiliary
result, which seems to be also of independent interest.

LEMMA. Let (A, B) € S and let x; € C,, 1. Then the set of equations
Axy =0, Az; + Bx;_1 =0fori=2,..,n 9)

is satisfied if and only if
Ax; =0fori=1,...n and Bx;=0fori=1,...n—1. (10)

PROOF. The sufficiency is obvious and the necessity is proved by the principle of mathematical induction.
Notice that the two inclusions in the definition of S in (8) are equivalent to

A(A+B)(A+B)=A and B(A+B)'(A+B)=B. (11)
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Actually, these conditions are necessary and sufficient for the parallel summability of Hermitian A and B; cf. Rao and Mitra (1971,
p. 189). If n = 2, then the set (9) reduces to
A:El = 0, AIZ’Q + Bl'l =0. (12)

Hence
(A+ B)zy = — Ay (13)
and, on account of the first parts of (11) and (12), premultiplying (13) by A(A + B)' leads to A(A + B)T Az, = 0. Under the
assumption (A, B) € S, which in particular implies that A € CH, and A + B € CZ, this equation simplifies to Azo = 0, and then
the second equation in (12) entails Bz, = 0, thus completing (10).
Now assume that n > 3 and that the statement in the lemma is valid for i = 1,...,n — 1. Then it follows that Az,,_; = 0, and
combining this equation with Ax,, + Bz, _1 = 0 leads to the analogue of (12) with the subscripts ”1” and 2" replaced by "n — 1”

and ’n”, respectively. Consequently, the same arguments as above show that Azx,, = 0 and Bz,,_1 = 0, which concludes the proof.
O

THEOREM. Let (A, B) € S and let M and M be the matrices specified in (2). Then R(M) = R(M).

PROOF. The equality R(M) = R(M;) can be established quite simply by transforming it into the form N (M*) = N (Mg). Let
z € Cpmandletz; € Cyppy 1,9 = 1, ..., n, be the successive subvectors of . Then

reNM*) & Axy =0, Ax; + Bx; 1 =0fori=2,...,n, Bz, =0,

and hence, on account of the lemma above, x € N (M*) if and only if

Ax; =0, Bx; =0fori=1,....,n. (14)
On the other hand,
reNM;) & (A+B)x; =0fori=1,...,n. (15)
In view of (11), premultiplying the conditions on the right-hand side of (15) first by A(A + B)' and then by B(A + B)' shows that
the equalities in (14) are necessary and sufficient also for 2 € N (M), thus completing the proof. a
Reference

C.R. Rao & S. K. Mitra (1971). Generalized Inverse of Matrices and Its Applications. Wiley, New York.

Solution 31-3.2 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wirench@trinity.edu
Let R(-) and A/ (-) denote range and nullspace respectively. We assume only that

N(A* + B*) = N(A") N N(BY), (16)

which holds if A and B are nonnegative definite. Let Ny = N (A*) N N(B*) and £ = dim(Np).
Suppose A, B € C™*"™, Let

A B A+ B
U, = and V, =

A B A+ B

nx(n+1) nxn

If z, y € C™ then Az L N(A*) and By L N(B*), so (Az + By) L (N(4*) N N(B*)). This and (16) imply that
(Az + By) L N(A* + B*), so Az + By € R(A + B). Therefore R(U,,) C R(V,,). To complete the proof we will show by
induction that nullity(U¥) = n¢, which implies that rank(U,,) = rank(U}) = (m — £)n = rank(V},).

Note that nullity(U;) = n/ if and only if N'(U}?) is the set of vectors (27 --- 27 )" such that z; € Np, 1 <i < n.

Clearly Ujz = 0 if and only if z € ANp; hence nullity(U;) = £. Now suppose n > 1 and nullity(U_,) = (n — 1)¢. We note
that U} (25 -+ 2%)" = 0ifand only if

A*21 =0, Bz 1+ A%2,=0, 2<i<n, and B*z,=0. (17)
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Let §; = ziy1 + -+ + 2n, 1 <7 < n — 1. Summing the equalities in (17) shows that (A* + B*)(z1 4+ (1) = 0, so (16) implies that
21+ (1 € Ny. Since A*z; = 0, it follows that A*¢; = 0. If 2 < 4 < n — 1, then summing the last n — i + 1 equalities in (17) yields
B*(; + A*¢iy1 = 0. Since (,—1 = 2, the last equality in (17) is equivalent to B*(,,—1 = 0. Thus, U*_; (¢ -+ (&) =0,
so the induction assumption implies that ; € Ny, 1 < i < n — 1. Since (,_1 = z,, a simple repetitive argument shows that z,,

Zn—1, - --» 22 € Np. Then the first two equalities in (17) imply that z; € N, so nullity(U}) = nf, which completes the induction.

Solutions to Problem 31-3 were also received from Leo Livshits and from the Proposer Yongge Tian.

Problem 31-4: Two Equalities for Ideals Generated by Idempotents
Proposed by Yongge TIAN, Queen’s University, Kingston, Canada: ytian@mast.queensu.ca

Let R be a ring with unity 1 and let a, b € R be two idempotents, i.e., a®> = a and b> = b. Show that

(ab—ba)R=(a—b)RN(a+b—1)R and R(ab—ba)=R(a—b)NR(a+b—1).

Solution 31-4.1 by the Proposer Yongge T1IAN, Queen’s University, Kingston, Canada: ytian@mast.queensu.ca
Let S = (ab—ba)R,S; = (a—b)R,and So = (a + b — 1)R. It is easy to verify that
ab—ba=(a—-b)(a+b—1)=—(a+b—1)(a—0>).

Hence
(ab—ba)r=(a—b)(a+b—1)r=(a+b—1)(b—a)x forall z € R.

This equality implies that S C S; and S C S5. Hence S C S; N Ss. This set inclusion also implies that S7 N S5 is a nonempty set.
Suppose x € S; N Ss5. Then = can be represented as

x=(a—b)p=(a+b—1)q, where p, ¢ € R. (18)
The equality (a — b)p = (a + b — 1)q can be written as
(a—=b)(p+q)=(2a—1)q (19)
Since a? = a, it follows that (2a — 1)? = 1. This implies that 2a — 1 is invertible and (2a — 1)~ = 2a — 1. In this case, ¢ in (19)
can be expressed as
¢=(2a-1)"(a-b)(p+q)=(2a~1)(a=b)(p+q). (20)
Also note that (2a — 1)(a—b) =(a—b)(1 —2b) = a — 2ab+ b. Hence ¢ in (20) takes the form
¢=(2a—1)(a=b)(p+q)=(a—b)(1-20)(p+q).
Substituting this ¢ into (18) gives
r=(a+b-1)g=(a+b—-1)(a—b)(1-2b)(p+q)=(ab—ba)(20-1)(p+q)cS.
This implies that S; NSy C S. Thus S; N Sy = S. The equality R(ab—ba) = R(a—b) N R(a+b— 1) can be shown similarly.
Solution 31-4.2 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wirench@trinity.edu
It is straightforward to verify that
(a+b—1)(a—b)=ba—ab, (a—b)(a+b—1)=ab—ba 21

and
(a+b—1)2+(a—b)?=1. (22)
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From (21),
(ab—ba)RC (a—b)RN (a+b—1)R and R(ab—ba) C R(a—b) N Rla+b—1). (23)

Now suppose that € (a —b)R N (a +b—1)R,ie,z = (a —b)r; = (a + b — 1)re. Then (22) implies that
r=(a+b—1)2%z+(a—b)*r=(a+b—1)>*a—bri+ (a—b)*(a+b—1)r,. (24)
However, from (21),

(a+b—1)2@a—-b) = (a+b—1(a+b—1)(a—b)=—(a+b—1)(a—b)(a+b—1)
= (ab—ba)(a+b—-1)

and

(a—b2a+b-1) = (a—b)a—b)(a+b—1)=—(a—b)(a+b—1)(a—1)
= —(ab—ba)(a—0).

From (24) it follows that
x = (ab—ba)((a+b—1)ry — (a — b)ra) € (ab — ba)R,

which implies the first of the inclusions
(a—bRN(a+b—1)RC (ab—ba)R and R(a—b) N Rla+b—1)R C R(ab — ba). (25)

Similar arguments yield the second inclusion. Now (23) and (25) imply the conclusion.

Problem 31-5: A Norm Inequality for the Commutator AA* — A*A
Proposed by Yongge TIAN, Queen’s University, Kingston, Canada: ytian@mast.queensu.ca
and Xiaoji L1U, University of Science and Technology of Suzhou, Suzhou, China: xiaojiliu72@yahoo.com.cn

Let A be a square matrix and let A* and A" denote the conjugate transpose and the Moore-Penrose inverse of A, respectively. A
well-known result asserts that AA* = A*A if and only if AAT = ATA and A* AT = ATA*, thatis, A is normal if and only if A is
both EP and star-dagger. Show that in general

| AA* — A*A[| < ||AJP(2]| AAT - ATA || + || A*AT — ATA™|]),
where || - || denotes the spectral norm of a matrix. This inequality shows that if A*AT — ATA* — 0, AAT — ATA — 0, and A is
bounded, then AA* — A*A — 0.

Solution 31-5.1 by the Proposers Yongge TIAN, Queen’s University, Kingston, Canada. ytian@mast.queensu.ca
and Xiaoji L1u, University of Science and Technology of Suzhou, Suzhou, China: xiaojiliu72@yahoo.com.cn

It is easy to verify that
AA*(AAT — ATA) = AA* — AA*ATA,

(AAT — ATAYA*A = AATA* A — A% A,
A(A*AT — ATA)A = AA*ATA — AATA* A.

Hence
AA* — A" A = AA*(AAT — ATA) + (AAT — ATA)A*A + A(A*AT — ATA)A.

Taking the spectral norm on both sides of the above equality and noting that || AA*|| = || A]|? gives

[ AA™ — A% Al < 2||AJ[P || AAT = ATA|| + [ A || A*AT — ATA* ],
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as required.

Solution 31-5.2 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wtrench@trinity.edu

If A = 0, the assertion is trivial, so we assume that A # 0. Let A = PSQ* be a singular value decomposition of A and define
Q) = P*Q. Then A* = QSP* and A" = QSTP*, so

AA* — A*A = PUQ* with U = S*Q —QS?,

AAT — ATA = PVQ* with V =55TQ—-Qsts,

and
A*AT — ATA* = QWP* with W = SQST — 5TQs.

Hence,
IA]l = [IS]I, [AA* = A*A|| = U], |AAT = ATA| = |[V]|, and |A*AT — ATA*|| = [W]. (26)

Ifrank(A) = n, then ST = S=1, V =0,and U = SW S, so ||U| < ||S||?||W || and (26) implies the assertion. If rank(A) = k < n,
let ¥ = diag(o1(A),...,01(A)) with o1 (A) > --- > 0,(A) > 0. Then we may assume that

20 oo o X
S = . St= , and Q=
0 0 0 0 Y o

with ® € CF**, Routine computations yield

20— BY2 ¥2X 0 X SPY-l -2y 0
U= , V= , W= ,
—Yx? 0 Y 0 0 0

and U = SWS + S?V + VS2 Hence ||U|| < ||S]|2(2||V]| + |W]|), and (26) implies the assertion.

Problem 31-6: A Full Rank Factorization of a Skew-Symmetric Matrix
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Determine a full rank factorization of the matrix

0 —C3 C2
C= C3 0 —C1 y
—C2 C1 0

with real entries ¢;,i = 1,2,3. (Observe that for x = (21,72, 73)" € R3 the identity Cz = ¢ x x, where ¢ = (c1, 2, c3)’, defines
the vector cross product in R3.)

Solution 31-6.1 by Jerzy K. BAKSALARY, Paulina KIK, Zielona Gora University, Zielona Gora, Poland:
J.Baksalary@im.uz.zgora.pl P.Kik@im.uz.zgora.pl
and Augustyn MARKIEWICZ, Agricultural University of Poznan, Poznan, Poland: amark@au.poznan.pl

Let R(-) and r(-) denote the range and rank of a given matrix, respectively. It is easily seen that if C' is of the form given in Problem
31-6, then r(C') = 2 except only for the trivial case where ¢c; = ¢o = c¢3 = 0, which is excluded from further considerations.
The problem consists, therefore, in specifying 3 x 2 real matrices A and 2 x 3 real matrices B such that r(A) = r(B) = 2 and
C = AB, in which case R(C) = R(A) and R(C’) = R(B’). There are infinitely many choices of such matrices. In our solution
we provide representations of complete sets of them referring to the property that if some Ay and By satisfy the conditions above,
then all desired pairs (A, B) can be expressed as (AgM ~1, M By) with M varying freely over the set of all nonsingular matrices of
order 2. Indeed, it is trivially seen that if A = AgM ~! and B = M By, then AB = AgM~'M By = AyBy = C. Conversely, from
R(B') = R(By) it follows that B = M By for some 2 x 2 matrix M, which on account of r(B) = 2 must be nonsingular. Then
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the equality AB = A By takes the form AM By = Ay By, and hence, in view of the fact that By is of full row rank, AM = A or,
equivalently, A = AgM ~*, thus concluding a proof of the property formulated above.

The procedure of constructing Ay and By proposed by us, which seems to be among the simplest possible, can be described as
follows: under the assumption that ¢; # 0 for a fixed ¢ € {1, 2,3} choose A as the submatrix of C' consisting of these two columns
(yth and kth, say, where j < k) which contain entries ¢; or —c¢; and then take By as the matrix having the transpose of the kth
column of Ay multiplied by (—1)’c; * and the transpose of the jth column of A, multiplied by (—1)i*1c; ! as its first and second
rows. This procedure leads to the factorizations

—c c 0 c 0 —c
s 2 762/01 1 0 2 1 761/62 0 s 1 0 761/63
C = 0 —C1 = C3 —C1 = C3 0 y
—C3/01 0 1 0 —63/02 1 0 1 —62/63
C1 0 —C9 0 —C2 C1

which are valid when ¢; # 0, ¢ # 0, and ¢3 # 0, respectively.
Representing the set of 2 x 2 real nonsingular matrices as

{M:(S t):wzsv—tu#O}

u v

and noting that any such M has the inverse expressible as

vt (U,

we can summarize our considerations in the following form.

THEOREM. Matrices A and B provide a full rank factorization C = AB of

0 —C3 Co
C = C3 0 —C1 5
—C2 C1 0

where c1, ca, c3 are any real numbers with at least one of them being nonzero, if and only if

—(ucg +ves)/w  (sea + teg) /w

—(sco +tes)/c s 1
A= ucy Jw —sc1/w and B = ( (sc2 3)/er ) whenever ¢ # 0,
—(ueg +ves)fer u w
vey Jw —tey Jw
—ucy/w sca/w
s —(scy +tcg)/c t
A= | (ucr +ves)/w  —(se1 +tes)/w and B = ( (sex 2)/c: ) whenever cy # 0,
u —(ucr +ves)/ea v
—veg/w teg/w
ucs/w —scg/w
s t —(sc1+tca)/c
A= veg /w —tes/w and B = ( (sc1 2)/es ) whenever c3 # 0,
u v —(ucy +wveg)/es

—(uer +ver)/w  (seq + teg)/w

where the choice of real numbers s,t,u,v is restricted merely by the condition that the difference
w = Sv — tu is nonzero.

Solution 31-6.2 by Richard William FAREBROTHER, Bayston Hill, Shrewsbury, England: R.W.Farebrother@man.ac.uk

If ¢1, o, or c3 are nonzero then C' has a nontrivial full rank factorization. in particular, if c3 # 0 then C' may be written as

0 —C3 C2 0 —C3

0 —c3\ /0 —c c
c3 0 — | = c3 0 < 3) ( s 2 )
cg 0 cg 0 —c

—C2 C1 0 —C2 C1



IMAGE 32: April 2004 Page 29

where all three matrices on the right have rank 2 as they each contain the same 2 x 2 nonsingular matrix.

Similar expressions are available for ¢; # 0 and for ¢ # 0, butif ¢; = ¢ = ¢3 = 0 then C = 0 is null and has a trivial full rank
factorization.

Solution 31-6.3 by Lajos LASLO, Eétvés Lordnd University, Budapest, Hungary: laszlo@numanal.inf.elte.hu

The rank of C'is 2, except when all three ¢;’s vanish. So C' = ab’ — ba’ for some vectors a and b, with (-)’ indicating the transpose
of ("). If c; = 0,thena’ = (1 0 0),0'=(0 —c3 c2)elsea’=(-2 1 0),0'=(cz 0 —c1).

Solution 31-6.4 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wtrench@trinity.edu
We assume that C' # 0. It is straightforward to verify that if a, b € R3, then

_pT
C=(a b)( T). 27)
a
if and only if @ x b = c. Moreover, we will show that any full rank factorization
uT
C=(x y)( T)—qu+va (28)
v

can be rewritten as in (27). Since CT = —C and Cc = 0, (28) implies that (uZ¢c)z + (vTe)y = —(2T¢)u — (yTe)v = 0. Since
{z,y} and {u, v} are both linearly independent sets, it follows that x, y, u, and v are all perpendicular to c¢. Hence, (28) can be
rewritten as

T T
C=(z )(Clx Ty

k2T 4+ k yT> = crza” + cowy” + kyyx” + kayy”
1 2

Therefore,
C=-CT = —cizaT — coya — kray” — kayy®,

$0 C' = (cg — k1) (zy? — yxT) /2, which implies (27) with a = (c3 — k1)x/2 and b = .
In particular, if a is a unit vector perpendicular to ¢, then a x (¢ X a) = ¢, so

C=(a cxa)((”T“)T>.

a

Solution 31-6.5 by the Proposer G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

If all ¢; are zero, such a decomposition is trivial. Let now ¢ = (c1,c¢2,c3)” # 0. Since dim N (¢’) = 2, where N (-) denotes the
null space, it is possible to choose two nonzero vectors a and b from R3 such that a’b = 0, a’c = 0 and ¥’c = 0. The 3 x 2 matrix
A = (a: b) is of full column rank with Moore-Penrose inverse

a"r

At = .
atC

B = .
btC

It is easy to verify that the rows of the 2 x 3 matrix B are linearly dependent and AB = C. For the latter identity note that

R(C) =N(c') =R(a) ® R(b) , and aa™ + bb™ is the orthogonal projector on R(a) & R(b) with R(-) being the column space of
a matrix. Hence C' = AB is the desired full rank decomposition.

Letnow B = A*TC, i.e.

A solution to Problem 31-6 was also received from Julio Benitez and Néstor Thome.
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Problem 31-7: On the Product of Orthogonal Projectors
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let P and @ be orthogonal projectors of the same order with complex entries and let A denote their product. Show that the following
conditions are equivalent:

(i) A s an orthogonal projector, i.e. A = AA*,

(i1) A is Hermitian, i.e. A = A*,

(iii) Aisnormal,ie. AA* = A*A,

(iv) AisEP,ie. AAT = AT A,

(v) Aisbi-EP,i.e. AATATA = ATAAAT,

(vi) Aisbi-normal,ie. AA*A*A = A*AAA*,

(vii) A is bi-dagger, i.e. (AT)? = (4%)*.

Solution 31-7.1 by Jerzy K. BAKSALARY, Zielona Gora University, Zielona Gora, Poland: J Baksalary@im.uz.zgora.pl
and Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznan, Poland: baxx@amu.edu.pl

Let C,, ,, be the set of all n x n complex matrices and let (CQP denote the subset of C,, ,, consisting of orthogonal projectors, i.e.,

CP ={A€CppnA=A2=A}={AcCrnA=AA} ={A€Cyn: A= A*A}
={AcC,,A=ATA} ={A€C, ,: A= AAT},
where A* and AT stand for the conjugate transpose and the Moore-Penrose inverse of A, respectively. It is easily seen that if both
P eC,,and Q € C,, are projectors (i.e., idempotent matrices), then the equality P() = QP is sufficient for the products PQ
and QP to be projectors as well. This commutativity condition becomes also necessary when P,Q € COF; cf., e.g., Baksalary
(1987, Theorem 1) and Ben-Israel and Greville (2003, p. 80). Hence it follows that the statements (i) and (ii) in Problem 31-7 are
equivalent, and thus the proof can be reduced to establishing the mutual equivalence between the conditions (ii)—(vii). In the solution

proposed below, this list of six conditions is extended by five additional ones. A motivation for introducing them is provided in the
last part of our considerations.

THEOREM. Let P,Q € COP and let A = PQ. Then A € COF if and only if any of the following equivalent conditions is fulfilled:

() A= A*, (b) AA* = A*A, (c) (AA*)(A*A) = (A*A)(AAY),
(d) A= AT, (e) AAT = ATA, (f) (AAT)(ATA) = (ATA)(AAT),
(g) (AA)(ATA) = (ATA)(AA%),  (h) (AAT)(A*A) = (A" A)(AAT),
() (AT = (AT)%, () RIA(A")?] S R(A%), (k) R(A*A?) C R(A),

where R(.) in (j) and (k) denotes the range (column space) of a given matrix.

PROOF. It is trivially seen that (a) = (b), (¢), (j), (k), that (d) = (e), (), (i), and that (a), (d) = (g), (h). Moreover, it is known that

(PQ)'P = (PQ)" =Q(PQ)" and P(QP)"=(QP)" = (QP)'Q. (29)
The first of these equalities further leads to
PATA = PQ(PQ)'PQ =PQ=A, AA'Q=PQ(PQ)'PQ=PQ=A, (30)
and
(AT)? = (PQ)TPQ(PQ)T = (PQ)T = AT. 31

From (29) it follows that if (a) holds, i.e., if PQ = QP, then

(PQ)T = Q(PQ)'P = Q(QP)'P = QP(QP)'QP = QP = PQ,
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which is (d). Conversely, if (d) holds, i.e., if PQ = (PQ)*, then

PQ =Q(PQ)' = QPQ,

and hence PQ = QP. Consequently, (d) < (a) and therefore the proof reduces to establishing that each of the conditions (b), (c),
and (e)—(k) implies the commutativity of P and Q).
It is clear that
(b) = (¢) = PQPQPQ =QPQPQP. (32)
Further, on account of (31), the matrix product on the left-hand side of (f) is actually equal to AATA, i.e., to A. Consequently,
premultiplying and postmultiplying (f) by A leads to A% = A2, thus showing that

(e) = (H = PQPQPQ = PQPQ. (33)
In view of (29) and (30),
A*AT = QPQ(PQ)' = (AATQ)* = A* and ATA* = (PQ)'PQP = (PATA)* = A*.

These relationships enable to reexpress the conditions (g) and (h) in the forms AA*A = ATA2A* and AA*A = A* A% A%, respec-
tively. Premultiplying by A in the first case and postmultiplying by A in the second leads to

(g) = PQPQPQ = PQPQP and (h) = PQPQPQ = QPQPQ. (34)

By referring again to (31) it is seen that (i) is equivalent to (42)" = AT, and hence, due to the uniqueness of the Moore-Penrose
inverse,

(i) = PQPQ = PQ. 35)
Finally, since the orthogonal projectors onto R(A*) and R(A) admit the representations AT A and AAT, it follows that the inclusions
(j) and (k) can be replaced by the equalities AT A%(A*)? = A(A*)? and AATA* A% = A* A2, respectively. Premultiplying the first
of them by P, postmultiplying the conjugate transpose of the second by @, and applying (30) yields A?(A*)? = A(A*)? and
(A*)2A? = (A*)2 A, which means that

() = PQPQPQP = PQPQP and (k) = QPQPQPQ = QPQPQ. (36)

Part (a) < (b) of Theorem in Baksalary, Baksalary, and Szulc (2002), which generalizes Lemma in Baksalary and Baksalary
(2002), asserts that any product composed with orthogonal projectors P and @ is equal to another such product if and only if P and
@ commute. Consequently, from the equalities in (32)—(36) it is immediately seen that every condition involved therein implies (a),
as desired. a

We supplement our solution by pointing out that matrices A € C,, satisfying (AA*)(A*A) = (A*A)(AA*) and
(AAT)(ATA) = (ATA)(AAT), called in the statement of Problem 31-7 bi-normal and bi-EP, are in Baksalary, Baksalary, and
Liu (2004) referred to as weakly normal and weakly EP. Further, it is seen that the equalities (g) and (h), which have been added to
the original list, can be viewed as specific modifications of the conditions in (c) and (f) defining A € C,, ,, to be bi-normal (weakly
normal) and bi-EP (weakly EP), respectively. Finally, it is clear that the condition (i) actually expresses the reverse order law for
the Moore-Penrose inverse of the product AA. According to Greville (1966) [see also Ben-Israel and Greville (2003, p. 160)], this
law is equivalent to the conjunction of the inclusions (j) and (k), while our theorem shows that in the particular case, where A is a

product of two orthogonal projectors, these inclusions are mutually equivalent and thus each of them is necessary and sufficient for
(AA)T = AT AT,
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Solution 31-7.2 by Jerzy K. BAKSALARY and Anna KUBA, Zielona Gora University, Zielona Gora, Poland:
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J.Baksalary@im.uz.zgora.pl A.Kuba@im.uz.zgora.pl

Let C,y,.,, be the set of m x n complex matrices. For a given K € C,, ,,, the symbols K* and KT denote the conjugate transpose
and Moore-Penrose inverse of K, respectively. Moreover, K € C,, ,, is called orthogonal projector whenever K = K 2 = K* or,
equivalently, K’ = K K* or, in still another version, K = K KT. The main tool used in our solution is the following compilation of
Theorem 1 and Lemma 1 given by Grof3 (1999).

LEMMA. Let A = PQ, where P € C,, ,, and Q € C,, ,, are orthogonal projectors. Then there exists a unitary U € C,, ,, such that

D X 0
A=U|o0 o o |U", (37)
0 0 I,

where D € C,,, ., is a diagonal matrix with the diagonal entries d;; (j = 1,...,n1) in the open interval (0, 1) which satisfies the
equation D — D? = X X*, while the subscripted I denotes the identity matrix of the indicated order. Furthermore, if A is of the
form (37), then its Moore-Penrose inverse has the representation

DY 0 0
At =U s o0 o |Ur, (38)
0 0 I,

where S = [I,,, + (D' X)*D'X] YD 'X)*D~! = (I,,, + X*D2X)"'X*D2and Y = I,,, — XS. In (37) and (38),
n=n;+ne+n3with0 <n; <n (@ =1,2,3)and the submatrices in the ith row and column being absent when n; = Q.

We will employ this lemma for solving a generalized version of Problem 31-7, with generalizations which consist in replacing
the concepts of bi-EP, bi-normal, and bi-dagger matrices by m-EP, m-normal, and m-dagger matrices, respectively, and in referring
additionally to the concepts of idempotent and m-potent matrices.

THEOREM. Let A = PQ), where P € C,, ,, and Q) € C,, ,, are orthogonal projectors, and let m be an integer not less than 2. Then
the following statements are equivalent:

(a) A is an orthogonal projector,

(b) Ais idempotent, i.e., A = A2

(c) A is Hermitian, i.e., A = A",

(d) Aisnormal, ie, AA* = A*A,

(e) Ais EP i.e, range(A) = range(A*) or, equivalently, AAT = AT A,

(f) Ais m-potent, i.e., A =A™,

(g) Ais m-normal, i.e., [(AA*)(A*A)|*F = [(A* A)(AA")]F when m = 2k and [(AA*)(A* A)]F(AA*) = [(A*A)(AA*)]F(A* A)
when m = 2k + 1, where k is a positive integer,

(h) Aism-EP ie., [(AAT)(ATA)F = [(ATA)(AAD))* when m = 2k and [(AAT)(ATA)]F(AAT) = [(ATA)(AAT) k(AT A) when
m = 2k + 1, where k is a positive integer,

(i) A is m-dagger, i.e., (A™)T = (AT)™,

PROOF. If ny = 0, then (37) simplifies to

0 0
a=u(y ) (39)
0 I,

in which case A trivially satisfies all the conditions (a)—(i). Further, consider the case where n; > 0, but no = 0. Then (37) reduces
to
D 0
A=U U-,
0 I,

which is nonsingular, thus implying that both P and () must also be nonsingular. Since the only nonsingular idempotent matrix
of order n is I,,, it follows that P = I,,, Q@ = I,,, and hence A = I,,, which is in a contradiction with the specification of D.
Consequently, it is henceforth assumed that if n; > 0, then neccessarily no > 0, the presence or absence of I,,, in (37) and (38)
having no influence on further considerations.
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It is clear that (a) = (b) = (f). Suppose that A is of the form (37) with n; > 0. Then the north-west n; X n; submatrix of
U*A™U is D™, and therefore A = A™ entails D = D™. However, since D is required to be diagonal with the diagonal entries
dj; € (0,1), the equality D = D™ cannot be achieved. This observation leads to the conclusion that a representation of A in (37)
must be reduced to (39), thus strengthening the chain of implications above to (a) < (b) < (f).

Further, from the condition D — D? = X X* it is seen that if X = 0, then D = D?, which is irreconcilable with the assertion
that all diagonal entries of D are in (0,1). Hence it is clear that in each case where X = 0, the first n; rows and columns in the
partitioned matrix occurring in (37) must vanish, thus reducing A to the form (39). Since clearly (a) = (d) = (g), proving that (g)
= (a) will close this chain. If D and X were present in the representation (37), then it can quite straightforwardly be verified that A
would be m-normal if and only if

D3*=1X =0 (40)

when m = 2k, and if and only if
D3R+ — p3k+2 - pSktlx — 0 and X*D3*X =0 (41)

when m = 2k + 1, with k being in both cases a positive integer. According to the lemma above, D is a nonsingular matrix, and thus
from the condition (40) as well as from the second condition in (41) it follows immediately that X = 0, which forces A to take the
desired reduced form (39).

Similarly, since (a) = (c) = (e) = (h), establishing that (h) = (a) will ensure the equivalence of these four conditions. Again,
if D and X were present in (37) and, consequently, in (38), then with the notation W = D~'Y D and the rule W° = I,,, the matrix
A would be m-EP if and only if

WFIDT'YX =0 and SDW* =0 (42)

when m = 2k, and if and only if
Wk=w*1l WtD 'YX =0, SDWF=0, and SDW* D lYX =0 (43)

when m = 2k + 1, with k being in both cases a positive integer.
From the specification of .S in the lemma it is quite easily seen that

I, —SX =(I,, +X*D2X)"! (44)
and an immediate consequence of (44) is
SY =0 S=5XS & (I,, tX*D?X)"'§=0 & S=0.

But S = 0 is further equivalent to X = 0, which entails the desired reduction of (37) to (39). Consequently, it follows that this part
of the proof reduces to showing that SY = 0 holds in both cases (42) and (43). If k in (42) is equal to 1, then the second condition
therein leads immediately to S = 0 (and hence, obviously, to SY = 0). In the remaining cases, we utilize the formula

SDW* = SY*D = (I,,, — SX)*~1SY D, (45)

whose validity for any integer k¥ > 1 can easily be established by the principle of mathematical induction adopting the rule (I,,, —
SX)? = I,,. Since according to (44) the matrix (I,,, — SX)¥~1 is nonsingular also for any k > 2, it follows from (45) that
SDW* =0 < SY = 0. In view of the second condition in (42) and the third condition in (43), this observation leads to (a) < (c)
& (e) < (h).

Finally, if A is an orthogonal projector, then (A™)T = [(AAT)™]T = (AAT)T = AAT = (AAT)™ = (AT)™, and thus the last
lacking point in the proof is the implication (i) = (a). It can quite straightforwardly be verified that if A and A" are of the forms (37)
and (38) with n; > 0 (and thus ny > 0), then

D7'YD—™m+t 0 0 (D)™ 0 0
Amt=u| Sp=™ 0 0 |U* and (A" =U|[SDOY)"t 0 0 |U
0 0 I, 0 0 In,

where S and Y are as specified in the lemma. In such a case, A is m-dagger if and only if

D7 'YD™™ = (D7'Y)™ and SD™' =S(Dly)mL (46)
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With the use of notation
Z=1I, -D'XSD=1, —D'X(I,, + X*D2X)"'x*D~! (47)

the matrix DY can be reexpressed as ZD ™!, and hence the former condition in (46) takes the form ZD~™ = (ZD~!)™. On
account of the nonsingularity of Z, it can further be transformed to D~ = D~1(ZD~1)™~!, and hence, by premultiplying and
postmultiplying by D'/2, to

(D—l)m—l — (D_l/QZD_l/Q)m_l. (48)
Since both D~ and D~1/2Z D~1/2 are positive definite matrices, it follows from (48) that D—! = D~1/2ZD~1/2 or, equivalently,
Z = I,,. In view of (47), this is possible if and only if X = 0, which concludes the proof. a

Reference
J. Grof} (1999). On the product of orthogonal projectors. Linear Algebra and Its Applications, 289, 141-150.

Solution 31-7.3 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wtrench@trinity.edu

Obviously, (i) implies (ii) and (ii) implies (iii) in general; i.e., without the stated assumption on A. If (iii) holds then A = QDQ*
with D diagonal and Q unitary. Then AT = QDTQ* so AAT = QDDTQ* and ATA = QDT DQ*. Therefore, since DD = DD1,
(iii) implies (iv) in general. Obviously, (iv) implies (v) in general.

Now let p = rank(P) and ¢ = rank(Q). Then

I, 0 I, 0
P=Qp » oand Q= Qq Q5

with 0 p and € unitary. If we write

. X Y
Q300 = (Z W)
with X € CP*4, then
XX*+YY* =1, (49)
X 0
APQQP< )Qg, (50)
0 0
At =Qq (XT O) P
0 0
(A1)? = 0g (XTXXT ) )2 =% (XT )=t (51)
0 0 0 0
A2 = Qp (XX*X 0) . 52)
0 0
and
AN — Qp (XX* o> 0005 = Op (XX*X XX*Y) . )
0 0 0 0
From (51),

AATATA=AATA=A and ATAAAT = (AATATA)* = A%,
so (v) implies that A = A*, which implies (vi).

Since A = PQ, P? = P, and Q? = Q, (vi) implies that (PQ)? = (QP)3. Multiplying on the left by P and the right by Q
shows that A% = A* or, equivalently, A%2(A% — A) = 0. Therefore, (50) and (52) imply that if U = X X*X — X, then

QO (XX*XX*U O) s g
P 0 0 Q — Y%

so X X* X X*U = 0. Since, in general, F* F'G = 0 implies that F'G = 0, it follows that X X*U = 0, and therefore that X*U = 0,
or, equivalently, X* X (X*X — I,) = 0. Therefore X X*X = X, so (50) and (52) imply that A = A% Hence AT = (42)T, s0 (51)
implies (vii). Thus, (vi) implies (vii).
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If (vii) holds then (51) implies that A = A2, so (50) and (52) imply that X X*X = X and therefore YY*X = 0, from (49).
Hence Y*X = 0 and (50) and (53) imply that A = AA*. Thus, (vii) implies (i).

Solution 31-7.4 by the Proposer G6tz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

We show (vi) = (vii) = (v) = (iv) = (1) = (i) = (iii) = (vi).

The chain of implications (vi) = (vii) = (v) is well-known and does not require the assumption that P and () are orthogonal
projectors [see Hartwig and Spindelbdck (1984, p. 246)].

(v) = (iv): According to Gross (1999, Corollary 1), as a product of orthogonal projectors, the matrix A is similar to a diagonal
matrix. Hence we get rank(A) = rank(A?), or equivalently, R(A) = R(A?), where R(-) denotes the column space of a matrix.
Using Theorem 7 from Campbell and Meyer (1975) we find that A is EP.

(iv) = (i): Consulting again Corollary 1 from Gross (1999) we conclude that A is an orthogonal projector.

The chain of assertions (i) = (ii) = (iii) = (Vvi) is trivial.

References

S. L. Campbell & C. D. Meyer (1975). EP operators and generalized inverses. Canadian Mathematical Bulletin, 18(3), 327-333.
J. Gross (1999). On the product of orthogonal projectors. Linear Algebra and Its Applications, 289, 141-150.
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Solution 31-7.5 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: ujw902@uni-bonn.de

For a complex m x n matrix C, let C*, C*, C~, R(C), N(C), and Pr(c) denote the conjugate transpose, the Moore-Penrose
inverse, a g-inverse, the range (column space), the null space, and the orthogonal projector onto R(C') [along its usual orthogonal
complement R(C)+ = N(C*)], respectively, of C. By {C~} we denote the set of all g-inverses of C. Recall that the orthogonal
projector Pr ¢y may be defined by Pr(cyz = z if 2 € R(C) and Pg(cyz = 0if x € N(C*). Clearly, C™ = R(C) & N(C*),
with @ indicating a direct sum. It is pertinent to mention that any orthogonal projector Pg (¢ is Hermitian [i.e., (Pr ()" = Pr(c)]
and idempotent [i.e., (PR(C))Q = Pr(c)], and that conversely, every idempotent Hermitian matrix P is an orthogonal projector,
namely P = Pgr(p), i.e., P projects onto R(P) along its orthogonal complement R(P)* = N(P*) = N(P). We further
recall that (C*)* = C, R(CT) = R(C*) and N(CT) = N(C*). Since Pr(cy = CC* and Pg(c+y = CTC, we also have
R(CCT) = R(C), N(CCT) = N(C*), R(CTC) = R(C*) and N (CTC) = N(C). We finally recall that P* = P holds for
any orthogonal projector P.

The following two auxiliary results are useful in establishing a more informative solution to Problem 31-7. Although the result
of Lemma 1 is well known [cf. Werner (2003a)], we present an alternative proof.

LEMMA 1. For any matrix B € C™*" we have R(BB*) = R(B) and N(BB*) = N (B*).

PROOF. Since C" = R(B*) ® N(B), R(BB*) = BR(B*) = B[R(B*) @ N(B)] = BC" = R(B). By taking orthogonal
complements on both sides of R(BB*) = R(B) we obtain N (BB*) = N(B*). 0

LEMMA 2. Let P and @ be two complex n X n matrices and let A :== PQ. If P and Q are two orthogonal projectors, then
index(A) < 1 and index(A*) < 1, in which case R(A?) = R(A) and R((A*)?) = R(A*) or;, equivalently, R(A) & N (A) = C"
and R(A*) & N(A*) = C™

PROOF. Trivially, N (4) C N(A?). Conversely, by means of Lemma 1, N(A4%) = N(PQPQ) C N(QPQPQ) =
N(QPQQPQ) = N(QPQ) = N(QPPQ) = N(PQ) = N(A). Therefore, N(A) = N(A?) or, equivalently, R(A*) =
R((A*)?). Hence index(A*) < 1 or, equivalently, R(A*) ® N(A*) = C". The remaining results are obtained now by replacing A
by A* = QP. O

We continue with citing with Theorem 1 from Werner (2003b) an extremely powerful result characterizing (A7)? = A™ in terms
of A and its conjugate transpose.

THEOREM 3. Let A be a square complex matrix. Then the Moore-Penrose inverse A" of A is idempotent, i.e., (AT)? = AT, if and
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only if A?> = AA* A.
This characterization has a series of direct implications. From Werner (2003b, Corollary 2) we already know the following.

COROLLARY 4. Let A be a square complex matrix. Then we have:
(i) If A is an EP-matrix, i.e., if R(A) = R(A*), then A™ is idempotent if and only if A is idempotent and Hermitian, in which
case A2 = A= A" = At
(ii) If A is idempotent, then AT is idempotent if and only if A is a partial isometry, i.e., if and only if A = AA* A, in which case
A2 =A=A*= AT
(iii) A* is idempotent only if index(A) < 1. Moreover, if A™ is idempotent and A? = 0, then necessarily A = 0.

In this paper we further add the following two corollaries which also illuminate the beauty of Theorem 3.

COROLLARY 5. Let A be a square complex matrix. Then we have:
(i) If AT is idempotent, then A is idempotent if and only if A is a partial isometry, i.e., if and only if A = AA* A.
(i) If AT is idempotent, then A is EP, i.e., R(A) = R(A*) or, equivalently, AAT™ = AT A, if and only if A is Hermitian, in which
case A2 = A= A" = AT
(iii) If A is an EP-matrix with A* being idempotent, then A is necessarily a partial isometry.

PROOF. (i): This is an immediate consequence of the characterization in Theorem 3.

(ii): First, let (AT)? = A" and AAT™ = AA™. Then, according to Theorem 3, A? = AA*A. Consequently, A = AATA =
ATA?2 = AT AA*A = A* A or, equivalently, A = A*A = A2. So, in particular, as claimed A = A*. Conversely, if A = A*, then
A is trivially EP, and so the proof of (ii) is complete.

(ii1): Combining (i) and (ii) directly results in (iii). g

COROLLARY 6. If A = PQ, where P and Q) are two orthogonal projectors of the same order, then A™ is idempotent.
PROOF. Since A2 = PQPQ = PQQPPQ = AA* A, the claim is again a straightforward consequence of Theorem 3. O
The preceding observations enable us now to give a succinct proof to the following more informative solution to Problem 31-7.
THEOREM 7. Let A = PQ, where P and Q) are orthogonal projectors of the same order. Then AT is idempotent and the following
conditions are all equivalent to each other:
(i) A is an orthogonal projector, i.e., A = A* = A2 or, equivalently, A = AA*,
(i) A is Hermitian, i.e., A = A%,
(iii) A is normal, i.e., AA* = A* A,
(iv) Ais EP, i.e., R(A) = R(A*) or, equivalently, AAT = AT A,
(v) R(4) =R(P)NR(Q),
(vi) R(Q) = [R(Q) NR(P)] & [R(Q) NN (P)],
(vi)) R(PQ) € R(Q),
(viii) AT = A%,
(ix) A is a partial isometry, i.e., AA*A = A or, equivalently, A* € {A™},
(x) Ais idempotent, i.e., A®> = A,
(xi) AT = A4,
(xii) Ais bi-EP, i.e., AATATA = ATAAAT,
(xiii) Pr(a)Pr(a«) is EP, i.e, R(Pr(a)Pr(a+)) = R(Pr(a-)Pr(a)),
(xiv) A is bi-normal, i.e., AA*A*A = A*AAA*,
(xv) AA*A*AisEP ie, R(AA*A*A) = R(A*AAA¥),
(xvi) A is bi-dagger, i.e., (AT)? = (A%)*,
(xvii) At = (A?)7,
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PROOF. Corollary 6 tells us that A™ is idempotent. Trivially, (i) = (ii) = (iii), and, in view of Lemma 1, (iii) = (iv). Since A = PQ,
A* = QP, and Q and P are orthogonal projectors, it is easy to see that (iv) = (v). In view of R(P) & N(P) = C", clearly (v) &
(vi) < (vii). Theorem 5.4 in Werner (1992) tells us that (vi) < (viii). Evidently, (viii) < (ix). From Corollary 5(i) we know that (ix)
& (x). Since Q = Q% = Q* = QT and P = P? = P* = P, it follows from Corollary 5.8 in Werner (1992) that (viii) <> (iv). For
proving (x) = (i), let A = PQ be idempotent, i.e., let PQPQ = P(Q. As seen before, (x) = (viii) = (iv). Since A is therefore also
an EP-matrix, it follows from Corollary 5(ii) that A is indeed an orthogonal projector. It is now clear that the conditions (i) through
(x) are all equivalent to each other. Trivially, (i) = (xi) = (xii). Furthermore, since AA* = Pr(4) and AT A = Pr ), also (xii)
= (xiii). By means of Lemma 2, R(Pgr(4)Pr(a+)) = Pr(a)R(A*) = Pr(a)[R(A*) ® N(A*)] = Pr(4)C" = R(A). Since on
similar lines we get R(Pr(a+)Pr(a)) = R(A*), it is clear that (xiii) = (iv). That (ii) = (xiv) = (xv) is again straightforward.
Next, let condition (xv) hold, i.e., let R(AA*A*A) = R(A*AAA*). By applying Lemma 1 and Lemma 2 repeatedly we obtain
R(AA*A*A) = AA*R(A*A) = AA*R(A*) = R(AA*A*) = AR((A*)?) = AR(A*) = R(AA*) = R(A), and likewise
R(A*AAA*) = R(A*). Consequently, R(A) = R(A*), and the proof of (xv) = (iv) is complete. If A is an orthogonal projector,
then A = A2 = AT and so (i) = (xvi) should be clear. Since AT is idempotent, (xvi) reduces to (xvii). Taking the Moore-Penrose
inverse of both sides in condition (xvii) gives (x), and so our proof is complete. a

We conclude with mentioning that by making use of the results in Werner (1992) it would be easy to add a myriad of further
(equivalent) conditions to those in the Theorem 7.
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Problem 31-8: Eigenvalues and Eigenvectors of a Particular Tridiagonal Matrix
Proposed by Fuzhen ZHANG, Nova Southeastern University, Fort Lauderdale, Florida, USA: zhang@nova.edu

Let A be the n-by-n tridiagonal matrix with 2 on diagonal and 1 on super- and sub-diagonals. That is, a;; = 2, a;; = 1ifj =i+ 1
orj =14 —1,and a;; = 0 otherwise, ¢, 5 = 1,2, - - -, n. Find all eigenvalues and corresponding eigenvectors of A.

Solution 31-8.1 by Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznan, Poland: baxx@amu.edu.pl

A solution to the problem is actually known in the literature for a general real n x n tridiagonal Toeplitz matrix A, having b (say) as
its diagonal entries and nonzero a and c (say) of the same sign as superdiagonal and subdiagonal entries, respectively, i.e., a;; = b,
a;; = a whenever j = i+ 1, a;; = ¢ whenever j =i — 1, and a;; = 0 otherwise, 4, j = 1,...,n. If (A;, z;) denote the jth eigenpair
of A, then, according to Meyer (2000, pp. 514-516),

Aj =b+2av/c/acos(jn/(n+1)) (54)
and the components of xj; of the eigenvector x; are expressible as
z; = (¢/a)f?sin(kjr/(n+ 1)), k=1,..,n. (55)

Clearly, in the case where b = 2 and @ = ¢ = 1, which corresponds to the original version of Problem 31-8, the formulae (54)
and (55) simplify to \; = 2+ 2cos(jn/(n + 1)) and xy; = sin(kjm/(n + 1)). An additional remark is the quotation of Meyer’s
(2000, p. 516) observation that since A;’s are all different, A is diagonalizable, with the diagonalization being achieved with the use
of the matrix having x4, ..., x,, as its succesive columns.

Reference
C. D. Meyer (2000). Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA.

Solution 31-8.2 by C. M. da Jerzy K. FONSECA, Universidade de Coimbra, Portugal: cmf@mat.uc.pt

Consider a set of polynomials { Py, } >0, such that each P, is of degree exactly k, satisfying the recurrence relations

Piii(z) = (x —a)Py(x) —bPy_1(z), k>0, (56)
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with initial conditions P_;(x) = 0 and Py(x) = 1, with b > 0. Consider also the set of polynomials {U} } >0, which satisfy the

three-term recurrence relations
20U (z) = Ugy1(2) + Ug—1(z) , k>1,

with initial conditions Uy(z) = 1 and U;(x) = 2z. Each Uy, is called the Chebyshev polynomial of second kind of degree & and

have the explicit form:
sin(k +1)6

Uk(@) = sin 6

, where cosf =z,

when |z| < 1.
There is a natural relation between the polynomials defined above:

Piu(z) = (VB)EU, <x - a) .

On the other hand, the recurrence relation (56) is equivalent to

Py(z) a 1 Po()
T P = ’ ' 1 . (x) + P, (z)
P,_1(x) b a P,_1(x) 1

Therefore the zeros of P, (x)

J4
)\g:a+2\/gcos—ﬁ , £=1,...,n,
n+1

are the eigenvalues of the tridiagonal matrix of order n

a 1
A= ,
1
b a
and the vector column oy
Py(Ae) sin ;75
Pi(N) ( Zis >_1 NG sin%:l
= [ sin .
: n+1 :
P,1(N) (vb)"~ ! sin 7%”1

is an eigenvector associated to the eigenvalue ;.
If a = 2 and b = 1, then we get the solution to Problem 31-8.

Solution 31-8.3 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wirench@trinity.edu

Apply the following known result [see, e.g., Grenander & Szeg6 (1958), Haley (1980), or Trench (1985)]: Let c¢_1, ¢g, ¢1 be complex
numbers with c¢jc_; # 0, and let A be the n x n tridiagonal matrix such that a;; = ¢cp, 1 < i < n,a;;,-1 =c_1,2 <1 < n,and
aiit+1 = c1, 1 <i <n — 1. Then the eigenvalues of A are

qm

1<¢qg<
n+1>7 —Q—n7

Ag = co + 24/c1c—1 cos (

. . . T
with associated eigenvectors X, = (z14 Z2q - Zng) , Where

c_1 m/2 gmm
xqu(j> sin<n+1>, 1<m<n.




IMAGE 32: April 2004 Page 39

References

U. Grenander & G. Szeg6 (1958). Toeplitz Forms and Their Applications. University of California Press, Berkeley.

S. B. Haley (1980). Solution of band matrix equations by projection-recurrence. Linear Algebra and Its Applications, 32, 33—48.
W. F. Trench (1985). On the eigenvalue problem for Toeplitz band matrices. Linear Algebra and Its Applications, 64, 199-214.

Solution 31-8.4 by Iwona WROBEL, Warsaw University of Technology, Warsaw, Poland: wrubelki@wp.pl
and Marcin MAZDZIARZ, Polish Academy of Sciences, Warsaw, Poland: mmazdz@ippt.gov.pl

There exist explicit formulae for eigenvalues and corresponding eigenvectors of the n x n tridiagonal matrix B, with 2 on diagonal
and —1 on sub- and super-diagonals, see for example Golub and Ortega (1992, pp. 130, 132). The eigenvalues of B are given by
AP = 2 — 2coskh, where h = 41> With corresponding eigenvectors z, = [sin kh,sin 2kh, . ..,sinnkh|T. The matrix A that
appears in Problem 31-8 can be expressed in terms of B in the following way: A = 41 — B, where I denotes the n x n identity matrix.
Now using the spectral mapping theorem we obtain the formulae for the eigenvalues of A, namely \i! = 4 — AP = 2 4 2coskh,

with h defined as before. Moreover, the equality A = 41 — B implies that A and B have the same eigenvectors.

Reference
G. H. Golub & J. M. Ortega (1992). Scientific Computing and Differential Equations. An Introduction to Numerical Methods. Academic Press,
New York.

Solutions to Problem 31-8 were also received from Robert B. Reams and from Lajos Laszl10.

IMAGE Problem Corner: More New Problems

Problem 32-6: A Vector Cross Product Property in R®
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

In Milne (1965, Ex. 22, p. 26) the following problem is posed: “If a, b are given non-parallel vectors, and x and y vectors satisfying
T X a =y X b, show that v and y are linear functions of a and b, and obtain their most general forms.” Generalize this problem
as follows: For given vectors a, b, and ¢ from R2, where a and b are linearly independent, show that there always exist vectors z,
y € R3 such that

rXa+yxb+c=0.

Determine the general solution (z, ) to this equation. Note that “x” denotes the vector cross product in R3.

Reference
E. A. Milne (1965). Vectorial Mechanics. Methuen, London.

Problem 32-7: Invariance of the Vector Cross Product
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de
and Dietrich TRENKLER, University of Osnabriick, Osnabriick, Germany: dtrenkler@nts6.0ec.uni-osnabrueck.de

For a given nonzero vector a € R? determine a wide class of matrices A of order 3 x 3 such that
A(a x b) = (Aa) x (Ab)

for all b € R3. Here “x” denotes the common vector cross product in R2. Such equations play a role in robotics, see Murray, Lee,
and Sastry (1994).

Reference
R. M. Murray, Z. Lee & S. S. Sastry (1994). A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, FL.

Problems 32-1 through 32-5 are on page 40.
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IMAGE Problem Corner: New Problems

Please submit solutions, as well as new problems, both (a) in macro-free IXTEX by e-mail to ujw902@uni-bonn.de, preferably embedded as text,
and (b) with two paper copies by regular mail to Hans Joachim Werner, IMAGE Editor-in-Chief, Department of Statistics, Faculty of Economics,
University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Problems 32-6 and 32-7 are on page 39.

Problem 32-1: Factorizations of Nonsingular Matrices by Means of Corner Matrices
Proposed by Richard W. FAREBROTHER, Bayston Hill, Shrewsbury, England: R.W.Farebrother@man.ac.uk
Show that any nonsingular n x n matrix A may be expressed as the product of
(a) two southwest and one northeast corner matrices,
(b) two northeast and one southwest corner matrices,
(c) three northwest corner matrices, and
(d) three southeast corner matrices,
where an n x n matrix A is called a southwest corner (or lower triangular) matrix if it satisfies a;; = 0 for ¢ < j, a northeast corner

(or upper triangular) matrix if it satisfies a;; = 0 for ¢ > j, a northwest corner matrix if it satisfies a;; = 0 for all 4, j satisfying
i+ j > n + 1, and a southeast corner matrix if it satisfies a;; = 0 for all ¢, j satisfying i 4+ j <n — 1.

Problem 32-2: A Property of Plane Triangles — Eadem Resurgo
Proposed by Alexander KOVACEC, Universidade de Coimbra, Coimbra, Portugal: kovacec@mat.uc.pt

Let A € R-g. Apply to a plane triangle A the following process: go clockwise around A and divide its sides in the ratio A : 1.
Use the distances from the division points to the opposite vertices as side-lengths for a new triangle A’ (cyclically again). Repeat
the process with A’ but divide with the ratio 1 : X to obtain a triangle A”. Show that A” is similar to A with the ratio p =
V142X +3XA2 4203 + M4 /(1 4 N2

Problem 32-3: Jacobians for the Square-Root of a Positive Definite Matrix
Proposed by Shuangzhe L1U, University of Canberra, Canberra, Australia: Shuangzhe.Liu@canberra.edu.au
and Heinz NEUDECKER, University of Amsterdam, Amsterdam, The Netherlands: H.Neudecker@uva.nl

Establish the following Jacobian matrices:

1/2
a;gix)) =DY(X'V2@I+1®XY2) D,

Av(X~1/2)

:7D+ X1/2 X X X1/2 71D
v (X) XX+ XeoXHD,

where X is an n x n positive definite matrix, X /2 is its positive definite square root, D is the n? x n(n + 1)/2 duplication matrix,
DT is its Moore-Penrose inverse, I is the n x n identity matrix, v/(-) denotes the transpose of v(-), v(-) denotes the n(n +1)/2 x 1
vector that is obtained from vec(-) by eliminating all supradiagonal elements of the matrix and vec(-) transforms the matrix into a
vector by stacking the columns of the matrix one underneath the other.

Problem 32-4: A Property in R3*3
Proposed by J. M. F. TEN BERGE, University of Groningen, Groningen, The Netherlands: j.m.f.ten.berge@ppsw.rug.nl

We have real matrices X, X5, and X3 of order 3 x 3. We want a real nonsingular 3 x 3 matrix U defining W; = u1; X1 + u2; X2 +
uz; X3, j = 1,2, 3, such that the six matrices Wj_lwk, J # k, have zero traces. Equivalently, we want (V[/j_lwk)3 = (a;1)*I3, for
real scalars a ;. These scalars also define the eigenvalues of W;lwk as ajx, —a;i(1+iv/3)/2, and —a ;1 (1 —iv/3)/2, respectively.
Conceivably, a matrix U as desired does not in general exist, but even a proof of just that would already be much appreciated.

Problem 32-5: Diagonal Matrices Solving a Matrix Equation
Proposed by G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let A € RX™ B € R™*" and C € R!*" be given matrices. Find all vectors = (x1,...,2,,)" € R™ such that
Adiag(zy,...xm)B =C.



