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THE USE OF LINEAR ALGEBRA BY WEB SEARCH ENGINES
AMY N. LANGVILLE AND CARL D. MEYER
DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY
RALEIGH, NC 27695-8205

1. Introduction. Nearly all the major Web search engines today use link analysis to improve their search results.
That’s exciting news for linear algebraists because link analysis, the use of the Web’s hyperlink structure, is built from
fundamentals of matrix theory. Link analysis and its underlying linear algebra have helped revolutionize Web search,
so much so that the pre-link analysis search (before 1998) pales in comparison to today’s remarkably accurate search.

HITS [13] and PageRank [2, 3] are two of the most popular link analysis algorithms. Both were developed around
1998 and both have dramatically improved the search business. In order to appreciate the impact of link analysis,
recall for a minute the state of search prior to 1998. Because of the immense number of pages on the Web, a query
to an engine often produced a very long list of relevant pages, sometimes thousands of pages long. A user had to sort
carefully through the list to find the most relevant pages. The order of presentation of the pages was little help because
spamming was so easy then. In order to trick a search engine into producing rankings higher than normal, spammers
used meta-tags liberally, claiming their page used popular search terms that never appeared in the page. Meta-tags
became useless for search engines. Spammers also repeated popular search terms in invisible text (white text on a white
background) to fool engines.

2. The HITS Algorithm. HITS [13], a link analysis algorithm developed by Jon Kleinberg from Cornell Univer-
sity during his postdoctoral studies at IBM Almaden, aimed to focus this long, unruly query list. The HITS algorithm
is based on a pattern Kleinberg noticed among Web pages. Some pages serve as hubs or portal pages, i.e., pages with
many outlinks. Other pages are authorities on topics because they have many inlinks. Kleinberg noticed that good hubs
seemed to point to good authorities and good authorities were pointed to by good hubs. So he decided to give each page

i both an hub score h; and an authority score a;. In fact, for every page ¢ he defined the hub score at iteration k, hl(k),
(k)

and the authority score, a,”’, as

aEk) = Z h;kfl) and hgk) = Z agk) for k=1,2,3,...,
jeji€E jiei; €L

where e;; represents a hyperlink from page ¢ to page j and E is the set of hyperlinks. To compute the scores for a

page, he started with uniform scores for all pages, i.e., hgl) =1/n and al(.l) = 1/n where n is the number of pages in a
so-called neighborhood set for the query list. The neighborhood set consists of all pages in the query list plus all pages
pointing to or from the query pages. Depending on the query, the neighborhood set could contain just a hundred pages
or a hundred thousand pages. (The neighborhood set allows latent semantic associations to be made.) The hub and
authority scores are iteratively refined until convergence to stationary values.

Using linear algebra we can replace the summation equations with matrix equations. Let h and a be column vectors
holding the hub and authority scores. Let L be the adjacency matrix for the neighborhood set. That is, L;; = 1 if page
i links to page j, and 0, otherwise. These definitions show that

a®) = LTh**~)  and h® =La®.
Using some algebra, we have

a®) = LTLalk—v
h® = LLTh*-Y),

These equations make it clear that Kleinberg’s algorithm is really the power method applied to the positive semi-definite
matrices LTL and LLT. LTL is called the hub matrix and LL” is the authority matrix. Thus, HITS amounts to solving
the eigenvector problems L”La = M\ja and LL7h = A\ h, where \; is the largest eigenvalue of LTL (and LLT), and a
and h are corresponding eigenvectors.

While this is the basic linear algebra required by the HITS method, there are many more issues to be considered.
For example, important issues include convergence, existence, uniqueness, and numerical computation of these scores

Cont’d on page 3
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[5, 7, 14]. Several modifications to HITS have been suggested, each bringing various advantages and disadvantages
[4, 6, 8]. A variation of Kleinberg’s HITS concept is at the base of the search engine TEOMA (http://www.teoma. com),
which is owned by Ask Jeeves, Inc.

3. The PageRank Algorithm. PageRank, the second link analysis algorithm from 1998, is the heart of Google.
Both PageRank and Google were conceived by Sergey Brin and Larry Page while they were computer science graduate
students at Stanford University. Brin and Page use a recursive scheme similar to Kleinberg’s. Their original idea was
that a page is important if it is pointed to by other important pages. That is, they decided that the importance of
your page (its PageRank score) is determined by summing the PageRanks of all pages that point to yours. In building
a mathematical definition of PageRank, Brin and Page also reasoned that when an important page points to several
places, its weight (PageRank) should be distributed proportionately. In other words, if YAHOO! points to your Web
page, that’s good, but you shouldn’t receive the full weight of YAHOO! because they point to many other places. If
YAHOO! points to 999 pages in addition to yours, then you should only get credit for 1/1000 of YAHOO!’s PageRank.

This reasoning led Brin and Page to formulate a recursive definition PageRank. They defined

9

(k+1) J
T = —
2 |0

JEIL;

(k)

where r; is the PageRank of page i at iteration k, I; is the set of pages pointing into page ¢ and |O;| is the number of

outlinks from page j. Like HITS, PageRank starts with a uniform rank for all pages, i.e., 7’50)
refines these scores, where n is the total number of Web pages.
Like HITS, we can write this process using matrix notation. Let the row vector w(*)7 be the PageRank vector at

the k" iteration. As a result, the summation equation for PageRank can be written compactly as

= 1/n and successively

gk DT _ (T
where H is a row normalized hyperlink matrix, i.e., h;; = 1/|O;], if there is a link from page ¢ to page j, and 0, otherwise.
Unfortunately, this iterative procedure has convergence problems—it can cycle or the limit may be dependent on the
starting vector.

To fix these problems, Brin and Page revised their basic PageRank concept. Still using the hyperlink structure
of the Web, they build an irreducible aperiodic Markov chain characterized by a primitive (irreducible with only one
eigenvalue on the spectral circle) transition probability matrix. The irreducibility guarantees the existence of a unique
stationary distribution vector 77, which becomes the PageRank vector. The power method with a primitive stochastic
iteration matrix will always converge to 7! independent of the starting vector, and the asymptotic rate of convergence
is governed by the magnitude of the subdominant eigenvalue g of the transition matrix [19].

Here’s how Google turns the hyperlink structure of the Web into a primitive stochastic matrix. If there are n pages
in the Web, let H be the n X n matrix whose element h;; is the probability of moving from page i to page j in one click
of the mouse. The simplest model is to take h;; = 1/|O;|, which means that starting from any Web page we assume
that it is equally likely to follow any of the outgoing links to arrive at another page.

However, some rows of H may contain all zeros, so H is not necessarily stochastic. This occurs whenever a page
contains no outlinks; many such pages exist on the Web and are called dangling nodes. An easy fix is to replace all
zero rows with e’ /n, where e is the row vector of all ones. The revised (now stochastic) matrix S can be written as a
rank-one update to the sparse H. Let a be the dangling node vector in which

o { 1 if page ¢ is a dangling node,
a; = .
0 otherwise.

Then,
S = H + ae’ /n.

Actually, any probability vector p? > 0 with pZe = 1 can be used in place of the uniform vector e’ /n.
We're not home yet because the adjustment that produces the stochastic matrix S isn’t enough to insure the
existence of a unique stationary distribution vector (needed to make PageRank well defined). Irreducibility on top of

Cont’d on page 5
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stochasticity is required. But the link structure of the Web is reducible—the Web graph is not strongly connected.
Consequently, an adjustment to make S irreducible is needed. This last adjustment brings us to the Google matriz,
which is defined to be

G=aS+ (1-a)E,

where 0 < o < 1 and E = ee” /n. Google eventually replaced the uniform vector e’ /n with a more general probability
vector v! (so that E = ev’) to allow them the flexibility to make adjustments to PageRanks as well as to personalize
them. See [10, 15] for more about the personalization vector v7.

Because G is a convex combination of the two stochastic matrices S and E, it follows that G is both stochastic
and irreducible. Furthermore, every node is now directly connected to every other node (although the probability of
transition may be very small in some cases), so G > 0. Consequently, G is a primitive matrix, and this insures that the
power method w*+1)7T = x(MTG will converge, independent of the starting vector, to a unique stationary distribution
7l [19]. This is the mathematical part of Google’s PageRank vector.

3.1. The Power Method. While it doesn’t always excite numerical analysts, the power method has been Google’s
computational method of choice, and there are some good reasons for this. First, consider iterates of the power method
applied to G (a completely dense matrix, were it to be formed explicitly). If we take E = ev?”, then

gl = gb=DTG = ank=DTS 4 (1 — a)v? = an* " DVTH + (an*YTa 4 (1 —a))v7T,
w#~DTe = 1. Written in this way, it becomes clear that the power method applied to G can be implemented with
vector-matrix multiplications on the extremely sparse H, and G and S are never formed or stored. A matrix-free method
such as the power method is required due to the size of the matrices and vectors involved (Google’s index is currently
4.3 billion pages). Fortunately, since H is sparse, each vector-matrix multiplication required by the power method can
be computed in nnz(H) flops, where nnz(H) is the number of nonzeros in H. And since the average number of nonzeros
per row in H is significantly less than 10, we have O(nnz(H)) ~ O(n). Furthermore, at each iteration, the power
method only requires the storage of one vector, the current iterate, whereas other accelerated matrix-free methods, such
as restarted GMRES or BiCGStab, require storage of at least several vectors, depending on the size of the subspace
chosen. Finally, the power method applied in this way converges quickly. Brin and Page report success using only 50 to
100 power iterations [3]. This is due in large part to the fact that it can be proven [15] that the subdominant eigenvalue
of G satisfies |\2| < «, and Google originally set o = .85.

Like HITS, the basic concepts of PageRank are simple, but there are many subtle issues that lurk just below the
surface. For example, there are complicated and unresolved issues concerning personalization, computation, accelerated
computation, sensitivity, and updating—more information is available in [7, 11, 12, 21, 15, 17, 18, 20].

This brief introduction describes only the mathematical component of Google’s ranking system. However, it’s known
that there are non-mathematical “metrics” that are also considered when Google responds to a query, so the results
seen by a user are in fact PageRank tempered by other metrics. While Google is secretive about these other metrics,
they state on their Web site (http://www.google.com/technology) that “The heart of our software is PageRank... .”

4. Books. SIAM is publishing a second edition of the popular Understanding Search Engines: Mathematical
Modeling and Text Retrieval [1] by Michael W. Berry and Murray Browne in 2005. The new edition contains a chapter
devoted to link analysis. As a result, readers can see how link analysis and ranking algorithms fit into the overall search
process.

Also due out in 2005 is our book, Understanding Web Search Engine Rankings: Google’s PageRank, Teoma’s HITS,
and other ranking algorithms [16]. This book from Princeton University Press will contain over 250 pages devoted to
link analysis algorithms with several introductory chapters, examples, and code, as well as chapters dealing with more
advanced issues in Web search ranking.

Cont’d on page 6
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Tidbits From Our Members Further Early Statistical Applications of the
Theory of Determinants

In his article “Research  Experiences with
Undergraduates,” Chi-Kwong Li could have mentioned that
research into matrix methods is particularly appropriate for

by Richard William Farebrother

students of the College of William and Mary as it was rebuilt

by Lieutenant Governor Alexander Spotswood, the first Readers of Farebrother (2002a,b) and Searle (2000) may
cousin of the great, great, great, great grandfather of William be interested to learn from Aldrich (1998, p. 74) that
Spottiswoode (pronounced Spotswood) the author of one of

the earliest books on the theory of determinants. For details, determinants were used in other important work on least

see:

R.W. Farebrother, A genealogy of William Spottiswoode (1825-
1883), IMAGE 23, 1999, pp. 3-4.

squares and correlation—including Pearson (1896), Fisher
(1922), Frisch and Waugh (1933) and David and Neyman
(1938). Yule [1907] did not use them but Pearson (1916)
went on to obtain Yule’s [correlation] results by direct
determinantal analysis, a task that required new results
on determinants.

R.W. Farebrother and G.P.H. Styan, A Genealogy of the
Spottiswoode Family (1510-1900), IMAGE 25, 2000, pp. 19-21

and IMAGE 27,2001, p. 2.

R. W. Farebrother
School of Economic Studies, University of Manchester
Email: R.W. Farebrother @Man.ac.uk

And, again, Aldrich (1998, p. 76),

David and Neyman (1938, p. 105) judged Aitkens [1935]
paper remarkably clear and elegant but found it

Cont’d on page 7
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Farebrother article cont’d

worthwhile to present a result using reasoning of a more
elementary character—reasoning based on determinants.
They saw their work as an extension of a neglected
Markov theorem on least squares. Plackett (1949) pointed
out that all the results were variations on a neglected result
of Gauss (1821).
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Two ILAS Members Recently Honored

Miki Neumann is one of four recipients of the University
of Connecticut 2004 Provost’s Research Excellence Award.
The award recognizes excellence in research at Storrs and
its regional campuses. Factors considered by the review
committee when evaluating the nominations include: Is the
research seminal? What is the significance of the research
in a global context? How effective has the nominee been in
promoting research at the University of Connecticut, such as
mentoring students and colleagues?

Richard Brualdi is one of four professors awarded
a University of Wisconsin Bascom Professorship. These
professorships recognize contributions to the university’s
teaching, research and service. Richard’s appointment was
based on his research in combinatorics, graph theory and
linear algebra/matrix theory, his leadership as chair of the
University of Wisconsin’s Department of Mathematics from
1993-1996, his excellence in teaching as evidenced by a
Chancellor’s Award for Excellence in Teaching in 1986, and
his service as a member of the College of Letters and Science
Academic Planning Council and as a chair of the Letters and
Science Curriculum Committee.

Electronic Journal of Linear Algebra

The Electronic Journal of Linear Algebra (ELA), a
publication of the International Linear Algebra Society
(ILAS), is a refereed all-electronic journal that welcomes
mathematical articles of high standards that contribute
new information and new insights to matrix analysis and
the various aspects of linear algebra and its applications.
Refereeing of articles is conventional and of high standards,
and is being carried out electronically. The Editors-in-Chief
are Ludwig Elsner and Daniel Hershkowitz. The web page is
http://www.math.technion.ac.il/iic/ela/

After reading the article on
Gershgorin in the last issue,
several readers requested that
IMAGE include a photograph.
Here it is. A book review

of Richard Varga’s recently
published book “Gershgorin
and His Circles” will appear
in a forthcoming issue of
IMAGE.
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Numerical Computing

with MATLAB

Cleve B. Moler

Numerical Computing with MATLAB is a

lively textbook for an introductory course

in numerical methods, MATLAB, and

technical computing. The emphasis is on

the informed use of mathematical

software; in particular, the presentation

helps readers learn enough about the mathematical

functions in MATLAB to use them correctly,

appreciate their limitations, and modify them

appropriately. The book makes extensive use of

computer graphics, including interactive graphical expositions of
numerical algorithms. It provides more than 70

M-files, which can be downloaded from the text Web site
www.mathworks.com/moler. Many of the more than 200 exercises
involve modifying and extending these programs.

The topics covered include an introduction to MATLAB;
linear equations; interpolation; zeros and roots; least squares;
quadrature; ordinary differential equations; Fourier analysis;
random numbers; eigenvalues and singular values; and partial
differential equations. Motivating applications include modern
problems from cryptography, touch-tone dialing, Google page-
ranking, atmospheric science, and image processing, as well as
classical problems from physics and engineering.

2004 - xii + 336 pages - Softcover - ISBN 0-89871-560- |
List Price $42.50 - SIAM Member Price $29.75 - Order Code OT87

SIAM Journal on
MATRIX ANALYSIS
and APPLICATIONS

Editor-in-Chief: H. A. van der Vorst
University of Utrecht

Contains research articles in matrix

analysis and its applications and papers

of interest to the numerical linear algebra

community. Applications include such

areas as signal processing, systems and control theory,
statistics, Markov chains, and mathematical biology. Also
contains papers that are of a theoretical nature but have a
possible impact on applications. Quarterly.

TO ORDER

from SIAM

The Sharpest Cut: The
Impact of Manfred Padberg

and His Work
Edited by Martin Grétschel
MPS-SIAM Series on Optimization 4

The Sharpest Cut is written in honor of
Manfred Padberg, who has made fundamental
contributions to both the theoretical and
computational sides of integer programming
and combinatorial optimization. This outstanding
collection presents recent results in these areas that are
closely connected to Padberg’s research. His deep
commitment to the geometrical approach to combinatorial
optimization can be felt throughout this volume; his search for
increasingly better and computationally efficient cutting planes
gave rise to its title.

The peer-reviewed papers contained here are based on
invited lectures given at a workshop held in October 2001 to
celebrate Padberg’s 60th birthday. Grouped by topic, many of the
papers set out to solve challenges set forth in Padberg’s work. The
book also shows how Padberg’s ideas on cutting planes have
influenced modern commercial optimization software.

2004 - xi + 380 - Hardcover - ISBN 0-89871-552-0
List Price 99.00 - MPS-SIAM Member Price $69.30 - Order Code MP04

The SIAM 100-Digit Challenge:
A Study in High-Accuracy
Numerical Computing

Folkmar Bornemann, Dirk Laurie, Stan Wagon, and
Jorg Waldvogel - With a Foreword by David H. Bailey

This book takes readers on a thrilling tour of some of the most
important and powerful areas of contemporary numerical
mathematics. The tour is organized along the 10 problems of the
SIAM 100-Digit Challenge, a contest posed by Nick Trefethen of
Oxford University in the January/February 2002 issue of SIAM
News. The complete story of the contest as well as a lively
interview with Nick Trefethen are also included.

The authors, members of teams that solved all 10 problems,
show in detail multiple approaches for solving each problem, and
touch on virtually every major technique of modern numerical
analysis. The book gives concrete examples of how to justify the
validity of every single digit of a numerical answer.

2004 - xii + 306 pages - Softcover * ISBN 0-89871-561-X
List Price $57.00 - SIAM Member Price $39.90 - Order Code OT86

Use your credit card (AMEX, MC, and VISA): Go to www.siam.org/catalog * Call toll-free in USA/Canada:
800-447-SIAM - Worldwide, call: +1-215-382-9800 * Fax: +1-215-386-7999 * E-mail: service@siam.org. Send check
or money order to: SIAM, Dept. BKIL0O4, 3600 University City Science Center, Philadelphia, PA 19104-2688.
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11th ILAS CONFERENCE
Coimbra, Portugal: 19-22 July 2004

Report by Joao Queiré

The 11th Conference of the International Linear Algebra
Society was held at the University of Coimbra, Portugal,
July 19-22, 2004. The conference was dedicated to Richard
Brualdi in honor of his 65th birthday. There were 204
participants, from 30 countries (in all five continents)

The scientific program included plenary talks by Rajendra
Bhatia, Hal Caswell, George Cybenko, Erik Elmroth, Shmuel
Friedland, Peter Gritzmann, Robert Guralnick, Uwe Helmke,
William Helton, Christian Krattenthaler, Matjaz Omladic,
Xavier Puerta, Arun Ram, Joachim Rosenthal, Fernando
Silva, Siegfried Rump, Peter Lancaster (Hans Schneider
Prize speaker), Beatrice Meini (SIAG/LA speaker), Julio
Moro (SIAG/LA speaker) and Peter Semrl (Taussky-Todd
speaker).

There were five mini-symposia: Combinatorial Matrix
Theory (organized by Bryan Shader), Group Representations
(organized by Ana Paula Santana and Carlos André);
Markov Methods for Search Engines (organized by Ilse
Ipsen and Steve Kirkland); Nonnegative Matrices (organized
by Thomas Laffey); and Matrix Inequalities (organized by
Chi-Kwong Li). Apart from this, there were around 115
contributed talks.

The ILAS Business Meeting was held on Monday, July
19. On Tuesday, there was a visit to the old buildings of
the University (which was founded in 1290), followed by
a reception at the 12th century Old Church cloisters, hosted
by the Coimbra Mayor. On Wednesday, the Conference
banquet took place at the S. Marcos Palace, outside Coimbra.
Before the dinner, the Hans Schneider Prize was presented to
Peter Lancaster, with the laudatio given by prize committee
chairman Harm Bart. After the dinner, there were speeches
honoring Richard Brualdi, by Bryan Shader and Alan
Hoffman. The evening ended with several songs performed
by a local fado music group.

In the days before and after the Conference, other
scientific events took place in the Coimbra Mathematics
Department: the 7th Workshop on Numerical Ranges and
Numerical Radii, and short courses by Persi Diaconis, Arun
Ram, Erik Elmroth and Beatrice Meini.

Overall, the meeting went well, with excellent plenary
talks, informative mini-symposia and varied contributed
talks. The main objectives of the meeting, to display the
depth and breadth of Linear Algebra and its applications, and
to allow personal contacts and interactions between people
with diversified interests, seem to have been attained.

The Organizing Committee members were Danny
Hershkowitz (ILAS President), Hans Schneider, Thomas
Laffey, Raphael Loewy, Ion Zaballa, Bryan Shader, Graciano
de Oliveira. José Dias da Silva, Eduardo Marques de S& and

Jodo Filipe Queiré (chair). The Local Organizing Committee
was constituted by Olga Azenhas, Cristina Caldeira, Jesus
Clemente Gallardo, Anténio Leal Duarte, Jodo Filipe Queir6
and Ana Paula Santana.

The journal LAA will publish a special issue with papers
presented at the Conference. The editors of this issue are
Graciano de Oliveira, Jodo Filipe Queird, Bryan Shader, and
Ion Zaballa.

Numerical Ranges and Radii—WONRA 04
Coimbra, Portugal: 16-17 July 2004

Report by Natalia Bebiano

The 7th Workshop on Numerical Ranges and Radii—
WONRAO4 was held at the University of Coimbra (Coimbra,
Portugal), July 16-17, 2004. This Workshop was sponsored
by the Centre of Mathematics of the University of Coimbra
(CMUC), as a satellite meeting of the 11th Conference of the
International Linear Algebra Society (ILAS), which was held
in Coimbra during the week immediately after WONRAO4.
The Organizing Committee for this workshop consisted of
N. Bebiano (University of Coimbra), R. Lemos (University
of Aveiro) and G. Soares (University of Tras-os-Montes e
Alto Douro).

The purpose of the workshop was to stimulate research
on this topic, with many applications in different fields of
mathematics, physics, architecture etc, and, in an informal
setting, to foster the interaction of researchers from different
areas of research. There were 50 registered participants,
geographically, from North America, Europe, Asia and
Africa. The wide variety of topics and backgrounds of the
participants resulted in a extremely pleasant atmosphere
to foster contacts, exchange ideas, and in a scientifically
exciting meeting.

Cont’d on page 11
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Linear Algebra

from World Scientific and Imperial College Press

REPRESENTATIONS OF FINITE AND LIE

GROUPS
by Charles B Thomas (University of Cambridge, UK)

This book provides an introduction to representations of both finite
and compact groups. The proofs of the basic results are given for
the finite case, but are so phrased as to hold without change for
compact topological groups with an invariant integral replacing
the sum over the group elements as an averaging tool. Among the
topics covered are the relation between representations and
characters, the construction of irreducible representations, induced
representations and Frobenius reciprocity. Special emphasis is
given to exterior powers, with the symmetric group S, as an
illustrative example. The book concludes with a chapter comparing
the representations of the finite group SL,(®,) and the non-compact
Lie group SL,(p).

Readership: Advanced undergraduates and graduate students
in algebra.

1-86094-482-5
1-86094-484-1(pbk)

US$48
Us$28

156pp Oct 2004

Published by Imperial College Press and distributed by World Scientific Publishing Co.

AN INTRODUCTION TO COMMUTATIVE
ALGEBRA

From the Viewpoint of Normalization
by Huishi Li (Jiaying University, China)

Designed for a one-semester course in mathematics, this textbook
presents a concise and practical introduction to commutative
algebra in terms of normal (normalized) structure. It shows how
the nature of commutative algebra has been used by both number
theory and algebraic geometry. Many worked examples and a
number of problems (with hints) can be found in the volume.

Readership: Graduate students in algebra and number theory.
981-238-951-2 US$46

188pp Aug 2004

LINEAR ALGEBRA
by C Y Hsiung (Wuhan University) & G Y Mao (Wuhan University
of Technology)

Linear Algebra constitutes a foundation course for those
specializing in the fields of mathematics, engineering and science.
The course normally takes one semester, but for those needing a
more rigorous study of the subject, it involves up to two semesters.

Readership: First and second year students in mathematics,
engineering and science.

«tbestseller

A WALK THROUGH COMBINATORICS
An Introduction to Enumeration and Graph Theory
by Miklés Béna (University of Florida, USA)

“This is a very attractive textbook on
Combinatorics... A special feature of this book
is the extensive list of interesting exercises
with complete solutions.”

Monatshefte fiir Mathematik

Readership: Upper level undergraduates and
graduate students in the field of combinatorics and
graph theory.

Jun 2002 981-02-4900-4
981-02-4901-2(pbk)

Us$70
Us$42

424pp

INTRODUCTION TO MATRIX THEORY

With Applications to Business and Economics

by Ferenc Szidarovszky (University of Arizona, USA) &
Sandor Molnar (Szent Istvan University, Hungary)

“There are many useful illustrative examples ... the text is clearly
written, easy to understand, and remarkably error-free.”
Choice

Contents: Vectors and Matrices; Vector Spaces and Inner-Product Spaces;
Systems of Linear Equations and Inverses of Matrices; Determinants;
Linear Mappings and Matrices; Eigenvalues, Invariant Subspaces,
Canonical Forms; Special Matrices; Elements of Matrix Analysis.

Readership: Undergraduate and graduate students in business and
economics, as well as practitioners in business and economics.

Jun 2002 981-02-4504-1
981-02-4513-0(pbk)

US$94
Us$58

512pp

MATRIX ALGEBRA AND ITS APPLICATIONS TO
STATISTICS AND ECONOMETRICS

by C Radhakrishna Rao (Pennsylvania State University, USA) &
M Bhaskara Rao (North Dakota State University, USA)

“... there is a category of readers that would certainly benefit from
this book: statisticians who have obtained their knowledge of matrix
algebra in a piecemeal fashion and now want to systematically
improve their knowledge of the theory and their skills in manipulating
matrices.”

Journal of the American Statistical Association

Readership: Graduate students, researchers and scientists in economics,
biology, engineering and physics.

556 Jul 1998 981-02-3268-3 Us$80
452pp Sept1998  981-02-3092-3 US$55 PP u $
981-02-4409-6(pbk) US$32
For more information, please contact your nearest World Scientific office:
& World Scientific

USA office:

www.worldscientific.com

UK office:

\\h
Home Page:

www.worldscientific.com

27 Warren Street, Suite 401-402, Hackensack, NJ 07601, USA
Toll-free fax: 1 888 977 2665 Toll-free tel: 1 800 227 7562 E-mail: sales@wspc.com

c/o Marston Book Services
PO Box 269, Abingdon, Oxon OX14 4YN, UK
Fax: 44 (0) 123 546 5555 Tel: 44 (0) 123 546 5500 E-mail: direct.orders@marston.co.uk
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Numerical Ranges and Radii cont’d

The social events included a banquet and a performance
of the student fado group, Lacrima, from Coimbra. The
lunches and coffee breaks led to some lively discussions.

The Workshop Programme can still be downloaded
from the Workshop website: http:// www.mat.uc.pt/ilas2004/
Body.html (click “associated events”).

The next meeting on Numerical Ranges and Radii will be
held in 2006, probably in Canada. The previous workshops
of this series were held at the United States, Portugal, Japan

and Greece.

Directions in Combinatorial Matrix
Theory Workshop

Report by Bryan Shader

The Directions in Combinatorial Matrix Theory
workshop was held at the Banff International Research
Station May 7-8, 2004, and attracted 29 researchers (10
from Canada, 15 from the U.S. and 4 from abroad) and 7
post-doctoral or graduate students. Talks discussed current
developments and open problems in the following emerging
themes in Combinatorial Matrix Theory: Spectral properties
of families of matrices associated with graphs; Matrix theory
and graph theory in the service of Euclidean geometry;
Algebraic tools for combinatorial problems; and Spectral
properties of classes of matrices. Titles and abstracts of the
talks presented can be found at http://www.pims.math.ca
birs/workshops/2004/04w2525/abstracts.pdf.

Participants were: Mahmoud Akelbek, Richard Anstee,
Francesco Barioli, Wayne Barrett, Majid Behbahani, Avi
Berman, Thomas Britz, Richard Brualdi, Robert Craigen,
Michael Doob, Shaun Fallat, Miroslav Fiedler, Peter
Gibson, Bob Grone, Leslie Hogben, Yury Ionin, Charlie
Johnson, Hadi Kharaghani, In-Jae Kim, Steve Kirkland,
Peter Lancaster, Hien Le, Chi-Kwong Li, Zhongsan Li,
XiaoPing Liu, Raphi Loewy, Judi McDonald, Dale Olesky,
Alex Pothen, Hans Schneider, Bryan Shader, Wasin So, Jeff
Stuart, Michael Tsatsomeros, Kevin Vander Meulen, and
Rokas Varaneckas.

The organizers were: Shaun Fallat (University of
Regina), Hadi Kharaghani (University of Lethbridge), Steve
Kirkland (University of Regina), Bryan Shader (University
of Wyoming), Michael Tsatsomeros (Washington State
University), and Pauline van den Driessche (University of
Victoria).

Miroslav Fiedler was the ILAS speaker, and he
spoke on “Matrices and Graphs in Euclidean Geometry.”
The Workshop’s Open Problem sessions were highly
successful, and a list of problems presented are posted at
http://www.pims.math.ca/birs/workshops/2004/04w2525/
openprobs.pdf. New collaborative efforts resulting from the
workshop are already noticeable. Results presented at the
conference will be disseminated through a special 2005 issue
of the Electronic Journal of Linear Algebra.

The workshop strengthened the participants’ beliefs that
the directions for research in Combinatorial Matrix Theory
are abundant, promising, and central to mathematics.

13th International Workshop on
Matrices and Statistics,
in Celebration of
Ingram Olkin’s 80th Birthday
http://matrix04.amu.edu.pl

Report by Simo Puntanen

The 13th International Workshop on Matrices and
Statistics (IWMS-2004) was be held in Bedlewo, about
30 km south of Poznan, Poland, from 18-21 August 2004.
Bedlewo is the Mathematical Research and Conference
Center of the Polish Academy of Sciences; the setting is
similar to Oberwolfach with accommodations on-site. The
participants had a nice opportunity to enjoy the interesting
meeting environment and facilities. The workshop was
endorsed by the International Linear Algebra Society.

The center of attention was naturally Ingram Olkin,

Cont’d on page 12
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Ingram Olkin’s 80th Birthday cont’d

who gave the Nokia Lecture entitled “Inequalities: some
probabilistic, some matric, and some both.” Gene H. Golub
gave the Opening Address on “Numerical methods for solving
least squares problems with constraints.” Other invited
speakers were Theodore W. Anderson, Jerzy K. Baksalary,
Rafael Bru, Carles M. Cuadras, Pierre Druilhet, Ludwig
Elsner, Jiirgen Gross, Jeffrey J. Hunter, Charles R. Johnson,
Joachim Kunert, Teresa Ledwina, Erkki P. Liski, Peter Major,
Nripesh K. Mandal, Richard J. Martin, Volker Mehrmann,
Joao Tiago Mexia, Waldemar Ratajczak, Dietrich von Rosen,
Bikas K. Sinha, George P.H. Styan, Gabor Tusnady, Béla
Uhrin, Hans Joachim Werner, and Haruo Yanai. The total
number of participants was 82, comprising participants from
18 countries.

The Local Organizing Committee was Jan Hauke,
Augustyn Markiewicz (chair), Tomasz Szulc, and Waldemar
Wotyniski. The International Organizing Committee for this
Workshop was R. William Farebrother (Shrewsbury, England),
Simo Puntanen (Tampere, Finland; chair), George P. H. Styan
(Montréal, Canada; vice-chair), and Hans Joachim Werner
(Bonn, Germany).

Organizing institutes were Stefan Banach International
Mathematical Center (Warsaw); Committee of Mathematics
of the Polish Academy of Sciences (Warsaw); Faculty of
Mathematics and Computer Science, Adam Mickiewicz
University (Poznan); Institute of Socio-Economic Geography
and Spatial Management, Faculty of Geography and Geology,
Adam Mickiewicz University (Poznan); and Department of
Mathematical and Statistical Methods, Agricultural University
(Poznan). The workshop was sponsored by GlaxoSmithKline,
Nokia, and SAS.

Augustyn Markiewicz and Waldemar Wotynski did an
excellent job of editing the booklet “Program and Abstracts™:
the result is an unusually nice collector’s item. It includes, in

IWMS-2004 group photo taken by Hazel Hunter in Bedwelo

addition to the program and abstracts, biographies, an article
and an interview of Ingram Olkin reprinted (from Student and
from Festschrift) as well as his updated bibliography, and an
article by R. W. Farebrother.

The organizers are pleased to announce a special issue of
Linear Algebra and Its Applications devoted to this workshop.
It will include selected papers strongly correlated to the talks
of the conference. Submissions on the theory of matrices and
methods of linear algebra with statistical origin or possible
applications in statistics are encouraged.

All papers submitted must meet the publication standards
of Linear Algebra and Its Applications and will be subject to
normal refereeing procedure. The deadline for submission of
papers is February 28, 2005, and the special issue should be
published in 2006. Papers should be sent to any of the special
editors, preferably by email in a PDF or PostScript format:

Ludwig Elsner, University of Bielefeld, Faculty of Mathematics,
Postfach 100131, 33501 Bielefeld, Germany,
e-mail: elsner @Mathematik.Uni-Bielefeld. DE

Augustyn Markiewicz, Agricultural University of Poznan,
Department of Mathematical and Statistical Methods, ul.
Wojska Polskiego 28, 60-637 Poznai, Poland,

e-mail: amark @owl.au.poznan.pl

Tomasz Szulc, Adam Mickiewicz University, Faculty of
Mathematics and Computer Science, Umultowska 87, 61-614
Poznari, Poland, email: tszulc@amu.edu.pl.de

Volker Mehrmann (Editor-in-Chief for this special issue),
Institut fiir Mathematik, MA4-5 Strasse des 17. Juni 136,
D10623 Berlin, Germany, email: mehrmann @tu-berlin.de

.....




IMAGE 33: Fall 2004 Page 13

Hamilton Workshop on Nonnegative Matrix Theory
Maynooth Ireland

Report by Avi Berman

The Hamilton Institute at the National University of Ireland, Maynooth is an Applied Mathematics research center whose
activities span System Theory, Communication Networks, Machine Learning and Cognitive Neuroscience, Mathematical Biology
and Human Computer Interaction. These areas of research require significant interdisciplinary interaction between engineers,
computer scientists, physical scientists and mathematicians, and part of the remit of the Institute is to promote such cooperation.

One of the mathematical disciplines that plays an important role in the research interests of the Hamilton Institute is Matrix
Theory; in particular, the theory of Nonnegative Matrices. As part of this activity the Institute organized, with the support of the
Science Foundation Ireland, a workshop on Nonnegative Matrices and their Applications that brought together matrix theorists
and users of nonnegative matrices. The conference was held between July 11 and July 14, 2004 in Barberstown Castle and at the
National University of Ireland, Maynooth. The organising committee consisted of A. Berman, T. Laffey (chair), O. Mason, R.
Shorten (co-chair) and F. Wirth.

The program consisted of 29 talks given by speakers from Belgium, England, Germany, Ireland, Israel, Serbia, Taiwan and the
United States. The past and present ILAS presidents, Hans Schneider, Richard Brualdi and Daniel Hershkowitz were the banquet
speakers. The proceedings of the workshop will be published in a special volume of the Electronic Journal of Linear Algebra.

The workshop has already resulted in a number of collaborative projects between practitioners and mathematicians and the
second Hamilton workshop on Nonnegative Matrices and their Applications is now currently being planned to further support and
promote these activities.
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Southern California
Matrix Meeting

Report by Jane Day and Wasin So

The last “Southern California (SoCal) Matrix Meeting” was held on November 13, 2004, at San Jose State University, in
honor of R.C. Thompson. Those present agreed to rename this event as the “R.C. Thompson Matrix Meeting,” in memory of Bob’s
excellent research and love for matrix theory, as well as his generous mentoring of students interested in matrix theory.

The SoCal meetings have always been very informal one-day conferences. They were inspired by a mini conference on matrix
theory organized by Steve Pierce in the early 1980’s, parallel to an AMS meeting in Toronto. The mini was very well attended.
After Pierce relocated to San Diego State University, they continued to hold an informal one-day matrix theory meeting each year.
This happening soon was dubbed the “Southern California Matrix Meeting,” or SoCal for short. Over the years, San Jose State
University, Cal State Northridge, and even the University of Utah have hosted the meeting. The special charms found in each of
these meetings have been good talks, plenty of time to discuss mathematics, no registration fee, and no support for speakers, but a
free dinner afterwards!

The meeting on Nov. 13 at San Jose State University had about 40 participants from at least 4 countries and 6 states. The
speakers were Charlie Johnson, Fuzhen Zhang, Fernando Szechtman, Leslie Foster, Hongbin Guo, Aaron Melman, Ilya Spitkovsky,
C.K. Li, Roger Alperin, Maribel Bueno, Tin Yau Tam, Huajun Huang, and Lidia Elena Kozma. The next R.C. Thompson Matrix
Meeting will be held in November 2005 at San Francisco State University.

Forthcoming Conferences and Workshops in Linear Algebra

14th International Workshop on
Matrices and Statistics
IWMS-2005
Auckland, New Zealand:
March 29-April 1, 2005
http://iwms2005.massey.ac.nz

The Local Organizing Committee has finalized details
of IWMS-2005 to be held at Massey University, Albany
Campus, Auckland, New Zealand over the period March
29-April 1, 2005. All intending participants are advised to
consult the website http://iwms2005.massey.ac.nz and pre-
register online.

The conference will have a wide variety of invited and
contributed papers involving matrices in statistics, including
applied probability. The following have accepted invitations
to present Keynote Lectures: C.R. Rao (USA), Shayle Searle
(USA), Eugene Seneta (Australia) and George Seber (New
Zealand).

Invited Speakers include Gene Golub (USA), Stephen
Haslett (New Zealand), Moshe Haviv (Israel), Nye John
(New Zealand), Charles Johnson, (USA), A. Krishnamoorthy
(India), Tonu Kollo (Estonia), Alan Lee (New Zealand),
Shuangzhe Liu (Australia), Bryan Manly (USA), Augustyn
Markiewicz (Poland), Carl D. Meyer (USA), Robin Milne
(Australia), Alastair Scott (New Zealand), Jennifer Seberry
(Australia), Garry Tee (New Zealand), Gotz Trenkler,
(Germany), Hans Joachim Werner (Germany), and Keith

Worsley (Canada).

The deadline for early registration and the submission
of titles and abstracts of invited and contributed papers is
February 11, 2005. A LATEX template is available on the
workshop website.

The early registration fee is $NZ395 (includes
participation in all sessions, workshop materials including
book of abstracts, refreshments during the session breaks,
lunches, opening reception, Workshop dinner). There is
a reduced fee for students of $NZ145. Payment by Visa
or Mastercard credit card is available with details being
accepted by secure fax.

An excursion will be held on the afternoon of Wednesday,
March 30th. This will involve a ferry trip to Waiheke with
participants choosing either a visit to a Vineyard for wine
tasting or a visit to a local Museum. The fee for the excursion
(which includes transport from the Workshop venue to the
ferry, the ferry fare, afternoon refreshments and return to the
conference hotels) is $NZ85.00 An accompanying persons
program has also been arranged involving an outing on the
first day of the workshop with a guided tour of the Auckland
Museum, a Maori cultural concert, a lunch, and returning to
the conference venue for the opening reception. The program
also includes the Workshop dinner.

IWMS-2005 is a Satellite meeting for 55th Biennial
Session of the ISI, Sydney, April 5-12, 2005. It is being
supported by Massey University, the New Zealand Institute
of Mathematics and its Applications, the Royal Society of

Cont’d on page 17
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Book Review: The Linear Algebra a Beginning
Graduate Student Ought to Know by Jonathan S. Golan,
Kluwer, 2004. ISBN 140201824X

The author has undertaken an ambitious project: to write
a book which assumes no previous knowledge of linear
algebra, and includes all the standard material taught to
beginning graduate students. According to the introduction,
the book is intended to be used both as a textbook and for
independent study.

The book begins with necessary preliminaries such as set
theory and fields, then proceeds to vector spaces. The fourth
chapter is a surprising addition: an introduction to algebras
over a field, presented from an axiomatic point of view at
a reasonably sophisticated level. Algebras form an integral
part of the rest of the book.

The remaining chapters cover most of the usual topics:
bases and dimension, linear transformations and matrices,
systems of equations and Gaussian elimination, determinants,
eigenvalues and eigenvectors, diagonalizing, Jordan form,
the dual space, inner products, unitary similarity, and self-
adjoint, unitary, and normal transformations. The more
elementary topics are covered thoroughly but rapidly. I
would hate to try to learn Gaussian elimination from this
book, but it is suitable for reviewing the material.

Some less usual topics are also included. The last
three chapters introduce the Singular Value Decomposition,
pseudoinverses and their relation to least-squares, and
bilinear forms. Quotient spaces are not covered, or even
mentioned.

The book is an odd combination of the elementary and
the sophisticated. Chapter 4 introduces algebras, including Lie
and Jordan algebras. This is a pretty high level of abstraction
to someone who has just learned about vector spaces. There
is a point to this: algebras are used later to give a rigorous
development of (for example) matrices of polynomials,
something which usually treated more informally. Many
of the proofs also require a high level of sophistication and
experience to realize that there are steps which are left out
and to be able to fill in the details. At other points, very
little is assumed of the reader: some proofs show all steps
of calculations, and some of the exercises seem intended for
the clueless. I can’t imagine a student who would need the
elementary material and be able to understand the advanced
ideas which precede it.

There are a number of interesting and unusual features
of the book. Vector spaces are not assumed (in general) to
be finite dimensional, and the author points out situations in
which the theory differs for finite and infinite dimensions.
Throughout most of the book, the theory is developed for
general fields and examples using finite fields are included.
The examples are one of the strongest points of the book:
both in the text and in the exercises, they cover a broader
spectrum of ideas than any other linear algebra texts that I
know.

There are an impressive number of exercises—almost a
thousand—which emphasize examples and which are quite
different from those found in more traditional textbooks. The
author has made an effort to integrate ideas from other parts
of mathematics, particularly analysis. ~However, there are
relatively few problems requiring proofs of general results.

There are many historical footnotes, emphasizing
mathematicians who contributed to the subject and including
photographs. These help give the subject a human face, but
at times the descriptions seem superficial and the connections
forced.

The book includes material which gives linear algebra
a larger context. For various topics, the author discusses
computational issues, algorithms, related advanced
topics, and applications. It’s unfortunate that there are no
suggestions for further reading, and no references.

There are a number of problems with the book. The
most troubling of these is the number of errors both in the
text and in the exercises. Some of these appear to be a matter
of poor proofreading, such as the statement on page 50
where “independent’” should be replaced by “dependent.”
However others are simply incorrect. For example, on
page 127 it is stated that the product of upper triangular
matrices is not necessarily upper triangular; and on page
343, exercise 857 states that |la(v)||<||v|| for a self-adjoint
linear transformation a. The book would have benefited from
a careful mathematical proofreading, checking of theorem
numbers, and being copy-edited for correct English.

The introduction says that the book assumes a “modicum
of mathematical sophistication on the part of the reader.” It
should have gone on to warn that many statements will
require the reader to stop and supply the proof. Since the book
is intended for beginning graduate students (and encourages
self-directed study), it should give some guidance at least
at the beginning as to what reading the book entails. The
exposition is often terse and at times hard to follow. There are
anumber of places where proofs have something missing, and
it is not clear if the author didn’t notice or is merely expecting
a lot (at times, I would say too much) of the reader. The
supplementary paragraphs on applications and so on include
statements which the reader cannot be expected to prove as
they are beyond the scope of the book, and so it can be hard to
tell if a statement should be proved, or just accepted.

I think that this is a book which any teacher of advanced
linear algebra will be glad to own, particularly as a source of
unusual problems and examples. I would not recommend it to
a student as a way to learn the subject on their own, although
I might suggest it to a good student as a way to review the
material (with suitable warnings about reading with a pencil
and paper, and not believing everything you read). There are
both pros and cons for using this book as a text for a course,
as this review has tried to demonstrate.

Reviewed by Sylvia Hobart
Department of Mathematics
University of Wyoming - Laramie, Wyoming
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Workshop on Matrices and Statistics cont’d

New Zealand, Statistics New Zealand, and by SAS. IWMS-
2005 is also being supported by the New Zealand Statistical
Association through the participation of the New Zealand
Statistical Association Visiting Lecturer for 2005, C.R. Rao.
The workshop has been endorsed by ILAS, the International
Linear Algebra Society.

The International Organising Committee (IOC) consists
of George P.H. Styan (Canada; Chair), styan @math.mcgill.ca,
Hans Joachim Werner (Germany; Vice Chair), and Simo
Puntanen (Finland). The Local Organising Committee
(LOC) is chaired by Jeffrey Hunter (New Zealand),
j-hunter@massey.ac.nz. The Workshop secretary is Freda
Anderson, F.Anderson @massey.ac.nz.

Brualdi-fest: Linear Algebra, Graph Theory
and Combinatorics Conference
University of Wisconsin-Madison:
30 April-1 May, 2005

The University of Wisconsin-Madison will host an
informal, two-day conference, Brualdi-fest: Linear Algebra,
Graph Theory and Combinatorics, from April 30 to May 1,
2005. The conference will be in honor of Richard Brualdi
and his numerous contributions to mathematics. The keynote
speaker will be Richard Wilson (CalTech).

The goals of the conference are to disseminate some
of the recent successes of linear algebra, graph theory, and
combinatorics to the mathematical community; discuss
various emerging mathematical topics, applications and
technologies for which linear algebraic and combinatorial
techniques are needed; and bring together Brualdi enthusiasts
to celebrate Richard’s career.

Several sessions of contributed talks are planned. If you
would like to present a talk, please send a title and abstract to
Bryan Shader (bshader@uwyo.edu) by March 15, 2005.

The conference will be held at the Pyle Conference
Center, http://conferencing.uwex.edu/pyle.cfm, on the
University of Wisconsin-Madison campus. A block of
rooms has been reserved at the nearby Lowell Inn, http:
/Iconferencing.uwex.edu/lowell.cfm.

Reservations for these rooms must be made by March
29, 2005. Additional lodging possibilities can be found at
http://www.math.wisc.edu/~lemmpp/info/hotels.html.

Further details about the conference will be posted on
the conference web page, http://math.uwyo.edu/~bshader/
rabconf.html.

The organizing committee consists of John Goldwasser
(University of West Virginia), Hans Schneider (University
of Wisconsin-Madison), Bryan Shader (University of
Wyoming), and Bob Wilson (University of Wisconsin-
Madison).

Conference in Honor of
Heydar Radjavi’s 70th Birthday
Bled, Slovenia:

14-15 May 2005

The special emphasis of this conference is on topics in
linear algebra and operator theory related to H. Radjavi’s
work. It will consist of invited and contributed talks.

The main invited speaker is P. Rosenthal. The following
are invited participants: E.A. Azoff, R. Bhatia, P. Binding,
L. Grunenfelder, R. Guralnick, D. Hadwin, J. Holbrook,
T. J. Laffey, J. Leech, C. K. Li, L. Livshits, R. Loewy, V.
Lomonosov, G. MacDonald, B. Mathes, M. Mathieu, R.
Meshulam, V. Miiller, J. Okniriski, M. Radjabalipour, H.
Radjavi, L. Rodman, B. A. Sethuraman, V. Shulman, A.
Sourour, Y. Turovskii, A. Villena, and J. Zemanek.

The organizing committee consists of M. Bresar, L.
Grunenfelder, T. KoSir, M. Omladi¢ (Chair), P. Rosenthal,

and P. Semrl.
For further information please contact the Secretary of
the conference:

Damjana Kokol Bukovsek

Institute of Mathematics, Physics, and Mechanics
Jadranska 19, SI-1000 Ljubljana, Slovenia
Phone: +386 1 476 65 50

Fax: +386 1 251 72 81
E-mail: Damjana.Kokol@fmf.uni-lj.si

Additional information about the conference can be
found on the conference web page: http://www.law05.si/hrc.

Householder Symposium XVI
Seven Springs Mountain Resort,
Champion Pennsylvania:
23-27 May, 2005

The Householder Symposium on Numerical Linear
Algebra will be held May 23-27, 2005 at the Seven
Springs Mountain Resort in Champion, Pennsylvania, http:
/Iwww.Tsprings.com/. The resort is located about one hour
(by car) southeast of Pittsburgh. This meeting is the sixteenth
in a series, previously called the Gatlinburg Symposia. The
name honors Alston S. Householder, one of the pioneers
in numerical linear algebra and organizer of the first four
meetings. The meeting has traditionally been held in an
isolated location and is very informal in style. Each attendee
is given the opportunity to present a talk, but a talk is not
mandatory. The format of the meeting includes scheduled
presentations during the day and more informal evening
sessions that are organized electronically shortly before the

meeting. Spirited discussion is encouraged.
Cont’d on page 18
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Householder Symposium cont’d

At the meeting, the twelfth Householder prize will be
awarded for the best thesis in numerical algebra written since
January 1,2002. We hope that the meeting will be attended by
recent entrants into numerical linear algebra as well as more
experienced researchers. We encourage attendance by core
numerical linear algebra researchers, matrix theoreticians,
and researchers in applications such as optimization, signal
processing, control, etc.

The Program Committee welcomes your contribution.
The meeting facility holds only 125 people, however,
so attendance may need to be limited. The committee is
seeking funding to provide financial assistance to recent
PhDs and others who might need it. For full consideration,
the committee must receive your abstract by 1 December
2004. Information concerning the application process may
be found at the URL listed above. Please use the format
provided at the conference website: http://www.cse.psu.edu/
~zha/householder. The committee expects to complete the
list of attendees and scheduled presentations by 7 January

2005.

If you have any questions about local arrangements,
please contact the local arrangements committee at:
householder2005 @cse.psu.edu.

The local arrangements committee is Jesse Barlow (Penn
State University), Hongyuan Zha (Penn State University),
Daniel Szyld (Temple University). Other questions can be
directed to: house-request@cs.cornell.edu

The program committee consists of Angelika Bunse-
Gerstner (Bremen), Tony Chan (UCLA), Alan Edelman
(MIT), Nick Higham (University of Manchester), Roy
Mathias (College of William and Mary), Dianne O’Leary
(University of Maryland), Michael Overton (New York
University), Henk van der Vorst (Utrecht), Paul Van Dooren
(Louvain-la-Neuve), and Charles Van Loan (Chair, Cornell
University).

Second International Workshop on
Combinatorial Scientific Computing (CSC05)
Toulouse, France:

June 21-23, 2005
http://www.cerfacs.fr/algor/CSCO05

The Second International Workshop on Combinatorial
Scientific Computing (CSC05) will be organized at
CERFACS, Toulouse, June 21-23, 2005. The workshop,
organized in cooperation with SIAM, CERFACS,
ENSEEIHT-IRIT, and INRIA, will provide a forum for
researchers interested in the interaction of combinatorial
mathematics and algorithms with scientific computing to
discuss current developments in research.

CSCO05 follows the pioneering SIAM Workshop on
Combinatorial Scientific Computing (CSC04) held at San
Francisco in February 2004. The CSC04 Workshop, attended
by close to a hundred participants, featured three plenary
talks and 21 selected talks on the themes of sparse matrix
computations, high-performance algorithms, combinatorial
problems in optimization and automatic differentiation,
mesh generation, computational biology, and combinatorial
matrix theory. The CSCO05 Workshop aims to bring together
researchers interested in these themes as well as other aspects
of combinatorial mathematics and algorithms in scientific
computing, broadly interpreted. Researchers in emerging
application areas as well as theoretical areas that intersect
with combinatorial scientific computing, e.g., information
science, networks, bioinformatics, and combinatorial
optimization, are invited to participate.

Contributed presentations in lecture format are invited
in all areas consistent with the workshop themes. A 2-
page extended abstract, in PDF format, of a proposed talk
should be submitted by February 21, 2005. The submission
procedure is described on the web page for the conference
(listed above). Authors will be notified of acceptance of their
talks by mid March.

Toulouse, the capital of the Midi-Pyrenees region of
France, is a European center for science and technology, and
is close to the Pyrenees mountains, the Mediterranean Sea,
Carcassone, and many tourist attractions. The Workshop
will be held at the Conference Center of the Meteo France
campus, where CERFACS is located. A limited number of
rooms (single and double) will be available at the Meteo.

Further details on workshop registration, hotels and
housing options, etc., will be posted as they become available
at the conference web page.

The local committee is: Patrick R. Amestoy (IRIT,
Toulouse and ScAlApplix, INRIA), Iain Duff (CERFACS,
France and Rutherford Appleton Lab, UK), Luc Giraud
(CERFACS, France), Serge Gratton (CERFACS, France)
and Brigitte Yzel (Secretary).

The organizing committee is: lain Duff, co-chair
(CERFACS and Rutherford Laboratory), John Gilbert, co-
chair, (University of California, Santa Barbara), Alex Pothen,
co-chair (Old Dominion University), Patrick R. Amestoy
(IRIT, Toulouse and ScAlApplix, INRIA), Rob Bisseling
(University of Utrecht), Andreas Griewank (Humboldt
University, Berlin), Jean-Yves L’Excellent (INRIA, Lyon),
Cynthia A. Phillips (Sandia National Labs), and Bryan
Shader, (University of Wyoming).
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12th ILAS Conference
Regina, Saskatchewan, Canada:
26-29 June, 2005

The 12th meeting of the International Linear Algebra
Society will be held at the Regina Inn and Conference
Centre, June 26-29, 2005, in Regina, Canada. The Scientific
Organizers for the meeting are Rajendra Bhatia, R. Guralnick,
Danny Hershkowitz (ILAS President), Steve Kirkland
(Chair), Volker Mehrmann, Bit-Shun Tam, Pauline van
den Driessche and Henry Wolkowicz. The local organizing
committee consists of Shaun Fallat, Doug Farenick, Chun-
Hua Guo and Steve Kirkland.

The invited speakers are:

Avi Berman (Technion, Israel)

Jim Demmel (University of California Berkeley, USA)
Dragomir Djokovic (University of Waterloo, Canada)
Anne Greenbaum (University of Washington, USA)
Olga Holtz (University of California Berkeley, USA)
Ilse Ipsen (North Carolina State University, USA)
Charles Johnson (College of William and Mary, USA)
Peter Lax (Courant Institute, USA)

Adrian Lewis (Cornell University, USA)

Ren-Cang Li (University of Kentucky, USA)

Raphael Loewy (Technion, Israel)

Jodo Queird (University of Coimbra, Portugal)

Peter Rowlinson (University of Stirling, Scotland)
Bryan Shader (University of Wyoming, USA)
Christiane Tretter (Universitit Bremen, Germany)

Pei Yuan Wu (National Chiao Tung University, Taiwan)
Xingzhi Zhan (East China Normal University, China)

In addition, the meeting will feature the following
special lectures:

The LAMA Lecture:

Chi Kwong Li (College of William and Mary, USA)
The ILAS Education Lecture:

Anna Sierpinska (Concordia University, Canada)
The LAA Lecture: T.B.A.,
The Hans Schneider Prize Lecture: T.B.A.

Several mini-symposia will also take place, including
Preserver Problems, organized by Chi-Kwong Li and Peter
Semrl, and Spectral Properties of Families of Matrices
Described by Patterns or Graphs, organized by Leslie
Hogben.

Linear Algebra and its Applications will publish a
special issue devoted to papers presented at the conference;
the editors for the special issue are Rajendra Bhatia, Robert
Guralnick, Steve Kirkland and Henry Wolkowicz.

Social activities include a box lunch, courtesy of ILAS,
on June 26, and a banquet to be held on June 28, featuring
Chandler Davis as the after-dinner speaker.

The deadline for submission of abstracts for contributed
papers is May 1, 2005, and the deadline for on-line conference
registration is May 25, 2005. For more information regarding
registration, accommodation, travel and support for students
and post-docs, please visit the conference webpage at http:
//www.math.uregina.ca/~ilas2005

International Workshop on
Operator Theory and Applications
University of Connecticut, Storrs, USA
24-27 July, 2005

The purpose of IWOTA 2005 is to bring together
mathematicians and engineers interested in operator theory
and its applications. Adhering to a tradition started at the
previous IWOTA meetings, the meeting will be focused on
a few special themes, without losing sight of the general
IWOTA mission. Our special interest areas are:

* operator theory and function theory.
* system theory and control theory,
* structured matrices and efficient computations

Apart from these, we welcome proposals on special sessions,
especially in traditional IWOTA areas.

This IWOTA meeting will be the sixteenth in a series of
highly successful IWOTA meetings. The previous IWOTA
meetings were held in Santa Monica (1981), Rehovot (1983),
Amsterdam (1985), Mesa (1987), Rotterdam (1989), Sapporo
(1991), Vienna (1993), Regensburg (1995), Bloomington
(1995), Groningen (1998), Bordeaux (2000), Faro (2000),
Blacksburg (2002), Cagliari (2003), and Newcastle (2004).
The organizers of the present meeting intend to adhere to the
high standards set by these previous meetings.

The IWOTA 2005 steering committee includes 1.
Gohberg-President (Tel Aviv), T. Ando (Sapporo), J.A.
Ball (Blacksburg), H. Bart (Rotterdam), H. Bercovici
(Bloomington), A.F. dos Santos (Lisbon), A. Dijksma
(Groningen), M. Dritschel (Newcastle), H. Dym (Rehovot),
C. Foias (Bloomington), J.W. Helton-Vice President (La
Jolla), M.A. Kaashoek-Vice President (Amsterdam), M.
Klaus (Blacksburg), H. Langer (Vienna), C.V.M. van der
Mee (Cagliari), R. Mennicken (Regensburg), N.K. Nikolskii
(Bordeaux), L. Rodman (Williamsburg), S. Seatzu (Cagliari),
G. Stampfli (Bloomington), and N. Young (Newcastle).

It is a great honor for us, the local organizers, Vadim
Olshevsky, Isracl Koltracht, Michael Neumann, William
Abikoff and Ron Blei to invite you to come to IWOTA 2005.
We also invite you to make suggestions as to the program and
the topics to be discussed.

We look forward to seeing you next summer in Storrs!
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IMAGE Problem Corner: Old Problems, Most With Solutions

We present solutions to IMAGE Problems 23-1 [IMAGE 23 (October 1999), p. 28], 32-1 through 32-3, and 32-5 through 32-7 [IMAGE 32 (April
2004), pp. 40 & 39]. Problems 30-3 [IMAGE 30 (April 2003), p. 36] and 32-4 [IMAGE 32 (April 2004), p. 40] are repeated below without solution;
we are still hoping to receive solutions to these problems. We introduce 8 new problems on pp. 36 & 35 and invite readers to submit solutions to
these problems as well as new problems for publication in IMAGE. Please submit all material both (a) in macro-free IsTEX by e-mail, preferably
embedded as text, to uyjw902@uni-bonn.de and (b) two paper copies (nicely printed please) by classical p-mail to Hans Joachim Werner, IMAGE
Editor-in-Chief, Department of Statistics, Faculty of Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Please make
sure that your name as well as your e-mail and classical p-mail addresses (in full) are included in both (a) and (b)!

Problem 23-1: The Expectation of the Determinant of a Random Matrix
Proposed by Moo Kyung CHUNG, University of Wisconsin—Madison, Madison, Wisconsin, USA: mchung@stat.wisc.edu

Let the m x n random matrix X be such that vec(X) is distributed as multivariate normal N(0, A ® I,,), where vec indicates the
vectorization operator for a matrix, the m x m matrix A is symmetric non-negative definite, ® stands for the Kronecker product,
m > n, and I,, is the n x n identity matrix. For a given m x m symmetric matrix C, find E{det(X’'CX)} in a closed form involving
only C and A. Is this possible? (Finite summation would also be fine.)

Solution 23-1.1 by William KNIGHT, University of New Brunswick, Fredericton, New Brunswick, Canada: knight@unb.ca

THEOREM. Let the m x n random matrix X be such that vec(X) is distributed as multivariate normal N(0, A ® I,,), where A is
a given m X m nonnegative definite and symmetric matrix. For a given m x m symmetric matrix C, let \1, Ao, A3, ..., A\, be the

eigenvalues of AY/2C A2, Then

E{|X'CX|} = (n)n (A1, A2y oo s Amn)s
where 1y, (+) is nth elementary symmetric function of A1, - - -, A, i.e., the sum of all products of n distinct X’s, and | - | denotes the
determinant. For example,

V1AL, Az, Am) = trace(AY2CAY?),
P3(A1, A2, Az, A1) = A Aoz + Ardeds + A AsAs + Aoz Ay,
wm()‘h)\%"w)\m) = |A1/2CA1/2|'

PROOF. We proceed in three steps:
1. Reduction to the special case where A = I,,, and C is diagonal.
2. Solving the special case for m = n.
3. Induction on m for m > n.

1. Reduction: Let Y be an m x n random matrix whose elements are independent N(0,1). A'/2Y has the same multivariate normal
distribution as X and so
E{|Y'AY2CAY2Y |} = E{|(X'CX]|}.

Some orthogonal matrix, @Q say, diagonalizes A/2CA'/? |ie., AY/2CAY/? = Q'A Q. After orthogonal transformation, a spherical
normal distribution remains spherical normal, so Z = QY still has independent N(0,1) elements, and

E{|X'CX|} = E{|]Y'AY2CAYV2Y |} = E{|Y'Q'AQY |} = E{|Z'AZ|}.

2. The special case m = n: ZZ' is an nxn Wishart matrix, and as such, its expected determinant is n! [see Anderson (1960, Chapter
7.5.2, formula (19))], and so

E{|Z'AZ|} = E{|2Z'Al} = E(1ZZ'[}IA] = n! ([T Ae) = 0l b (A, Aoy Mgy, An) -

i=1
3. Induction on m over m >n: There is an n x n Householder matrix, H, which rotates the last row of Z into its last coordinate:

W(m,nfl) w)
0 w/’

ZH =W = Wpi1n) = (
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Here, subscripts of the matrices W denote their sizes, w is a column vector, and the scalar w, the norm of the last row of Z, is the
square root of a x? random variable with n degrees of freedom. Define Sty a8 (Wil Ay Wi,y (subscripts of S match those
of the associated W and A(,,) is the leading 1 x ¢ submatrix of A). For induction, partition S as follows (these equations also define
vector s and scalar o):

S(m,n—l) = [W(m,n—l)]/A(m) W(m,n—1)7

[W m,n—1 ]/ S(m,n—l) S
S<m,n>:[W<m,nﬂ'A<m>W<m7n>:( ) Ay Wen e w) = (770,

W, W, [” (m n—l)]/ 0 )l < " (m,n—1) ’UJ) (S(m n—1) s )
S mnr n) — 7”/"’ n /A me 7”}"’ n) — ' A me ) - ' .
i) = (Wit [ Amiy Wt oy ( w' w (mH) 0 w s’ 0+ Amp1w?

Since H depends only on the last row of Z, and W(,, ,,) depends only on the first m rows of Z, the conditional distribution of
Wm.n)» given the last row of Z, is spherically normal. It follows that the conditional distributions of W, ,,j and of S(,, ,,), given
w, are spherically normal. Expand the determinant of S(,,41 ,) on its last row,

|S(m+1,n)| = ’ ’ = |S(m,n)| + )‘m+1 w2 ‘S(m,n—1)| 5

S(m,n—l) S o S(m,,n—l) S
s o+ )\m+1w2 s o

' S(m,n—l) S
+ 2
0 )\mﬂw

and take its expectation: E{[S(ni1,m)} = E{|Smmml} + Ams1nE{|Stmn—1)l} = nln(A, A2, M) + Amgan(n —
D% _1(A1, A2y ey Am) = nlbn (A, Agy ooy Angn)- 0

Reference
T. W. Anderson (1960). An Introduction to Multivariate Statistical Analysis. Wiley, New York.

Problem 30-3: Singularity of a Toeplitz Matrix
Proposed by Wiland SCHMALE, Universitdit Oldenburg, Oldenburg, Germany: schmale@uni-oldenburg.de
and Pramod K. SHARMA, Devi Ahilya University, Indore, India: pksharmal944@yahoo.com

Letn > 5, ¢1,...,cn—1 € C\{0}, x an indeterminate over the complex numbers C and consider the Toeplitz matrix
c2 c1 z 0 - --- 0
c3 c2 cic 0 --- 0
M =
Cng Cnea - - -+ - T
Cn—2 Cpn—3 . . . e
Cn—1 Cn—2 . . . )

Prove that if the determinant det M = 0 in C[z] and 5 < n < 9, then the first two columns of M are dependent. [We do not know
if the implication is true for n > 10.]

We look forward to receiving solutions to Problem 30-3!

Problem 32-1: Factorizations of Nonsingular Matrices by Means of Corner Matrices
Proposed by Richard W. FAREBROTHER, Bayston Hill, Shrewsbury, England: R.W.Farebrother@manchester.ac.uk
Show that any nonsingular n X n matrix A may be expressed as the product of

(a) two southwest and one northeast corner matrices,

(b) two northeast and one southwest corner matrices,

(c) three northwest corner matrices, and
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(d) three southeast corner matrices,
where an n x n matrix A is called a southwest corner (or lower triangular) matrix if it satisfies a;; = 0 for ¢ < j, a northeast corner
(or upper triangular) matrix if it satisfies a;; = 0 for ¢ > j, a northwest corner matrix if it satisfies a;; = 0 for all 4, j satisfying
i+ 7 > n+ 1, and a southeast corner matrix if it satisfies a;; = 0 for all 4, j satisfying 7 +j <n — 1.

Solution 32-1.1 by the Proposer Richard W. FAREBROTHER, Bayston Hill, Shrewsbury, England: R.W.Farebrother@manchester.ac.uk

(a): It is well known that the Gaussian elimination procedure may be employed in an attempt to reduce any given square matrix
A to upper triangular form by premultiplying it by a sequence of elementary lower triangular matrices. If, at any stage, we encounter
a zero element on the diagonal of the partially reduced matrix, then we may often eliminate it by postmultiplying the matrix by
a suitable elementary lower triangular matrix (where elementary triangular matrices are identity matrices with a single nonzero
off-diagonal element).

In the exceptional case when all the elements in a particular row of the reduced matrix take zero values, then the matrix is singular
and has a determinant of zero.

In the case in which no such row of zeroes occurs, the matrix is nonsingular and has a nonzero determinant. Further, since each
of the elementary lower triangular matrices is invertible, we deduce that any nonsingular matrix may be expressed as the product
of a unit lower triangular matrix, an upper triangular matrix, and a unit lower triangular matrix A = L, Us L3, where the unit lower
triangular matrices L;, L3 have unit elements on their diagonals and the upper triangular matrix U, is not restricted in this way.

(b): Now, applying the result of part (a) to the transpose B = A’ of A we have A’ = L,ULs3, whence we deduce that A
may be expressed as the product of a unit upper triangular matrix, a lower triangular matrix, and a unit upper triangular matrix,
A= LLULL,.

(c): Let J represent the n x n matrix with unit elements on its secondary diagonal ¢ + j = n + 1 and zeroes elsewhere. Then
JJ = I is the identity matrix, and Ly = JU>J is a n x n lower triangular matrix if Us is an upper triangular matrix.

In part (a) we established that any nonsingular matrix C = J A may be expressed as the product of a lower triangular matrix, an
upper triangular matrix, and a lower triangular matrix JA = L1UsL3. Thus A = JL1UsLs = JL1JLyJ L3 may be expressed as
the product of three northwest corner matrices J L1, JLs, JL3.

(d): Similarly, any nonsingular matrix D = AJ may be expressed in the form AJ = L,UsL3. Thus, A = LiUsLsJ =
LiJLyJL3J, where LyJ, LoJ, LsJ are now southeast corner matrices.

Supplementary Example. For example, the 2 x 2 order-reversing matrix may be expressed as such a product:

Go)=G) G S

Problem 32-2: A Property of Plane Triangles — Eadem Mutata Resurgo
Proposed by Alexander KOVACEC, Universidade de Coimbra, Coimbra, Portugal: kovacec@mat.uc.pt

Let A € R-q. Apply to a plane triangle A the following process: go clockwise around A and divide its sides in the ratio A : 1.
Use the distances from the division points to the opposite vertices as side-lengths for a new triangle A’ (cyclically again). Repeat
the process with A’ but divide with the ratio 1 : X to obtain a triangle A”. Show that A” is similar to A with the ratio p =
VI 42X+ 322 4203 + A1/(1+ \)2.

Solution 32-2.1 by the Proposer Alexander KOVACEC, Universidade de Coimbra, Coimbra, Portugal: kovacec@mat.uc.pt

Let a, b, ¢ be the sides of an original triangle A = AABC (in traditional notation) and let a’, ', ¢’ be the sides of A’ obtained as
distances from A to the division point on side a, etc. Then by Stewart’s theorem, see e.g., Berger (1987, Fact 9.14.35, p. 277), we
can set up the following matrix relation:

2 A 2
a/ 1 ~Trx A 1 a
2 _ A 2
i sy s N B
Cl2 Y 1 A c?

RN
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So we can identify the process of passing from A to A’ as multiplying with the matrix Py shown here (including the factor).
Similarly, passing from A’ to A” is multiplying with P% . Now, noting that P% = P and verifying P P\ = p*I; concludes the
proof.

Reference
M. Berger (1987). Geometrie I. Springer-Verlag, Berlin.

Solution 32-2.2 by Leo L1VSHITS, Colby College, Waterville, Maine, USA: llivshi@colby.edu

Our notation is simplified if we say that the division of sides in the process described is done in the ratio « : 3 with « + 3 = 1 and
A = /(. In the second process we divide in the ratio 5 : a.

Given a plane triangle AO PQ with alphabetic order followed counterclockwise, let us treat O as the origin and write U = OP
and W = OQ. After the first iteration of divisions is performed on AOPQ, the lengths of the sides of the triangle A’ are
[|U+ B(W = U)|l, ||aW — U|| and ||W — gU]|, and the order matters. Since

U+pW-=U))+ (W -U)=W — gU,

we can assume without loss of generality that A" = AOP’Q’ with alphabetic order followed counterclockwise, where U + 3(W —
U)=0P and W — U = OQ'’. Let us express this as

OP'\ (a pB\[OP
(O@’>_(—ﬁ 1)(0@)

Performing the second process on AOP’'Q’ results in a triangle AOP”Q", where

( N) (— > ( /) -
oQ" a 1 oQ')’
simply interchange « and 3. Hence

OP"\ _(f a\(a B\(OP\ _( 0  (+a)/ OP
(o@)‘(—a 1)(—ﬁ 1)(0@)_<—ﬁ—a2 l—aﬁ) (022>'

Since 32 + o =1 — aff = B+ o whenever o + 3 = 1, we get

opP"y 0 1-af\ (OP
(O@”)_<—(1—aﬁ) 1—a5) <0Z2>

so that OP” = (1 — a8)0Q, 0Q" = (1 — aB)(0Q — OP) = (1 — aB)PQ, P"Q" = P70 + 0Q" = (1 — af)(PQ + QO) =
(1- aﬂ)Pb, which shows that A” = AOP”Q" is similar to triangle A = AOPQ with the ratio 1 — af. A quick symbolic
calculation (I recommend use of a computer algebra package here!) shows that this equals the expression for p given in the problem,
which incidentally simplifies to
L+ A+ A2
IRV

after the substitutions A = /3 and o + 3 = 1 are made.

Problem 32-3: Jacobians for the Square-Root of a Positive Definite Matrix
Proposed by Shuangzhe Liu, University of Canberra, Canberra, Australia: Shuangzhe Liu@canberra.edu.au
and Heinz NEUDECKER, University of Amsterdam, Amsterdam, The Netherlands: H.Neudecker@uva.nl

Establish the following Jacobian matrices:

av(X'/?) (y1/2 1/2\-1 dv(X~1/?) oyl/2 1/2\-1
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where X is an n x n positive definite matrix, X /2 is its positive definite square root, D is the n? x n(n 4 1)/2 duplication matrix,
D is its Moore-Penrose inverse, I is the n x n identity matrix, v/(-) denotes the transpose of v(-), v(-) denotes the n(n +1)/2 x 1
vector that is obtained from vec(-) by eliminating all supradiagonal elements of the matrix and vec(-) transforms the matrix into a
vector by stacking the columns of the matrix one underneath the other.

Solution 32-3.1 by the Proposers Shuangzhe L1U, University of Canberra, Canberra, Australia: Shuangzhe.Liu@canberra.edu.au
and Heinz NEUDECKER, University of Amsterdam, Amsterdam, The Netherlands: H.Neudecker@uva.nl

(1) Taking the differential of X'/2X1/2 = X, we get (dX/?)X /2 4 X/2(dX'/?) = dX. Using the vec operator and D so that
vec(X1/2) = Dv(X1/?), we get

(XYV2 @14+ 1® XY?)dvec(XV?) = dvec(X), (XV2@I+1®XY?)Ddv(X'/?) = Ddv(X).
Rearranging the terms and using D™D = n(n+1)/2, We get

8V(X1/2) +/y1/2 1/2\ -1 +/yv1/2 1/2y—1
(2) Taking the differential of X ~1/2X~1/2 = X~ we get (dX V) X~1/2 4 X~1/2(dX~1/?) = —X~1(dX)X~'. Using the
vec operator we get
(X V2@I+1® X Y)Ddv(X1?) = —(X~' @ X~ ') Ddv(X).

Rearranging the terms we get

o X—1/2

g(v/(x) ) L pHX el Te X V3D DY X e XD
= —DHX YV?@I+IeoXx V) 'DDY(X '@ X 1D

DX V2el+Ieox V)Y XteX YHD

DT (X2 e X + X ® X'/*)~D.

Problem 32-4: A Property in R3*3
Proposed by J. M. F. TEN BERGE, University of Groningen, Groningen, The Netherlands: j.m.f.ten.berge@ppsw.rug.nl

We have real nonsingular matrices X, X5, and X3 of order 3 x 3. We want a real nonsingular 3 x 3 matrix U defining W, =
u1; X1 + ug; Xo + uz; X3, j = 1,2,3, such that each of the six matrices W;ka, j # k, has zero trace. Equivalently, we want
(VV{IVV;C)3 = (ajk)3lg, for certain real scalars a ;. Conceivably, a matrix U as desired does not in general exist, but even a proof
of just that would already be much appreciated.

We look forward to receiving solutions to Problem 32-4!

Problem 32-5: Diagonal Matrices Solving a Matrix Equation
Proposed by Gotz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let A € R*™ B € R™" and C € R™™™ be given matrices. Find all vectors * = (21,...,%,)" € R™ such that
Adiag(zy,...,z,m)B=C.

Solution 32-5.1 by the Proposer G6tz TRENKLER, Universitdit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let e; denote the i-th column of the identity matrix [,,. Then diag(z1,...,xm) = Y., (eix)(eses) = Y00, (eiel)(wel).

It follows that Adiag(x1,...,2m)B = Y- (Ae;el)x(e}B), and the equation Adiag(zi,...,z,,)B = C is equivalent to
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S vee ((Aeel)z(efB)) = vee(C) or (31", B'e; @ Aee) x = vec(C). Note that (B'e;)’ is the i-th row of B and Ae; is
the i-th column of A. The latter equation is consistent if and only if DD vec(C) = vec(C), where D = 3" | B'e; @ Ae,e; and
D™ denotes the Moore-Penrose inverse of D. In that case the general solution z is given by x = D*vec(C) + (I,,, — DT D)z, where
z € R™ is arbitrary.

Problem 32-6: A Vector Cross Product Property in R>
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

In Milne (1965, Ex. 22, p. 26) the following problem is posed: “Ifa, b are given non-parallel vectors, and x and y vectors satisfying
x X a =y X b, show that x and y are linear functions of a and b, and obtain their most general forms.” Generalize this problem
as follows: For given vectors a, b, and ¢ from R*, where a and b are linearly independent, show that there always exist vectors x,
y € R3 such that

rXa+yxb+c=0.

Determine the general solution (z, ) to this equation. Note that “x” denotes the vector cross product in R3.

Reference
E. A. Milne (1965). Vectorial Mechanics. Methuen, London.

Solution 32-6.1 by Leo L1VSHITS, Colby College, Waterville, Maine, USA: llivshi@colby.edu

Since under the given hypothesis {a, b, a x b} is a basis of R?, it is necessary and sufficient to find all -,y € R such that the dot
product of x X a + y x b+ c with each of a, b, a x b is zero. In other words, the task is to solve the system

yxbea+cea=0, zxaeb+ceb=0, zxaeaxb+yxbeaxb+ceaxb=0. (1)

We can write © = aa + b+ va x band y = da + €b + Aa x b with «, 3,7, 9, €, A € R, so that the system (1) becomes (after
simplification) the system

Maxb)xaeb=cea, ~(axb)xaeb=—ceb, (§—0)||axb||?=—-ceaxb,

in six real variables «, 3,7, §, €, \.

Recall that v; @ v2 X v is the determinant of the matrix whose i-th column is v;. In particular, (a x b) x a e b is the determinant
of the invertible matrix with columns b, a X b, a, and so is not zero. Hence the general solution to system (1) is:

ceb ceaxb ceaq
= b— —o—— b - b+ ——— b
() (aa—i—ﬁ (axb)xaobax ’ (ﬁ Ha><b||2)a+6 —~_((1><b)><aoba>< )’

where «, (3, € are free real variables.

Solution 32-6.2 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wtrench@trinity.edu
Since a and b are linearly independent, |a|?|b|> — (a - b)?> > 0 and {a,b,a x b} is a basis for R3. Let
x=ara+ ab+ az(axb), y=pa+P2b+Ps(axb), c=vya+yb+vys(axb).

Then
zxa=—as(axb)+ asf|la*h — (a-b)a] and y x b= Fi(a x b) + B3[(a - b)b — |b|%al.

Soxz x a+y xb+c=0ifand only if
) ()0
az — 1 =13 and ( = - .
lal>  (a-b)/ \fs V2

vi(a-b) + 72lb?
|al?[bf* = (a-0)?

Solving for a3 and 33 yields

lal? +72(a-b)

= b—
v amataz [alZbF — (a - D)2

(axb), y=pPra+ P2b+ (a x b),
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where ag — B3 = 3 and 1 and (3, are arbitrary.

Solution 32-6.3 by the Proposer Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

For a vector u = (uy, uz, uz)’ € R? consider the skew-symmetric matrix

0 —Uus u
Tu = us 0 —U
—Uu2 (5% 0

It is well-known that for any vector v € R3, the vector cross product may be expressed as u x v = T}, v; see Rao and Mitra (1971)
or Room (1952). Hence the equation z X a + y X b + ¢ = 0 may be written as

Tea+Tyb+c=0. (2)
However, since T,a = —Tgx and T);b = —Tyy, (2) can be reexpressed as
x
(Ta, Ty) ) c. 3)

Thus, our problem reduces to the question whether equation (3) is consistent, and further to the identification of the general solution
set belonging to (3). For this purpose write T' = (T, T,) and z = (2’,y")’. Then (3) takes the form

Tz =c, 4)

and (4) is consistent if and only if 77~ c = ¢, where T~ is a generalized inverse of 7. Following Campbell and Meyer (1979,
p. 98), we find
T (Tj[[ - Tb(aa+Tb)+aa+]>
- (aa™Ty) T aa™
as a generalized inverse of 7. Here use is made of the identity I — 7,7, = aa™ [see Trenkler (2001)]. Now (aa™Ty)* =
(a™Ty)*ta™, so that T~ becomes

_ (T - Ty(aa™ T;) 7]
= ( (aatTy)t )

Furthermore, we have (aa™T},)™ = vTyaa, where v = 1/a’T}?a. Note that a’Ta # 0, since a and b are linearly independent.

Hence we arrive at
P <Tj[[—'yTana’])
~yTyaa' '
It follows that

TT™ =T, T (I —~yT?ad) +yT2ad = (I —aa™)(I — yTPad') +yTPad = I —aa™ + vyaa™TPad' = 1.
a b b b b b

Hence 7T~ = I, and (3) is solvable for every c. This is not surprising since by the linear independence of a and b, the null space of
T = (T,, Tp) must be zero.
The general solution of (3) is given by
z=T"c+ (I -T Tw,

where w is an arbitrary vector.
Now we have . . )
T T, T.,To(I —yTyad'T
T‘T:( a y(I —=Th b)>.
0 ~yTyaa'Ty
For a vector v introduce the notation P(u) = wu™ and Q(u) = I — wu™. Thus P(u) is the orthogonal projector on the column
space L£(u) of u, and Q(u) is the orthogonal projector on the orthogonal complement of £(u), respectively.
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It follows that I — yTyaa'Ty, = I — (Tya)(Tya)™ = Q(Ta) and vTyaa'T, = P(Tya), and hence
T (T;Ta TaJrTbQ(Tba))
0 P(Tya)
so that

I-T°T= (P<“) —TJTbQ(Tba))

0 Q(Tya)
Consequently, the general solution of (3) is
(Ta*c — va’chsza> <P(a) ~THT,Q(Tya) )
z =
0 Q(Tba)

We finally note that the general solution of equation (3) can also be found by using the Moore-Penrose inverse of T' = (T, T}).
Since T’ is of full row rank we have

~v(d'¢)Tha

T =T/ (TT")*

T
+__ a
Tt = (Tb)Z, (5)

where Z = (T, T, + T,T])~'. Some straightforward calculations show that Z turns out to be Z = (al — aa’ — bb’)~!, where
a=aa+bb.
In addition we get

or, equivalently,

T,ZT, T,ZT
THT = — ( b) .

2T, T,ZT,

Then identities (5) and (6) can be used to write down the general solution of (3) in a different way.

(6)

References

S. L. Campbell & C. D. Meyer (1979). Generalized Inverses of Linear Transformations. Dover, New York.

C. R. Rao & S. K. Mitra (1971). Generalized Inverse of Matrices and its Applications. Wiley, New York.

T. G. Room (1952). The composition of rotations in Euclidian three-space. American Mathematical Monthly 59, 688—692.

G. Trenkler (2001). The vector cross product from an algebraic point of view. Discussiones Mathematicae, General Algebra and Applications 21,

67-82.
Solution 32-6.4 by Hans Joachim WERNER, Universitdt Bonn, Bonn, Germany: ujw902@uni-bonn.de

For a real matrix 4, let A’, rank(A), R(A), and N'(A) denote the transpose, the rank, the range (column space), and the null space,
respectively, of A. For a = (a1, az,a3)’ € R3, let

0 —as a9
Ta = as 0 —ai
—Aas al 0

Observe that for z = (z1 @2 x3)’, the identity T,z = a x x defines the vector cross product in R, We note that 0 # a € R?
& rank(T,) = 2 < N (T,) = R(a). Moreover, R(T,) = R(T,) < R(a) = R(b). If a, b € R3 are linearly independent, then it is
easy to see that rank((7, Tp)) = 3 and

a 0 b
iz m=r((5 ) ) ™
0 b a
is of dimension 3; observe that T,a = 0 = T3b and T,b = —Tpa. For given vectors a,b,c € R3, where a and b are linearly

independent, consider
(xxa)+(yxb)+ec¢=0

(T, m(i) . (®)

or, equivalently,
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Then, by virtue of rank((7,, T3)) = 3, R((T, T,)) = R3 and it is clear that (8) is solvable in x and y for each ¢ € R®. The
general solution to (8) is explicitly given in the following theorem in terms of the vectors a, b, c.

THEOREM. For given vectors a, b, c € R3, where a and b are linearly independent, the general solution to (8) is given by

xr = b (axc)+b’c-b’b+a’b-a’c (axb)| +aa+~b
 da+bb a'a-b'b— (a'b)? R

1 da-dc+ba-be
e PR ) {(a X c)— o b~ (@2 (a x b)] + Bb + va,

where a, 3, and vy are free to vary in R.
PROOF. Evidently, rank((7,, Ty))=3= H := (T, T,)(T, Tp,) isnonsingular. Itis hence clear that
o =T H 'c, yo:=T/H 'c 9)

provide us with a particular solution to (8). We note that T, = —T,, T} = —Ty, T,T, = (¢’a)] — ad’, and T{T}, = (b'b)I — bV,
where I stands for the identity matrix of order 3. Therefore H = (a’a+b'b)I —aa’ —bb'. By applying the famous Sherman-Morrison
Formula [cf. Meyer (2000, p. 124)] twice, first to W := (a’a + b'b)I — aa’ and afterwards to H = W — bb’, we obtain

1 1
e . /
W= <I+ Wb a“) (19)
and )
-1 _ —1 —1337 —1
H =Wt e W W (1)

Inserting (10) into (11) readily yields

1 1 b'b a'b ab
H'=— I+ ad+—"— (b+ 2 22a) . 12
datr b || T we T G v — () <b+ b “) <b+ b “) ] (12)

By means of (12) it is now possible to rewrite the particular solution given in (9) as follows

1 be-bb+a'b-dc

—1 1

i) = T(;H Cc = —TaH Cc = —m |:(a X C) + da-bb— (a/b)Q . (a X b):| y (13)
_ _ 1 aa-ac+ba-bc

Yo = TéH 1C = 7TbH 1C = 7m |:(b X C) — aa-bh— (a/b)Q . (a X b):| . (14)

Since the set of all solutions to equation (8) consists of all sums of one particular solution to (8) plus any vector in N'((T, T3)),
our claim follows from (13) and (14) by virtue of (7). O

EXAMPLE. Leta = (1,—1,1)’,b=(—1,0,—1)’, and ¢ = (1,0,0)’". Then
(xxa)+(yxb)+c=0

if and only if
2 1 -1 5 -1 1
x=—-|-1|4+a|l -1+~ 0 |, y=—1 2 [+ 0 |+~ -1
-3 1 -1 -5 -1 1
for some «, 3, v € R.

Reference
C. D. Meyer (2000). Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia.
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Problem 32-7: Invariance of the Vector Cross Product
Proposed by Gotz TRENKLER, Universitdit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de
and Dietrich TRENKLER, University of Osnabriick, Osnabriick, Germany: dtrenkler@nts6.oec.uni-osnabrueck.de

For a given nonzero vector a € R? determine a wide class of matrices A of order 3 x 3 such that
A(a x b) = (Aa) x (Ab)

for all b € R3. Here “x” denotes the common vector cross product in R3. Such equations play a role in robotics, see Murray, Lee,
and Sastry (1994).

Reference
R. M. Murray, Z. Lee & S. S. Sastry (1994). A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton.

Solution 32-7.1 by Leo L1VSHITS, Colby College, Waterville, Maine, USA: llivshi@colby.edu

It is possible to determine all real matrices satisfying the condition. It is clear that one can assume that ||al|, the Euclidean length of
a, is 1. Furthermore,
A(a x b) = A(a) x A(b) (15)

for all b € R3, exactly when A satisfies this equation for all b in some basis of R®. Of course equation (15) holds trivially for any A
whenb=a.

Since every matrix A in 8O3 satisfies A(z x y) = A(x) x A(y) whenever x and y are orthonormal vectors, we see that every
such A satisfies equation system (15) for any unit vector a, since a is an element of some orthonormal basis.

The primer is a standard fact, but here is a proof for completeness’ sake. Since orthogonal matrices preserve lengths and angles,
it must be that A(x x y) = £ A(x) x A(y). Yetif (u v w) is the matrix of A with respect to the ordered basis B = {z,y, z X y},
where u, v, w are column vectors, then [Az]z = u, [Ay|s = v, [A(z X y)|g = w, and

1=det(A)=det((u v w))=ue(vxw),

so that
Az xy) o (Alz) x A(y)) =we (uxv)=det((w u v))=det((u v w))=1.

This forces the required equality. It follows that
A(er) x A(eg) = A(es), Aler) x A(es) = —A(ea), A(es) x A(es) = Aley)
whenever A € $O3. For each unit vector a € R3, let us define
Fo:={AcR>3| Ala x b) = A(a) x A(b) forall b € R?},

Go = {Sdiag(1, \,\\)T | T, S € 803, TT(e1) = a, 0 # X € R} U {za” | x € R3}.

THEOREM. F, = G,.

PROOF OF G, C F,: If A € {za” | x € R}, then A(z) = 0 for every z orthogonal to a. Pick any orthogonal basis B of R?
containing a, and observe that A satisfies equation system (15) trivially for each b € BB and hence forall b. Let A = S diag(1,\,\) T,
where T', S € 803, TT(e1) =aand A # 0. We can write 77 = (a v a x v) and it is sufficient to verify that

Alaxv) = A(a) x A(v), (16)
Ala x (a xv)) = Aa) x A(a x v). (17)

Since a X (a X v) = —wv, equation (17) becomes
A(v) = A(a x v) x A(a). (18)

Proof of equality (16): A(a x v) = ATT(e3) = AS(e3), A(a) x A(v) = (ATT(e1))
AS(e1) x S(ez) = AS(e3). Proof of equality (18): A(v) = AS(e2), A(a x v) x A(a) = AS(e3) x S(e1) = AS(ez).

X
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PROOF OF F, C G,: Let B = {a, c,a x c} be an orthonormal basis of R?. If 0 # A € F,, then
Ala) x A(c) = Aaxc),
A(a) x Alaxc) = A(ax(axc))=—A(c).
In particular A(a), A(c), and A(a X ¢) are mutually orthogonal. Hence
1A(a x )| = [[A(@)]] - [[A(c)]] and [[A(c)l| = [[A(a)]] - [[A(a x )]

It follows that || A(a)|| = 1 and ||A(c)|| = ||A(a x ¢)|| # 0, or A(c) = A(a x ¢) = 0 # A(a). A is invertible in the first case and
singular in the second.

Case 1: A is invertible. In this case ||A(a)|| = 1 and ||A(c)|| = ||A(a % ¢)|| # 0, and consequently [A]s.—p = U diag(1, A\, A
for some A # 0 and U € 803; (€ stands for the standard basis ey, ea,e3). Since A[I|lep = [Ale—p and [I]e—p(e1) =
a, [Ile—gn(e2) =c, [Ile—n(e3) =a x ¢, sothat [I|c—p € 8O3, we obtain

A =Udiag(1,\\) (Iep)’ € G,

as needed.

Case 2: A is a non-zero singular matrix. In this case A(c) = A(a x ¢) = 0 # A(a), whenever {a, ¢, a x ¢} is an orthonormal
basis of R?; in other words whenever c is a unit vector perpendicular to a. Since Ker(A) = a', A is a rank one matrix which can be
written as za® for some non-zero z € R3. o

Solution 32-7.2 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wirench@trinity.edu

Let
A= (¢1 ¢2 ¢3) with {¢1,¢2,¢3} CR?

anda=(a; ay as)’. Let{e;, ey, e3} be the natural basis for R®. Then A satisfies the stated condition if and only if
Ala x ¢;) = Aa x Ae;, i=1,2,3. (19)
. T T T
Sinceaxe; = (0 a3 —az) ,axea=(—a3 0 a1) ,andaxez=(ay —a; 0),
Aa x e1) = agpa — az¢p3, Ala x e2) = a1¢3 —azd1, Ala x e3) = a2¢1 — a1¢2. (20)
Since Aa = a1¢1 + as¢2 + azps and Ae; = ¢, i =1, 2, 3,
Aax Aey = az(p2 X ¢1) +az(d3 x ¢1), Aa X Aex = az(¢3 X ¢2) +a1(p1 X ¢2), Aa x Aez = a1(d1 X ¢p3) +az(d2 X ¢3). (21)

Now define

0 —as a2
B=| a3 0 —a and O = (1 — P2 X Pp3 2 —P3 X ¢1 Pz — P1 X P2).
—a9 a1 0

From (20) and (21), it is straightforward to verify that (19) holds if and only if B®T = 0. Since Bz = a x x for any vector x, (19)
holds if and only if ® = ca” for some ¢ € R3. It seems difficult to characterize {®1, P2, P3} such that this holds; however, it holds
if ¢; = a;c,i = 1,2,3, for some ¢ # 0 € R3, in which case A(x x y) = Az x Ay forall x,y € R3.

Solution 32-7.3 by the Proposer Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

For a vector ¢ = (c1, ¢o,c3)" € R?, let

0 —C3 C2
TC = C3 0 —C1
—C2 C1 0

It is well-known that 7. can be used to express the vector cross product in R?. In fact ¢ x x = T,z for all z € R?. Our problem then
reduces to finding matrices A such that AT, = Ty, A.
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We first try the class of matrices given by A = oTy, + B3I + vyaa’, where «, 3, v are real scalars and I is the identity matrix.
Since T,a = 0 and aa’T, = 0, one finds that Aa = (8 + vya'a)a, Ta, = (8 + va'a)T,, and AT, = BT, — a(d’a)l + aad’, the
latter equation by T2 = aa’ — a’al. Furthermore, we obtain T, A = (8 + va'a)T,A = (8 + va'a)[BT, — a(d’a)l + aaa'].
Then, equation AT, = T4, A to be valid is equivalent to the condition 8 + ya’a = 1. Thus, a class of matrices A satisfying
A(a x b) = (Aa) x (Ab) forall b € R3 is

A= {aT, + BI +~ad' | B+ ~d'a=1}.

Note that a matrix of the form o7}, + 31 + ~yaa’ is orthogonal if and only if (i) a?a’a + 3% = 1 and (ii) (8 + va'a)? = 1.
Let us now consider the problem of finding the general solution to the equation AT, = T4, A. For this purpose, let

A= (A1 Ay As)

be the row representation of A. It follows that

AT, 0 —Aba  Aba (Aba)Af — (Aha) Al
AT, = | ALT, and Ta, = | Aia 0 —Ala sothat T4, A= | (Aha)A] — (Ala)Af
ALT, —Aba  Ala 0 (Ala)Af — (ALa) A

Thus, the equation AT, = T4, A is equivalent to

ToAr + (AsAL — AsAL)a =0, TyAs + (A1A5 — A3A))a =0, T,As + (A2A] — A1 AL)a = 0.
Taking into account that T,.d = —T;c we obtain the equivalent conditions

(=Ta, + A3A, — AsAY)a =0, (=Ta, + A1 A5 — A3A))a =0, (=Ta, + A2A] — A1AL)a = 0.
However, it was not possible to obtain the general solution A = (A1, Ay, A3)’ for this set of equations.

Solution 32-7.4 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: ujw902@uni-bonn.de

Our offered solution to this problem is based on the famous singular value decomposition (SVD): we recall that for each matrix

A € R™*™ of rank r, there are orthogonal matrices U € R™*™, V' € R"*", and a diagonal matrix D = diag(o1, - - -, 0,) such that
D 0 , . .
A=U 0 0 V' with 0, >0 for ¢=1,2.-- r (22)

The factorization in (22) is called a singular value decomposition of A, and the columns of U and V are called left-hand and right-
hand singular vectors of A, respectively. The o;’s are called the nonzero singular values of A. When r < p := min{m,n}, A has
p — r additional singular values. The nonzero singular values of A are precisely the positive square roots of the nonzero (positive)
eigenvalues of A’ A, and the right-hand singular vectors are particular eigenvectors of A’ A. This establishes the uniqueness of the
nonzero singular values of A but not of the matrix V' of right-hand singular vectors of A. The nonzero singular values of A are also
the positive square roots of the nonzero eigenvalues of AA’, and the columns of the matrix U are particular eigenvectors of AA’.
For more details on SVD, see, e.g., Lancaster (1969) or Meyer (2000). We further note that a square matrix, say B € R™*™, is
called simple if for each distinct eigenvalue of B the algebraic multiplicity is equal to the geometric multiplicity or, equivalently, if
B is similar to a diagonal matrix, i.e., if there exists a nonsingular matrix X such that

X7I1BX = diag(\1, -+, A\m),

in which case the columns of X can be interpreted as m linearly independent right eigenvectors of B with the \’s as corresponding
eigenvalues. Square matrices of order m with m distinct eigenvalues are automatically simple; cf. Lancaster (1969, p. 61). Hermitian
matrices and so all real symmetric nonnegative definite matrices are simple; cf. Lancaster (1969, p. 76 or p. 78). The following
result on commuting matrices opens the door to solve the problem posed by Trenkler.

LEMMA 1. [See, e.g., Lancaster (1969, p. 266).] Let B,C € R™*™ be matrices which commute, i.e., let BC' = CB. If B and C
are simple, then there is a polynomial p of degree not exceeding m — 1 for which C' = p(B).
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Throughout, for a real matrix A, let A’, rank(A), R(A), and N(A) denote the transpose, the rank, the range (column space),
and the null space, respectively, of A. If A is square, then we denote by spectrum(A) the set of eigenvalues of A. The (algebraic)
multiplicity of A € spectrum(A) is denoted by mult()). For ¢ = (c1, ¢, c3)" € R3, let

0 —C3 Co
TC = C3 0 —C1
—Co C1 0

The matrix 7, is skew-symmetric, i.e., 7/ = —T.. Moreover, T = (c'c)I — cc’. We note that for d = (dy,dz, d3)’ the identity
T.d = c x d defines the vector cross product in R3. Consequently, A(a x b) = (Aa) x (Ab) & AT,b = T, Ab. Therefore, for a
givena € R3, AT,b = Ta,Abforall b € R? ifand only if AT, = Ap,A. If ¢ # 0, then spectrum(7..) = {0, (c'c)*/?i, —(c'c)'/?i},
with i indicating the imaginary unit, and so 7 is simple. We further note that N'(T,.) = R(c) if and only if ¢ # 0.

THEOREM 2. For a given nonzero vector a € R®, a nonzero matrix A € R3*3 satisfies
A(a x b) = (Aa) x (Ab) for all b€ R? (23)

or, equivalently,
AT, = Ty A (24)

if and only if A is either a nonsingular matrix with a SVD of the form
A = Udiag(1,0,0)V’, (25)

where o > 0 and the orthogonal (column partitioned) matrices U = (Uy Uy Us)andV = (Vi Vo V3) are such that
Vi € R(a) and {Uy,Us,Us} and {V1, Va, V3} define both right-handed coordinate systems [i.e., Vi x Vo = Vz and Uy x Uy = Us]
or both left-handed coordinate systems [i.e., V1 x Vo = —=V3 and Uy x Uy = —UsJ, or a rank 1 matrix with a SVD of the form

A = Udiag(e,0,0)V’, (26)
where o > 0 and V1 is such that V, € R(a). Needless to say, if A = 0, then trivially AT, = Ta,A.

PROOF. Clearly, AT, = TyoA = A'AT, = ATy, A= A'AT, = T,A’A, ie., A’A and T, are commuting matrices. Since A’A
and T, are simple matrices, it follows from Lemma 1 that

A'A=aT?+ BT, +~I for some «, 3,7 € R, 27)
where I is the identity matrix of order 3. Because A’ A is symmetric, necessarily 3 = 0, and so (27) reduces to
A'A=aT?+~I for some a,v < R. (28)

Clearly, since N (T,,) = R(a), A’ Aa = va, i.e., (7, a) is an eigenpair for A’ A. It is well-known that if A, - - - | \,, are the eigenvalues
of the n x n matrix B and p is a scalar polynomial, then the eigenvalues of p(B) are p(A1), - - -, p(\,); cf. Lancaster (1969, Theorem

2.5.2). Therefore, spectrum(aT? +vI) = {v,v — a(a’a)} with
2 if 0
mult(y — a(d’a)) = { ifa 70,
3 ifa=0.

Since A’ A is nonnegative definite and symmetric, necessarily v > 0 and v — «(a’a) > 0. Therefore, (28) becomes
A’A=aT?+~I forsomey > 0 and some o such that ¥ — a(a’a) > 0. (29)

Next, we consider the following three disjoint and exhaustive cases: (i) v = 0, (ii) v > 0, v — a(a’a) > 0, and (iii) v > 0,
v —a(a’a) = 0.

Case (i): Let v = 0, in which case a € N (A) = N(A’A) and (29) becomes A’A = oT?. Then clearly A’Aa = aT2a = 0
= Aa = 0= Ty, = 0= Ty,A = 0. Hence, in case of AT, = Tx,A, AT, = 0 or, equivalently, R(7,) € N(A). Since
R(T,) + R(a) = R3, it follows that A = 0 or, equivalently, v = 0.
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Case (ii): Let v > 0 and v — a(a’a) > 0, in which case A’A = aT? + I and so A are nonsingular. Then AT, = Tx,A &
Tyae = AT,A 1, ie., T4, and T, are similar matrices. Since similar matrices have the same eigenvalues with identical (algebraic)
multiplicities [cf. Lancaster (1969, Theorem 2.4.1)], it follows that a’ A’ Aa = a’a. We have already seen that (-, a) is an eigenpair
for A’ A. Therefore, necessarily v = 1. Then spectrum(A’A) = {1,1 — a(a’a)} and mult(1 — a(a’a)) = 2. It is now clear that the
matrix A has the singular value 1 with multiplicity 1 and the singular value o :=%/1 — a(a’a) with multiplicity 2. A SVD of the
matrix A is hence necessarily of the form

A =Udiag(1,0,0)V’, where V1 inV = (V; Vo V3)issuchthat V; € R(a). (30)

So it remains to show that any matrix A with a SVD of the form (30) satisfies AT, = TaoA if and only if {Uy,Us, Us} and
{V1, V, V3} define either both right-handed coordinate systems or both left-handed coordinate systems in R3. So, let A be a matrix
with a SVD as in (30), where U = (U; U Us) is the column partitioning of U. Without loss of generality, we can assume
that V3 points in the same direction as a. Then Aa = 7U; with 7 denoting the positive square root of a’a. Therefore Ty, = 7Ty,
and Ty, A = TTUlA = 7'TU1 (UlVl’ + U[UQ‘/Q/ + U3‘/3/]) = O'T[TUlUQVQ/ + TU1U3V3/] = O'T[(Ul X UQ)‘/; + (Ul X U3)V3/] and
AT, = o(UaV4 + UsV{) T, = —oUs(a x Va) —oUs(ax V3) = —o7[Us(Vy x Va)' + Us(V; x V3)']. Consequently, AT, = T, A
if and only if

7U2(‘/1 X Vé)l — Ug(Vi X Vg)/ = (Ul X UQ)‘/QI + (U1 X Ug)‘/:.)/ 31

If {V1, Va, V3 } defines a right-handed coordinate system, i.e., if V; x V5 = V3, then equation (31) holds ifand only if Uy x Uy = —Us
and Uy x Uy = Us or, equivalently, if and only if the coordinate system defined by {U;, Us, U3} is also right-handed. If {V;, V5, V3}
is left-handed, i.e., if V4 x V5 = —Vj3, then on similar lines it is seen that equation (31) holds if and only if {U;, Us, Us } is left-handed.

Case (iii): Let ¥ > 0 and let v — a(a’a) = 0. Then spectrum(A’A) = {v,0} with mult(0) = 2. Consequently, rank(A4) =
rank(A’A) = 1. Consider a SVD of A. Clearly, A = oU,V{, where 0 =7 /7 is the only positive singular value of A with Uy
and V7 as associated left-hand and right-hand singular vectors, respectively. For such a matrix A, we get Aa = o(V/a)U;. Hence

TacA=~V/a)Ty,U1V{ =0and AT, = cU,V{T, = —cUy(a x V1)'. Therefore, AT, = TasA=axV; =0V, € R(a). O

We conclude with emphasizing the interesting and somehow surprising observation that if @ # 0, then there does not exist a
matrix A of rank 2 satisfying AT, = T4, A. Of course, if a = 0, then trivially AT, = 0 = T4, A for each matrix A € R3*3,
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IMAGE Problem Corner: More New Problems

Problem 33-7: Property of the Cross Product
Proposed by Gotz TRENKLER, Universitdit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let a, b, ¢, and d be vectors from R®. For the matrix
A= (cxd)(bxa) + (axb)(cxd),
find the unique vector e such that Az = e x x for all z € R3. Here, “x” denotes the usual cross product in R3.

Problem 33-8: Singular Value Decomposition of a Skew-Symmetric Real Matrix
Proposed by Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany. trenkler@statistik.uni-dortmund.de

Let A be a 3 x 3 skew-symmetric matrix with real entries. Find a singular value decomposition of A, i.e., provide a representation
A =UDV’, where U and V are orthogonal, and D is a diagonal matrix of singular values of A.

Problems 33-1 through 33-6 are on page 36.
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IMAGE Problem Corner: New Problems

Please submit solutions, as well as new problems, both (a) in macro-free KTgX by e-mail to ujw902@uni-bonn.de, preferably embedded as text,
and (b) with two paper copies by regular mail to Hans Joachim Werner, IMAGE Editor-in-Chief, Department of Statistics, Faculty of Economics,
University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Problems 33-7 and 33-8 are on page 35.

Problem 33-1: A Range Equality for the Kronecker Product of Matrices
Proposed by Yongge T1AN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

Let A and B be m; X nq and ms X ng matrices, respectively. Show that
range(A ® I,,,) Nrange(l,,, ® B) = range(A ® B),

where ® denotes the Kronecker product of matrices and I is the identity matrix of the indicated order.

Problem 33-2: Similarity of Two Block Matrices
Proposed by Yongge TI1AN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

Suppose that the two square matrices A and B satisfy A2 = 0 and B? = 0. Show that the two block matrices
A C A 0
and
0 B 0 B

A C
rank(o B) =rank (4) + rank (B) and AC+CB=0.

are similar if and only if

Problem 33-3: Two Characterizations of an EP Matrix
Proposed by Yongge TIAN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

Show that the following statements are equivalent:
(a) a complex square matrix A is EP, i.e., range(A) = range(A4*),
(b) range( A — AT) = range( A — A43),
(c) range( A + AT) = range( A + A3),
where A* and AT denote the conjugate transpose and the Moore-Penrose inverse of A, respectively.

Problem 33-4: An Euclidean Norm Property in R?
Proposed by Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany. trenkler@statistik.uni-dortmund.de

Leta = (ay, as,a3)" and b = (b1, be, b3) be vectors from R such that a’b = 0. Show that
la+ 0|l < max{|as| + [az| + [b1], las| + |a1| 4 [bz], |az| + |a1| + [bs], [b1] + [b2] 4 [bs]},

where || - || denotes the usual Euclidean norm.

Problem 33-5: Factorization of a Projector
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix with possibly complex entries. Show that P can be written as P = RS, where R is positive definite
and S is nonnegative definite.

Problem 33-6: Projectors and Similarity
Proposed by G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix with possibly complex entries. Show that P is Hermitian if and only if P and P are similar, where
P denotes the Moore-Penrose inverse of P.



