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NONNEGATIVE MATRIX FACTORIZATION AND APPLICATIONS

MOODY CHU
DEPARTMENT OF MATHEMATICS
NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC 27695-8205

ROBERT PLEMMONS
DEPARTMENTS OF COMPUTER SCIENCE AND MATHEMATICS

WAKE FOREST UNIVERSITY, WINSTON-SALEM, NC 27109.

1. Introduction. Data analysis is pervasive throughout science, engineering and business applications. Very often
the data to be analyzed is nonnegative, and it is very often preferable to take this constraint into account in the analysis
process. In this paper we provide a survey of some aspects of nonnegative matrix factorization and its applications
to nonnegative matrix data analysis. In general the problem is the following: given a nonnegative data matrix Y find
reduced rank nonnegative matrices U and V so that

Y=UV.

Here, U is often thought of as the source matrix and V as the mixing matrix associated with the data in Y. A more
formal definition of the problem is given below. This approximate factorization process is an active area of research in
several disciplines (a Google search on this topic recently provided over 250 references to papers involving nonnegative
matrix factorization and applications written in the past ten years), and the subject is certainly a fertile area of research
for linear algebraists.

An indispensable task in almost every discipline is to analyze a certain data to search for relationships between a set
of exogenous and endogenous variables. There are two special concerns in data analysis. First, most of the information
gathering devices or methods at present have only finite bandwidth. One thus cannot avoid the fact that the data
collected often are not exact. For example, signals received by antenna arrays often are contaminated by instrumental
noises; astronomical images acquired by telescopes often are blurred by atmospheric turbulence; database prepared by
document indexing often are biased by subjective judgment; and even empirical data obtained in laboratories often do
not satisfy intrinsic physical constraints. Before any deductive sciences can further be applied, it is important to first
reconstruct or represent the data so that the inexactness is reduced while certain feasibility conditions are satisfied.
Secondly, in many situations the data observed from complex phenomena represent the integrated result of several
interrelated variables acting together. When these variables are less precisely defined, the actual information contained
in the original data might be overlapping and ambiguous. A reduced system model could provide a fidelity near the level
of the original system. One common ground in the various approaches for noise removal, model reduction, feasibility
reconstruction, and so on, is to replace the original data by a lower dimensional representation obtained via subspace
approximation. The notion of low rank approximations therefore arises in a wide range of important applications. Factor
analysis and principal component analysis are two of the many classical methods used to accomplish the goal of reducing
the number of variables and detecting structures among the variables.

However, as indicated above, often the data to be analyzed is nonnegative, and the low rank data are further required
to be comprised of nonnegative values only in order to avoid contradicting physical realities. Classical tools cannot
guarantee to maintain the nonnegativity. The approach of low-rank nonnegative matrix factorization (NNMF)
thus becomes particularly appealing. The NNMF problem, probably due originally to Paatero and Tapper [21], can be
stated in generic form as follows:

(NNMF) Given a nonnegative matriz Y € R™*™ and a positive integer p < min{m,n},
find nonnegative matrices U € R™*P and V € RP*™ s0 as to minimize the functional

1
(1.1) fUV) = §|IY*UVII%~

The product UV of the least squares solution is called a nonnegative matrix factorization of Y, although Y is not
necessarily equal to the product UV. Clearly the product UV is of rank at most p. An appropriate decision on the
value of p is critical in practice, but the choice of p is very often problem dependent. The objective function (1.1) can be
modified in several ways to reflect the application need. For example, penalty terms can be added to f(U,V) in order
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to enforce sparsity or to enhance smoothness in the solution U and V' [13, 24]. Also, because UV = (UD)(D~'V) for
any invertible matrix D € RP*P| sometimes it is desirable to “normalize” columns of U. The question of uniqueness of
the nonnegative factors U and V also arises, which is easily seen by considering case where the matrices D and D!
are nonnegative. For simplicity, we shall concentrate on (1.1) only in this essay, but the metric to be minimized in the
NNMF problem can certainly be generalized and constraints beyond nonnegativity are sometimes imposed for specific
situations, e.g., [5, 13, 14, 15, 18, 19, 24, 25, 26, 27]. In many applications, we will see that the p factors, interpreted as
either sources, basis elements, or concepts, play a vital role in data analysis. In practice, there is a need to determine
as few factors as possible and, hence the need for a low rank NNMF of the data matrix Y arises.

2. Some Applications. The basic idea behind the NNMF is the linear model. The matrix Y = [y;;] € R™*"™ in the
NNMEF formulation denotes the “observed” data whereas each entry y;; represents, in a broad sense, the score obtained
by entity j on variable i. One way to characterize the interrelationships among multiple variables that contribute to
the observed data Y is to assume that y;; is a linearly weighted score by entity j based on several “factors”. We shall
temporarily assume that there are p factors, but often it is precisely the point that the factors are to be retrieved in the
mining process. A linear model, therefore, assumes the relationship

(2.1) Y = AF,

where A = [a;] € R™*? is a matrix with a;; denoting the loading of variable i to factor k or, equivalently, the influence
of factor k on variable i, and F' = [fj;] € RP*" with fj; denoting the score on factor k by entity j or the response of
entity j to factor k. Depending on the applications, there are many ways to interpret the meaning of the linear model.
We briefly describe a few applications below.

2.1. Air Emission Quality. In the air pollution research community, one observational technique makes use of
the ambient data and source profile data to apportion sources or source categories [12, 15]. The fundamental principle in
this model is that mass conservation can be assumed and a mass balance analysis can be used to identify and apportion
sources of airborne particulate matter in the atmosphere. For example, it might be desirable to determine a large
number of chemical constituents such as elemental concentrations in a number of samples. The relationships between p
sources which contribute m chemical species to n samples, therefore, lead to a mass balance equation,

P
(2.2) Yij = Zaikfkja
k=1

where y;; is the elemental concentration of the ith chemical measured in the jth sample, a; is the gravimetric con-
centration of the ith chemical in the kth source, and fi; is the airborne mass concentration that the kth source has
contributed to the jth sample. In a typical scenario, only values of y;; are observable whereas neither the sources are
known nor the compositions of the local particulate emissions are measured. Thus, a critical question is to estimate the
number p, the compositions a;x, and the contributions fi; of the sources.

Tools that have been employed to analyze the linear model include principal component analysis, factor analysis,
cluster analysis, and other multivariate statistical techniques. In this receptor model, however, there is a physical
constraint imposed upon the data. That is, the source compositions a;; and the source contributions f; must all be
nonnegative. The identification and apportionment, therefore, becomes a nonnegative matrix factorization problem of
Y.

2.2. Image and Spectral Data Processing. Digital images are represented as nonnegative matrix arrays, since
pixel intensity values are nonnegative. It is sometimes desirable to process data sets of images represented by column
vectors as composite objects in many articulations and poses, and sometimes as separated parts in, for example, biometric
identification applications such as face or iris recognition. It is suggested that the factorization in the linear model
would enable the identification and classification of intrinsic “parts” that make up the object being imaged by multiple
observations [7, 16, 26]. More specifically, each column y; of a nonnegative matrix ¥ now represents m pixel values of
one image. The columns a; of A are basis elements in R™. The columns of F', belonging to RP, can be thought of as
coeflicient sequences representing the n images in the basis elements. In other words, the relationship,

p
(2.3) yj= Zakfkjy
k=1

Cont’d on page 5
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NNMF article cont’d from page 3

can be thought of as that there are standard parts a; in a variety of positions and that each image represented as a
vector y;, making up the factor U of basis elements is made by superposing these parts together in specific ways by
a mixing matrix represented by V in (1.1). Those parts, being images themselves, are necessarily nonnegative. The
superposition coefficients, each part being present or absent, are also necessarily nonnegative. A related application to
the identification of object materials from spectral reflectance data at different optical wavelengths has been investigated
in [25].

2.3. Text Mining. Assume that the textual documents are collected in an indezing matrizY = [y;;] € R™*™. Each
document is represented by one column in Y. The entry y;; represents the weight of one particular term i in document
j whereas each term could be defined by just one single word or a string of phrases. To enhance discrimination between
various documents and to improve retrieval effectiveness, a term-weighting scheme of the form,

(2.4) Yij = tijgid;,

is usually used to define Y [2], where t;; captures the relative importance of term 7 in document j, g; weights the overall

importance of term ¢ in the entire set of documents, and d; = (3_/~, tijgi)_l/ % is the scaling factor for normalization.
The normalization by d; per document is necessary because, otherwise, one could artificially inflate the prominence of
document j by padding it with repeated pages or volumes. After the normalization, the columns of Y are of unit length
and usually nonnegative.

The indexing matrix contains lot of information for retrieval. In the context of latent semantic indexing (LSI)
application [2, 10], for example, suppose a query represented by a row vector q' = [q1, ..., ¢n] € R™, where ¢; denotes
the weight of term 4 in the query q, is submitted. One way to measure how the query q matches the documents is to
calculate the row vector s” = q'Y and rank the relevance of documents to q according to the scores in s.

The computation in the LSI application seems to be merely the vector-matrix multiplication. This is so only if Y is
a “reasonable” representation of the relationship between documents and terms. In practice, however, the matrix Y is
never exact. A major challenge in the field has been to represent the indexing matrix and the queries in a more compact
form so as to facilitate the computation of the scores [6, 23]. The idea of representing Y by its NNMF approximation
seems plausible. In this context, the standard parts a; indicated in (2.3) may be interpreted as subcollections of some
“general concepts” contained in these documents. Like images, each document can be thought of as a linear composition
of these general concepts. The column-normalized matrix A itself is a term-concept indexing matrix.

Nonnegative matrix factorization has many other applications, including linear sparse coding [13, 29], chemometric
analysis [11, 21], image classification [9], neural learning process [20], sound recognition [14], remote sensing and object
characterization [25, 30]. We stress that, in addition to low-rank and nonnegativity, there are applications where other
conditions need to be imposed on U and V. Some of these constraints include sparsity, smoothness, specific structures,
and so on. The NNMF formulation and resulting computational methods need to be modified accordingly, but it will
be too involved to include that discussion in this brief survey.

3. Optimality. Quite a few numerical algorithms have been developed for solving the NNMF. The methodologies
adapted are following more or less the principles of alternating direction iterations, the projected Newton, the reduced
quadratic approximation, and the descent search. Specific implementations generally can be categorized into alternating
least squares algorithms [21], multiplicative update algorithms [16, 17, 13], gradient descent algorithm, and hybrid
algorithm [24, 25]. Some general assessments of these methods can be found in [5, 18, 28]. It appears that there is much
room for improvement of numerical methods. Although schemes and approaches are different, any numerical method is
essentially centered around satisfying the first order optimality conditions derived from the Kuhn-Tucker theory. Recall
that the computed factors U and V may only be local minimizers of (1.1).

THEOREM 3.1. Necessary conditions for (U V) € RTXP X Rﬁ_xn to solve the monnegative matriz factorization
problem (1.1) are

(3.1) Ux((Y-UV)VT)=0eR™?,
(3.2) Vox (UT(Y —UV)) =0 € RP*",
(3.3) Y -UV)VT <o,
(3.4) U'(Y -UV) <0,

where .x denotes the Hadamard product.
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4. Conclusions and Some Open Problems. We have attempted to outline some of the major concepts related

to nonnegative matrix factorization and to briefly discuss a few of the many practical applications. Several open problems
remain, and we list just a few of them.

e Preprocessing the data matrix Y. It has been observed, e.g. [25, 27], that noise removal or a particular basis
representation for Y can improve the effectiveness of algorithms for solving (1.1). This is an active area of
research and is unexplored for many applications.

e Initializing the factors. Methods for choosing, or seeding, the initial matrices U and V for various algorithms
(see, e.g., [30]) is a topic in need of further research.

e Uniqueness. Sufficient conditions for uniqueness of solutions to the NNMF problem can be considered in terms
of simplicial cones [1], and have been studied in [7]. Algorithms for computing the factors U and V generally
produce local minimizers of f(U, V), even when constraints are imposed. It would thus be interesting to apply
global optimization algorithms to the NNMF problem.

e Updating the factors. Devising efficient and effective updating methods when columns are added to the data
matrix Y in (1.1) appears to be a difficult problem and one in need of further research.

Our survey in this short essay is of necessity incomplete, and we apologize for resulting omission of other material or
references. Comments by readers to the authors on the material are welcome.
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ILAS President/Vice President
Annual Report: April 2004

1) The following were elected in the ILAS 2004
elections to offices with terms that began on March 1, 2005
and end on February 29, 2008:

President: Daniel Hershkowitz (second term)
Board of Directors: Ilse Ipsen and Reinhard Nabben

The following continue in ILAS offices to which they
were previously elected:

Vice President: Roger Horn (term ends February 28, 2007)
Secretary/Treasurer Jeff Stuart (term ends February 28,
2006)

Board of Directors:

Rafael Bru (term ends February 28, 2006)

Roy Mathias (term ends February 28, 2007)

Joao Filipe Queiro (term ends February 28, 2007)
Hugo Woerdeman (term ends February 28, 2006)

Ravindra Bapat and Michael Neumann completed
their three-year terms on the ILAS Board of Directors on
February 28, 2005.

We thank the members of the nomination committee
(Hans Schneider—chair, Ludwig Elsner, Shmuel Friedland,
Steve Kirkland and Andre Ran) for their efforts on behalf
of ILAS, and to Richard A. Brualdi for his help in counting
the ballots.

2)  With the advice of the ILAS Committee for
the Hans Schneider Prize in Linear Algebra, the ILAS
Executive decided that the 2005 Prize will be given to

Richard A. Brualdi and Richard S. Varga, each on the basis
of an outstanding lifetime contribution to the field of Linear
Algebra and related fields. Professor Varga will be awarded
the prize at the 12th ILAS Conference in Regina, June 26-29,
2005, and will give his Hans Schneider Prize Lecture there.
Professor Brualdi will be awarded the prize at the 13th ILAS
Conference in Amsterdam, July 18-21, 2006, and will give
his Hans Schneider Prize Lecture there.

‘We thank the members of the Prize Committee (Eduardo
de Sa, Heike Fassbender, Miroslav Fiedler, Robert Guralnick,
Michael Neumann - Chair, Danny Hershkowitz - ex officio)
for their efforts on behalf of ILAS.

3) Four ILAS-endorsed meetings took place since our
last report:

2-day Workshop “Directions in Combinatorial Matrix
Theory”, Banff International Research Station (BIRS), May
6-8, 2004, Banff, Canada (Miroslav Fiedler was an ILAS
Lecturer in that conference)

13th International Workshop on Matrices and Statistics
(TWMS-2004), August 18-21, 2004, Poznarn, Poland.

Haifa 2005 Matrix Meeting, Haifa, Israel, January 3-
7, 2005 (Michael Neumann was an ILAS Lecturer in that
conference)

14th International Workshop on Matrices and Statistics
(IWMS-2005), March 29-April 1, 2005, Auckland, New
Zealand

4) ILAS has endorsed the following conference of
interest to ILAS members:

Cont’d on page 9
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Linear AIEI':-'-“I::“'B David Poole, Trent University

712 pages. 8 x 10. 2-color. Casebound. © 2006. ISBN: 0-534-99845-3.

Available Now!

Emphasizing vectors and geometric intuition from the start, David Poole’s text better prepares stu-
dents to make the transition from the computational aspects of the course to the theoretical. Poole
covers vectors and vector geometry first to enable students to visualize the mathematics while they
are doing matrix operations. With a concrete understanding of vector geometry, students are able
to visualize and grasp the meaning of the calculations that they will encounter. By seeing the math-
ematics and comprehending the underlying geometry, students develop mathematical maturity

{ r : and can think abstractly when they reach vector spaces.

Pawal Poc

B iLrn™ Assessment: This revolutionary testing suite enables you to test the way you teach. Customize exams and track student
progress with results flowing right to your grade book.

B Instructor’s Guide: The new Instructor’s Guide (0-534-99861-5) offers a bevy of resources designed to reduce your prep-time
and make linear algebra class an exciting and interactive experience.

B Student CD-ROM: Included with the text, the CD contains data sets for more than 800 problems in MAPLE, MATLAB, and
Mathematica, as well as data sets for selected examples. Also contains CAS enhancements to the “Vignettes” and “Explorations,”
which appear in the text, and manuals for using MAPLE, MATLAB, and Mathematica.

BHpLE Linear Algebra and Its Applications, Fourth Edition
LINEAR ALGEBRA Gilbert Strang, Massachusetts Institute of Technology
AN 105 APFLICATIONS 544 pages. 7 3/8 x9 1/4. 2-color. Casebound. © 2006. ISBN: 0-03-010567-6.
= Available July 2005!

Gilbert Strang demonstrates the beauty of linear algebra and its crucial importance. Strang’s
emphasis is always on understanding. He explains concepts, rather than concentrating entirely on
proofs. The informal and personal style of the text teaches students real mathematics. Throughout
the book, the theory is motivated and reinforced by genuine applications, allowing every mathe-
matician to teach both pure and applied mathematics. Applications to physics, engineering, prob-
ability and statistics, economics, and biology are thoroughly integrated as part of the mathematics

in the text.
Gilder! Shrang mete

B The exercise sets in the book have been greatly expanded and thoroughly updated. They feature many new problems drawn from
Professor Strang’s extensive teaching experience.

B The Linear Algebra web pages offer review outlines and a full set of video lectures by Gilbert Strang. The sites also include eigen-
value modules with audio (http://ocw.mit.edu and http://web.mit.edu/18.06).

W An Instructor’s Solutions Manual (0-03-010568-4) with teaching notes by Gilbert Strang is provided for use with this text. In addi-
tion, a Student Solutions Manual (0-495-01325-0) with detailed, step-by-step solutions to selected problems will be available.

Also Available

Linear Algebra and Matrix Theory,
Second Edition

Jimmie Gilbert and Linda Gilbert, both of
University of South Carolina, Spartanburg
544 pages. Casebound. ©2005.

ISBN: 0-534-40581-9.

| Linear Algebra: An Interactive Approach
S. K. Jain, Ohio University

A.D. Gunawardena, Carnegie Mellon
University
480 pages. Casebound. ©2004.
ISBN: 0-534-40915-6.

For more information, visit our New for 2006 Website: THOMSON
http://www.newtexts.com \
Request a review copy at 800-423-0563
Source Code: 6TPMAILA

™

BROOKS/COLE
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ILAS Report cont’d from page 7

The Householder Meeting on Numerical Linear
Algebra, May 23-27, 2005, Campion, USA

5) The following ILAS conferences are scheduled:

12" TLAS Conference, Regina, Saskatchewan, Canada,
June 26-29, 2005 (Organizing committee: R. Bhatia, R.
Guralnick, D. Hershkowitz, S. Kirkland, V. Mehrmann,
B-S. Tam, P. van den Driessche, and H. Wolkowicz. Local
organizing committee: Shaun Fallat, Doug Farenick, Chun-
Hua Guo, Steve Kirkland (University of Regina)). See

http://www.math.uregina.ca/~ilas2005/.

13th ILAS Conference, Amsterdam, The Netherlands,
July 18-21, 2006 (Chairman of the organizing committee is
Andre C.M. Ran. Local organizers: Andre Ran, Andre Klein,
Peter Spreij and Jan Brandts).

14th ILAS Conference, Shanghai, China, July 16-20,
2007 (Organizing Committee: Richard Brualdi - co-chair,
Erxiong Jiang - co-chair, Raymond Chan, Chuanqging Gu,
Danny Hershkowitz - ILAS President, Roger Horn, Ilse
Ipsen, Julio Moro, Peter Semrl, Jia-yu Shao and Pei Yuan
Wu).

15th ILAS Conference, Cancun, Mexico, June 16-20,
2008 (Chairman of the organizing committee is Luis Verde).

6) ILAS is also a partner in organizing the joint GAMM-
SIAM conference on Applied Linear Algebra, Dusseldorf,
July 24-27, 2006 (which continues the SIAM series of
conferences on Applied Linear Algebra). Ludwig Elsner and
Olga Holtz will be ILAS Lecturers at that conference.

7) The Electronic Journal of Linear Algebra (ELA) is
now in its 12th, 13th and 14th volumes. Its editors-in-chief
are Ludwig Elsner and Danny Hershkowitz.

Volume 1, published in 1996, contained 6 papers.
Volume 2, published in 1997, contained 2 papers.
Volume 3, the Hans Schneider issue, published in 1998,
contained 13 papers.
Volume 4, published in 1998 as well, contained
5 papers.
Volume 5, published in 1999, contained 8 papers.
Volume 6, Proceedings of the Eleventh Haifa Matrix
Theory Conference, published in 1999 and 2000,
contained 8 papers.
Volume 7, published in 2000, contained 14 papers.
Volume 8, published in 2001, contained 12 papers.
Volume 9, published in 2002, contained 24 papers.
Volume 10, published in 2003, contained 25 papers.
Volume 11, published in 2004, contained 22 papers.
Volume 12, Proceedings of the 2004 Workshop on

Nonnegative Matrices, Maynooth, is being published
now. As of March 31, 2004, it contains 5 papers.

Volume 13, is being published now. As of March 31,
2004, it contains 8 papers.

Volume 14, Proceedings of the 2004 workshop
“Directions in Combinatorial Matrix Theory”, Banff,
is being published now. As of March 31, 2004, it
contains 3 papers.

Acceptance percentage in ELA is currently 59%. The
Science Citation Index now includes ELA among the more
than 3700 scholarly science and technical journals in their
citation database.

ELA’s primary site is at the Technion. Mirror sites are
located in Temple University, in the University of Chemnitz,
in the University of Lisbon, in EMIS - The European
Mathematical Information Service offered by the European
Mathematical Society, and in EMIS’s more than 40 Mirror
Sites.

8) IMAGE - The Bulletin of ILAS is edited by Bryan
Shader and Hans Joachim Werner. ILAS members are now
given the option to receive either a print version of IMAGE
or an electronic version.

9) ILAS-NET is managed by Shaun Fallat. As of
March 18, 2005, we have circulated 1424 ILAS-NET
announcements.

10) The primary site of ILAS INFORMATION CENTER
(IIC) is at Regina. Mirror sites are located in the Technion, in
Temple University, in the University of Chemnitz and in the
University of Lisbon

Respectfully submitted,
Daniel Hershkowitz, ILAS President, hershkow

@tx.technion.ac.il; Roger Horn, ILAS Vice-President,
rhorn@math.utah.edu

Call for Submissions to IMAGE

IMAGE welcomes expository articles on emerging
applications and topics in Linear Algebra, announcements
of upcoming meetings, reports on past conferences,
historical essays on linear algebra, book reviews, essays
on the development of Linear Algebra in a certain country
or region, and letters to the editor or signed columns of
opinion. Contributions for IMAGE should be sent to either
Bryan Shader (bshader@uwyo.edu) or Hans Joachim Werner
(hjw.de@uni-bonn.de). The deadlines are October 1 for the
fall issue, and April 1 for the spring issue.
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ILAS 2004 - 2005 Treasurer’s Report
March 1, 2004 through February 28, 2005

Net Account Balances on February 29, 2004
Vanguard (ST Fed. Bond Fund 3554.076 Shares)
(10.60% Each: General Fund, Conference Fund and ILAS/LAA Fund,
17.40% Taussky Todd Fund, 7.95% Uhlig Fund, 42.85% Schneider Fund)

$37, 815.37

Checking account $43,756.83

Pending checks $ 1,600.00

Pending VISA/Mastercard/ AMEX $ 200.00

Cash $ 42.00 $83,414.20
General Fund $32,236.24
Conference Fund $10,599.65
ILAS/LAA Fund $ 6,877.10
Olga Taussky Todd/John Todd Fund $ 9,744.63
Frank Uhlig Education Fund $ 3,719.33
Hans Schneider Prize Fund $20,237.25 $83,414.20
Income:

Dues 6640.00

Corporate Dues 400.00

Book Sales 31.00

General Fund 525.33

Conference Fund 26.17

ILAS\LAA Fund 1005.17

Taussky-Todd Fund 259.49

Uhlig Education Fund 182.38

Schneider Prize Fund 376.90 9446.44
Expenses:

IMAGE (2 issues) 3018.52

Speakers (3) 3015.00

ILAS Board Travel 250.00

Credit Card and Bank Fees 300.83

License Fees 61.25

Labor - Mailing & Conference 280.00

Postage 489.45

Supplies and Copying 393.92 7808.97

Net Account Balances on February 28, 2005
Vanguard (ST Fed. Bond Fund 3554.076 Shares)
(10.60% Each: General Fund, Conference Fund and ILAS/LAA Fund,
17.40% Taussky Todd Fund, 7.95% Uhlig Fund, 42.85% Schneider Fund)

$37,864.14
Checking account $44,323.09
Pending checks (payable) ($ 685.56)
Pending checks (receivable) $ 2,200.00
Pending VISA/Mastercard/ AMEX $ 1,350.00 $85,051.67
General Fund $34,288.60
Conference Fund $10,625.82
ILAS/LAA Fund $ 7.882.27
Olga Taussky Todd/John Todd Fund $ 9,354.12
Frank Uhlig Education Fund $ 3,901.71
Hans Schneider Prize Fund $18,999.15 $85,051.67

Jeffrey L. Stuart, Secretary-Treasurer
jeffrey.stuart@plu.edu
PLU Math Department, Tacoma, WA 98447 USA



IMAGE 34: Spring 2005

Page 11

Book Review: Gersgorin and his Circles by Richard S.
Varga, Springer, x+226pp, 2004. ISBN 3-540-21100-4.

Gersgorin and his circles by R. S. Varga is volume
36 in the Springer Series in Computational Mathemat-
ics, and is intended for upper level and graduate students
and also researchers in Linear Algebra (both theoretical
and applied). This book is very well-written and is a
comprehensive treatment of eigenvalue location results,
eigenvalue estimation problems, and conditions for in-
vertibility. Varga’s treatment of this topic is both ele-
gant and extensive, and he clearly demonstrates a mas-
tery of this subject.

This book begins with Gersgorin’s original contribu-
tion, referred to as Gersgorin’s circle theorem, concern-
ing the location of the eigenvalues of matrix: If A = [a;;]
is an n x n matrix and for each i = 1,2,...,nlet r;(A) =
>_izj |aij|, then the set of eigenvalues of A is contained
in the union of the n discs {z : |z — ay;| < r;(A)}. From
this classical and pivotal observation Varga builds and
extends it in a variety of ways (e.g., by including ovals
and consideration of the graph of a matrix). Further
along these lines, he considers eigenvalues regions given
by radii based on certain partitions of the rows of a ma-
trix. He then explores the issue of minimal Gersgorin
sets in a effort to obtain more precise estimates of the
eigenvalues of a matrix, and to address the issue of how
sharp these various eigenvalue regions really are for cer-
tain classes of matrices related to a given matrix (via
diagonal similarity, comparison matrices, and permu-
tations). For some of the analysis in this chapter he
makes use of a link to the theory of essentially nonneg-
ative matrices, and he ends with a new look at compar-
ing minimal Gersgorin sets and so-called Brualdi sets.
The final part of this book uncovers the many extensions
and generalizations of these inclusion results, including
a widening of the definition of the radii (F-functions,
G-functions), and the impact felt by considering parti-
tioned matrices.

Varga spends considerable time comparing and con-
trasting the various types of inclusion results, often by
example, but also by more definitive methods. There
are numerous accompanying examples illustrating rele-
vant concepts and engaging the reader about the many
subtleties and issues surrounding this vast topic.

One aspect of this book, which was particularly at-
tractive to me, was Appendix A. In this appendix, there
is vital information about Gersgorin, a list of his signif-
icant papers, a translated obituary, and a copy of his
original 1931 paper containing his circle theorem.

Some further of items of note are: (i) Each chapter
is concluded with a discussion (by section number) high-

lighting the main points, indicating other useful connec-
tions, and sometimes including a tantalizing anecdote
to accompany the topic addressed. I personally found
these discussions interesting and useful; (ii) Through-
out the book there is a constant theme pointing out the
equivalence between “eigenvalue inclusion” type results
and a corresponding “dominance condition” for invert-
ibility. There are numerous places where this important
theme impacts the particular issue at hand.

This book consists of six in depth chapters. The first
chapter (entitled “Basic Theory”) contains Gergorin’s
original result, and extensions thereof (including Olga
Tauskky-Todd’s contributions incorporating irreducibil-
ity). Chapter 2 (“Gersgorin-Type Eigenvalue Inclusion
Theorems”) includes Brauer’s ovals of Cassini result, and
Brualdi’s contributions taking into account the graph of
a matrix (along with comparisons). Chapter 3 (“More
Eigenvalue Inclusion Results”) discusses other results
about eigenvalue regions (Parodi-Schneider, and Pup-
kov-Solovev) with an emphasis on more recent advances.
Chapter 4 (“Minimal Gersgorin Sets and Their Sharp-
ness”) explores how exact these various Gersgorin-type
inclusion results are with respect to diagonally similar-
ity and permutations. Chapter 5 (“G-functions”) brings
to light significant generalizations of the inclusion sets
by extending the notion of radii. A nice connection
to the theory of M-matrices is observed. Chapter 6
(“Gersgorin-Type Theorems for Partitioned Matrices”)
contains yet another extension via partitioning the rows
and columns of a matrix, and also ties this together with
the issue of allowing other norms.

In closing, this text represents a significant treat-
ment of eigenvalue inclusion regions including a well de-
served tribute to Gersgorin and his original contribution
to this area. In my opinion, this book will end up on
many bookshelves both for reference use and for general
interest.

Reviewed by S.M. Fallat
University of Regina

Electronic Journal of Linear Algebra

The Electronic Journal of Linear Algebra (ELA), a
publication of the International Linear Algebra Society
(ILAS), is a refereed all-electronic journal that welcomes
mathematical articles of high standards that contribute
new information and new insights to matrix analysis and
the various aspects of linear algebra and its applications.
Refereeing of articles is conventional and of high standards,
and is being carried out electronically. The Editors-in-Chief
are Ludwig Elsner and Daniel Hershkowitz. The website is

http://www.math.technion.ac.il/iic/ela/
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Book Review: Generalized Inverses: Theory and
Computations by Wang Guorong, Wei Yimin, and Qiao
Sanzheng, Science Press (Beijing/New York), 2004.
ISBN 7-03-012437-5. xi+294 pp.

This book is a graduate text in the Graduate Se-
ries in Mathematics published by the prestigious Chi-
nese publisher Science Press. The book, written in En-
glish, contains eleven chapters covering topics ranging
from basic theory on generalized inverses of matrices to
the Drazin inverse of operators. Unlike other existing
books on generalized inverses emphasizing application
to statistics, this one stands out focusing on many as-
pects of computation.

Chapter 1 on Equation Solving Generalized Inverses
shows basic properties of the Moore-Penrose and {1, j, k}
inverses and discusses the generalized inverses with pre-
scribed range and null space. Much ink is also spent on
the (generalized) Bott-Duffin inverses.

Chapter 2 studies the Drazin and the group inverses.
Using generalized inverses, Chapter 3 investigates solu-
tions to linear equations and Cramer’s rule. Chapter
4 goes further on the properties of generalized inverses
such as the reversed order law ((AB)(") = B(" A(")) and
the forward order law ((AB)) = AU BW),

The first four chapters may be considered as the ba-
sics on generalized inverses. The following chapters from
5 to 8 are on computation. Chapter 5 discusses the di-
rect methods (i.e., computation of accurate solutions in
finite steps) for computing a special type of generalized
inverse. It also pays much attention to the generalized
inverses of sums and partitioned matrices. Methods cov-
ered here include Greville’s, Cline’s, as well as Nobel’s.
Chapter 6 deals with parallel algorithms for comput-
ing generalized inverses, whereas Chapters 7 and 8 are
devoted to the perturbation analysis of the (weighted)
Moore-Penrose, Drazin and group inverses.

If the previous chapters are viewed as the general-
ized inverse theory for finite matrices, the rest of the
book, Chapter 9, 10, and 11, are the extensions of the
theory in Hilbert space. In the infinite dimensional set-
ting, for instance, if T' is a bounded linear operator from
a Hilbert space to another Hilbert space with closed
range R(T), then R(T") = R(T*) = R(T'T). Regarding
computation of a generalized inverse of a linear oper-
ator, the authors present a few methods including the
Euler-Knopp, Newton, and hyperpower methods. For
the Drazin inverse, the existence and uniqueness theo-
rems are shown, and perturbation bounds are discussed.

The book contains a great deal of research results
of the authors as well as other mathematicians in the
areas of perturbation theory, condition numbers, recur-
sive algorithms, finite algorithms, imbedding algorithms,
parallel algorithms, generalized inverses of rank-r modi-

fied matrices and Hessenberg matrices, extensions of the
Cramer rules and the representation and approximation
of generalized inverses of linear operators.

Although the book is written primarily as a text
for a graduate course, there is no doubt it will serve as
a valuable reference for the researchers in the fields of
matrix theory, numerical linear algebra, parallel compu-
tations and particularly generalized inverses with appli-
cations. Prerequisites are basic linear algebra, matrix
theory and functional analysis.

Reviewed by Fuzhen Zhang
zhang@nova. edu,
Nova Southeastern University, Florida

From the Editors

Recently Image lost one of our strongest supporters,
contributors, and friends. Jerzy Baksalary read and revised
nearly every problem submitted to the Image Problem
Corner. In addition, he often provided his own (always
elegant, and illuminating) solutions. Jerzy actively
solicited lead articles, book reviews, and reports. Additional
comments about Jerzy’s mathematical contributions can be
found in the tribute on the following pages. Jerzy, we (and
the readers of Image) will miss you,

Bryan Shader & Hans Joachim Werner
(Editors-in-Chief)

ILAS-NET

ILAS operates ILAS-NET, an electronic news service
that transmits announcements of ILAS activities and
circulates other notices of interest to linear algebraists.
Announcements for ILAS-NET or requests to be on the
mailing list for ILAS-NET, should be sent to Shaun Fallat
(sfallat@math.uregina.ca). Subscription to ILAS-NET is
independent of membership in ILAS and is free.

ILAS INFORMATION CENTER

The electronic ILAS INFORMATION CENTER (IIC)
provides current information on international conferences in
linear algebra, other linear algebra activities, linear algebra
journals, and ILAS-NET notices. The primary website can
be found at:

http://www.ilasic.math.uregina.ca/iic/index1.html

http://www.math.technion.ac.il/iic/index1.html
http://wftp.tu-chemnitz.de/pub/iic/index 1 .html
http://hermite.cii.fc.ul.pt/iic/index1.html
http://www.math.temple.edu/iic/index1.html
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Jerzy K. Baksalary (1944-2005) and his contributions to Image

Oskar Maria Baksalary & George P. H. Styan

Professor Jerzy K. Baksalary
passed away in Poznan, Poland,
on 8 March 2005. He was 60
years old. Although suffering,
he remained active in his re-
search work to the very end.
Jerzy Baksalary was born in
Poznan on 25 June 1944. He
was awarded a Ph.D. degree in
1975 by the Adam Mickiewicz
University, Poznan, for his dis-
sertation written under the su-
pervision of Tadeusz Calinski.

Photo by Simo Puntanen

At the funeral service for Jerzy Baksalary held in Poznan on
15 March 2005, Tadeusz Calinski eulogized him (in Polish):

“Let me express our feelings particularly on behalf
of those who were close to you in the early years of
your academic career, in the seventies and eighties
of the past century, at the Agricultural University of
Poznan. At that time you were for us an encour-
aging example of a person full of scientific ideas
and willing to work hard. Your works in the theory
and application of mathematical statistics and lin-
ear algebra drew us into the streams of worldwide
scientific literature.

Your personality stimulated younger colleagues
and students, for whom you soon became a mas-
ter and promoter of their careers. Among our joint
scientific results of those years, your achievements
shine with a particular brilliance. Your contribu-
tions to the Poznan school of mathematical statis-
tics and biometry are highly esteemed at present
and will be acknowledged by future generations.”

For the years 1969—-1988, Jerzy Baksalary was associated
with the Department of Mathematical and Statistical Methods
in the Agricultural University of Poznan, and he joined the aca-
demic community in Zielona Goéra in 1988, first working in the
Department of Mathematics of the Tadeusz Kotarbinski Peda-
gogical University and then in the Institute of Mathematics of
the University of Zielona Gora, after it was founded in 2001. He
was Rector of the Tadeusz Kotarbinski Pedagogical University
from 1990 to 1996 and then Dean of its Faculty of Mathematics,
Physics, and Technology from 1996 to 1999.

Jerzy Baksalary published extensively on matrix methods for
statistics. He is the author or coauthor of 170 published research
publications in linear algebra and statistics, including 45 papers
published in Linear Algebra and its Applications (LAA). The

Third Special Issue on Linear Algebra and Statistics of LAA
(vol. 176, November 1992) was edited by Jerzy K. Baksalary
and George P. H. Styan.

A Special Memorial Session for Jerzy Baksalary was orga-
nized by Oskar Maria Baksalary, Simo Puntanen, George P. H.
Styan, and Go6tz Trenkler at the 14th International Workshop on
Matrices and Statistics (Auckland, New Zealand, 29 March-1
April 2005). For this Memorial Session, Oskar Baksalary wrote
about his father:

“Although from the formal point of view I am a
physicist and not a mathematician or statistician,
with the death of JKB I have lost not only my fa-
ther, but also my scientific master. On the one hand,
this makes his passing away twice as hard for me to
bear, but on the other hand I am very happy that for
about the last four years I have been sharing with
my father his great passion — mathematics. Dur-
ing this period we have been spending lots of time
together, for instance travelling, visiting jazz clubs
and art galleries, attending Thursday seminars on
linear algebra organized at the Agricultural Univer-
sity of Poznan, chatting, and first of all ... doing
mathematics.

JKB really loved his subject and especially he
was in love with everything having to do with ma-
trices. This means he also loved the International
Workshops on Matrices and Statistics. My father
and I have been participating in these Workshops
since 2000, when the Workshop was held in Hy-
derabad, India, and thus the one organized this year
in Auckland was to be the sixth which we would
jointly attend.”

The First Southern Ontario Matrices and Statistics Days, to
be held in Windsor, Ontario, Canada, 9-10 June 2005, will be
dedicated to Jerzy K. Baksalary. In preparation for distribu-
tion there is a handout, which will include a complete publi-
cation list! plus comments on the life and work of Jerzy K. Bak-
salary by Oskar Maria Baksalary, Tadeusz Calinski, R. William
Farebrother, Jirgen GroB, Jan Hauke, Erkki Liski, Augustyn
Markiewicz, Friedrich Pukelsheim, Tarmo Pukkila, Tomasz
Szulc, Yongge Tian, Julia Volaufova, Haruo Yanai, and Fuzhen
Zhang. As Thomas Szulc points out there, Jerzy Baksalary was
an extremely active contributor to the /mage Problem Corner:

Building on the list prepared for the “Session on the occasion of the
60th birthday of Jerzy K. Baksalary” held at the Mathematical Research
& Conference Center, Polish Academy of Sciences, Bedlewo, Poland,
on 17 August 2004, just before the 13th International Workshop on
Matrices and Statistics.
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“I was deeply sadded to learn that Jerzy Bak-
salary has passed away. For the very last time
we saw each other in mid-February at the semi-
nar held at the Agricultural University of Poznan.
This was a meeting in a series of seminars or-
ganized since 1999 every second Thursday. Par-
ticipants of these seminars were: Jerzy K. Bak-
salary, Oskar Maria Baksalary, Jan Hauke, Au-
gustyn Markiewicz, Tomasz Szulc and a group of
Ph. D. students — our group was called by Jerzy:
PLAG, an acronym for the Poznan Linear Algebra
Group. Our meetings were instructive and fruitful
and without any doubt, this was mainly due to Jerzy.

The activities of PLAG are well reflected in the
problems and solutions in subsequent /mage Prob-
lem Corners, for the problems posed therein were
extensively discussed and analyzed during our sem-
inars. The fruit of the cooperation between Jerzy
and myself within PLAG meetings resulted in two
joint papers published in Linear Algebra and its Ap-
plications. With the death of Professor Jerzy K.
Baksalary, the linear algebra community has lost a
truly great specialist in matrix analysis and PLAG
has lost its leader.”

Jerzy Baksalary’s contributions to the /mage Problem Corner
include the following, listed here in order of publication:

1. Jerzy K. Baksalary, Oskar Maria Baksalary (2001). Solution 25-1.1 (to Prob-
lem 25-1: “Moore—Penrose inverse of a skew-symmetric matrix” proposed
by Jiirgen GrofB3, Sven-Oliver Troschke, Gotz Trenkler). Image 26, 2.

2. Jerzy K. Baksalary, Oskar Maria Baksalary (2001). Solution 25-4.1 (to Prob-
lem 25-4: “Two rank equalities associated with blocks of an orthogonal pro-
jector” proposed by Yongge Tian). Image 26, 6-7.

3. Jerzy K. Baksalary, Oskar Maria Baksalary (2001). Solution 25-5.1 (to Prob-

lem 25-5: “Three inequalities involving Moore—Penrose inverses” proposed
by Yongge Tian). Image 26, 9-10.

4. Jerzy K. Baksalary, Oskar Maria Baksalary (2001). Solution 25-6.1 (to Prob-
lem 25-6: “Generalized inverse of a matrix product” proposed by Yongge
Tian). Image 26, 10—11.

5. Jerzy K. Baksalary, Oskar Maria Baksalary (2001). Solution 26-4.1 (to Prob-
lem 26-4: “Commutativity of EP matrices” proposed by Yongge Tian). Im-
age 27, 30.

6. Jerzy K. Baksalary, Oskar Maria Baksalary (2001). Solution 26-5.1 (to Prob-
lem 26-5: “Convex matrix inequalities” proposed by Bao-Xue Zhang). Image
27,33-34.

7. Jerzy K. Baksalary, Richard William Farebrother (2002). Solution 27-1.1 (to
Problem 27-1: “A class of square roots of involutory matrices” proposed by
Richard William Farebrother). Image 28, 26-28.

8. Jerzy K. Baksalary, Oskar Maria Baksalary (2002). Solution 27-2.1 (to Prob-
lem 27-2: “Specific generalized inverses” proposed by Jiirgen GroB3, Gotz
Trenkler). Image 28, 29.

9. Jerzy K. Baksalary, Jan Hauke (2002). Solution 27-6.1 (to Problem 27-6:
“Inequalities of Hadamard products of nonnegative definite matrices” pro-
posed by Xingzhi Zhan). Image 28, 33.

10. Jerzy K. Baksalary, Oskar Maria Baksalary (2002). Solution 28-5.1 (to
Problem 28-5: “A range equality for Moore—Penrose inverses” proposed by
Yongge Tian). Image 29, 28-29.

11. Jerzy K. Baksalary (2002). Solution 28-6.1 (to Problem 28-6: “Square roots
and additivity” proposed by Dietrich Trenkler, G6tz Trenkler). Image 29, 30.

12. Jerzy K. Baksalary, Oskar Maria Baksalary (2002). Solution 28-7.2 (to
Problem 28-7: “Partial isometry and idempotent matrices” proposed by Gotz
Trenkler). Image 29, 31.

13. Jerzy K. Baksalary, Jan Hauke (2002). Solution 28-10.1 (to Problem 28-10:
“Inequalities involving square roots” proposed by Fuzhen Zhang). Image 29,
33-34.

14. Jerzy K. Baksalary, Oskar Maria Baksalary (2002). Problem 29.1: “A con-
dition for an EP matrix to be Hermitian”. Image 29, 36.

15. William F. Trench, Jerzy K. Baksalary, Oskar Maria Baksalary (2003). So-
lution 29-1.2 (to Problem 29-1: “A condition for an EP matrix to be Hermi-
tian” proposed by Jerzy K. Baksalary, Oskar Maria Baksalary [14]). Image
30,22.

16. Jerzy K. Baksalary, Oskar Maria Baksalary (2003). Solution 29-5.1 (to
Problem 29-5: “Product of two Hermitian nonnegative definite matrices”
proposed by Jiirgen GroB3, G6tz Trenkler). Image 30, 24-25.

17. Jerzy K. Baksalary, Roger A. Horn (2003). Solution 29-7.1 (to Problem 29-
7: “Complementary principal submatrices and their eigenvalues” proposed
by Chi-Kwong Li). Image 30,26-27.

18. Jerzy K. Baksalary, Xiaoji Liu (2003). Solution 29-8.1 (to Problem 29-8: “A
range equality involving an idempotent matrix” proposed by Yongge Tian).
Image 30,27.

19. Jerzy K. Baksalary, Jan Hauke (2003). Solution 29-9.1 (to Problem 29-9:
“Equality of two nonnegative definite matrices” proposed by Yongge Tian).
Image 30, 29-30.

20. Jerzy K. Baksalary (2003). Solution 29-10.1 (to Problem 29-10: “Equiv-
alence of three reverse-order laws” proposed by Yongge Tian). Image 30,
31.

21. Jerzy K. Baksalary, Oskar Maria Baksalary, Xiaoji Liu (2003). Problem
30-1: “Star partial ordering, left-star partial ordering, and commutativity".
Image 30, 36.

22. Jerzy K. Baksalary, Oskar Maria Baksalary, Xiaoji Liu (2003). Solution
30-1.1 (to Problem 30-1: “Star partial ordering, left-star partial ordering,
and commutativity” proposed by Jerzy K. Baksalary, Oskar Maria Baksalary,
Xiaoji Liu [21]. Image 31,30-31.

23. Jerzy K. Baksalary, Oskar Maria Baksalary (2003). Solution 30-5.1 (to
Problem 30-5: “A range equality for the difference or orthogonal projectors”
proposed by Yongge Tian). Image 31,36-37.

24. Jerzy K. Baksalary, Oskar Maria Baksalary (2003). Solution 30-6.1 (to
Problem 30-6: “A matrix related to an idempotent matrix” proposed by Gotz
Trenkler). Image 31, 39.

25. Jerzy K. Baksalary, Oskar Maria Baksalary (2003). Solution 30-7.1 (to
Problem 30-7: “A condition for an idempotent matrix to be Hermitian” pro-
posed by Gotz Trenkler). Image 31,41.

26. Jerzy K. Baksalary, Oskar Maria Baksalary, Xiaoji Liu (2004). Solution
31-2.1 (to Problem 31-2: “Matrices commuting with all nilpotent matrices”
proposed by Henry Ricardo). Image 32,21-22.

27. Jerzy K. Baksalary (2004). Solution 31-3.1 (to Problem 31-3: “A range
equality for block matrices” proposed by Yongge Tian). Image 32, 23-24.

28. Jerzy K. Baksalary, Paulina Kik, Augustyn Markiewicz (2004). Solution
31-6.1 (to Problem 31-6: “A full rank factorization of a skew-symmetric
matrix” proposed by G6tz Trenkler). Image 32,27-28.

29. Jerzy K. Baksalary, Oskar Maria Baksalary (2004). Solution 31-7.1 (to
Problem 31-7: “On the product of orthogonal projectors” proposed by Gotz
Trenkler). Image 32,30-31.

30. Jerzy K. Baksalary, Anna Kuba (2004). Solution 31-7.2 (to Problem 31-
7: “On the product of orthogonal projectors” proposed by Go6tz Trenkler).
Image 32,31-34.
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14th International Workshop on Matrices and Statistics
Auckland, New Zealand: 29 March-1 April 2005

Jeffrey J. Hunter & George P. H. Styan

The 14th International Workshop on Matrices and Statistics
(IWMS-2005) was held on the Albany campus of Massey Uni-
versity in Auckland, New Zealand, 29 March—1 April 2005.
This Workshop was a Satellite meeting to the 55th Biennial Ses-
sion of the International Statistical Institute held in Sydney, Aus-
tralia, 5-12 April 2005 and was endorsed by the International
Linear Algebra Society. The Workshop was supported by the
New Zealand Statistical Association, Massey University, New
Zealand Institute of Mathematics & its Applications, Royal So-
ciety of New Zealand, and Statistics New Zealand.

The International Organising Committee comprised Simo
Puntanen (University of Tampere, Finland), George P. H. Styan
(chair; McGill University, Canada) & Hans Joachim Werner
(vice-chair; Universitdt Bonn, Germany). The Local Organis-
ing Committee was chaired by Jeffrey J. Hunter, and included
Freda Anderson (Workshop Secretary), Merrill Bowers, Paul
Cowpertwait, Marie Fitch, Stephen Ford, Beatrix Jones, Claire
Jordan, Nikki Luke, Barry McDonald, Dennis Viehland, and
Danny Walsh, all of Massey University, Auckland.

A Special Memorial Session in honour of Jerzy K. Baksalary
(1944-2005) was organized by Oskar Maria Baksalary (Adam
Mickiewicz University, Poland), Simo Puntanen, George P. H.
Styan, and Go6tz Trenkler (Universitit Dortmund, Germany).

The keynote speakers were:

C. Radhakrishna Rao, Pennsylvania State University, USA:

“Statistical proofs of matrix theorems”,

Shayle R. Searle, Cornell University, USA: “Reflections on a
fifty year random walk midst matrices and statistics”,
George A. F. Seber, University of Auckland, New Zealand:

“Things my mother never told me about matrices”, and
Eugene Seneta, University of Sydney, Australia: “Coefficients

of ergodicity in a matrix setting”.

C. Radhakrishna Rao was sponsored by Nokia as the IWMS-
2005 Nokia Lecturer and was the New Zealand Statistical As-
sociation Visiting Lecturer for 2005 and a Massey University
Distinguished Visitor. Shayle R. Searle was sponsored by SAS
as the IWMS-2005 SAS Lecturer. Eugene Seneta was sponsored
as the New Zealand Mathematical Society Lecturer for 2005.

The Workshop opened on 29 March 2005 with a powhiri, the
Maori welcome ceremony. It removes the tapu of the Manuhiri
(visitors) to make them one with the Tangata Whenua (home
people) and is a gradual process of the Manuhiri and the Tan-
gata Whenua coming together. The excursion on 30 March ex-
plored Waiheke Island and its beaches, wineries and a boutique
brewery.

The invited lectures were:

S. Ejaz Ahmed: “Approximation-assisted estimation of eigen-
vectors under quadratic loss”,

Anyue Chen: “Asymptotic birth-death processes: a matrix anal-
ysis approach”,

Karl E. Gustafson: “The geometry of statistical efficiency”,

Stephen Haslett & John Haslett: “What are the residuals for the
linear model?”,

Moshe Haviv: “On singularly perturbed Markov chains”,

Jarkko Isotalo & Simo Puntanen: “Comparison of the ordinary
least squares predictor and the best linear unbiased predictor
in the general Gauss—Markov model”,

J. A. ‘Nye’ John: “Inverse of the information matrix”,

Estate Khmaladze: “Inverse matrices, Volterra operators and in-
novation processes: application to statistics”,

Tdnu Kollo & Dietrich von Rosen: “Approximation of the pa-
rameter distributions of growth curve model”,

Alexander Kukush: “Invariant estimator in a quadratic measure-
ment error model”,

Alan J. Lee & Alastair J. Scott: “Semi-parametric efficiency,
projection and the Scott—Wild estimator”,

Simo Puntanen, Ka Lok Chu, Jarkko Isotalo & George P. H.
Styan: “Decomposing the Watson efficiency in partitioned
linear models”,

C. Radhakrishna Rao: “Anti-eigen and anti-singular values of a
matrix and applications to problems in statistics”,

George P. H. Styan, Ka Lok Chu, Jarkko Isotalo & Simo Pun-
tanen: “Inequalities and equalities for the Watson efficiency
in orthogonally partitioned full rank linear models”,

Garry J. Tee: “Eigenvectors of block circulant matrices”,

Gotz Trenkler: “On the commutativity of orthogonal projec-
tors”,

Hans Joachim Werner & Ingram Olkin: “On permutations of
matrix products”.

The Workshop group photo is on the facing page; for other
photos please visit http://iwms2005.massey.ac.nz/photos.html

The 15th International Workshop on Matrices and Statis-
tics (IWMS-2006) will be held in Uppsala, Sweden, 13-17
June 2006: http://www.bt.slu.se/iwms2006/iwms06.html The Inter-
national Organizing Committee is chaired by Hans Joachim
Werner: ujw902@uni-bonn.de and the Local Organizing Commit-
tee is chaired by Dietrich von Rosen (Swedish University of
Agricultural Sciences): iwms06@bt.slu.se
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2004 NZIMA and 29th Australian CMCC Conference

Report by Ian Wanless

One of the most significant events in the combinatorics calendar for 2004 was held on the shores of beautiful Lake Taupo, New
Zealand in 13th-18th December. It was a joint conference with the un-snappy title of “The 2004 NZIMA Conference in Combinatorics
and its Applications and The 29th Australasian Conference in Combinatorial Mathematics and Combinatorial Computing”. Details
including a full programme and photos can be found at the conference webpage: http://www.nzima.auckland.ac.nz/combinatorics/
conference.html.

The conference had an unusually large number of plenary speakers and all were of the highest quality. They were Dan
Archdeacon (U. Vermont), Rosemary Bailey (Queen Mary, U. London), Richard Brualdi (U. Wisconsin), Darryn Bryant (U.
Queensland), Peter Cameron (Queen Mary, U. London), Maria Chudnovsky (Princeton U. and CMI), Bruno Courcelle (Bordeaux
U.), Jim Geelen (U. Waterloo), Bert Gerards (CWI and Eindhoven U. Technology), Catherine Greenhill (U. New South Wales),
Bojan Mohar (U. Ljubljana), Bruce Richter (U. Waterloo), Neil Robertson (Ohio State U.), Paul Seymour (Princeton U.), Alan
Sokal (New York U.), Robin Thomas (Georgia Institute of Technology), Carsten Thomassen (Technical U. Denmark), Tom Tucker
(Colgate U.), Mark Watkins (U. Syracuse) and Dominic Welsh (Oxford U.).

This galaxy of stars attracted significant global interest; so much so, that the organisers were faced with the unusual problem
of having to turn a few people away for fear of exceeding the venue’s capacity. In the end over 150 participants from 19 countries
took part, making it the largest pure mathematics conference to be held in New Zealand since 1978.

Over six days the attendees were treated to very interesting talks on a wide range of combinatorial themes including graph
theory, matroids, designs, coding theory, enumeration, optimization, theoretical computer science and combinatorial matrix theory,
to name just a few. The winner of the prize for best student talk was Shuji Kijima from the University of Tokyo. His talk was titled

cont’d on page 19

NZIMA and CMCC Conference Photo
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CMCC Conference cont’d

“Perfect Sampler for Closed Jackson Networks”.

Lake Taupo is the caldera of a truly enormous (but luckily dormant!) volcano, but there are still active volcanoes nearby.
These volcanoes (which feature in the Lord of the Rings movies) got a new coat of snow during the week (a reminder to Northern
hemispherians that December is, at least nominally, the height of summer in New Zealand). Together with the lake they formed a
very impressive backdrop. Carsten Thomassen, who has given a few opening lectures in his time, was moved to observe that he has
never had a more beautiful view for one of his plenary lectures.

The excursion on the Wednesday afternoon sampled just some of the local tourist highlights including the torrential Huka falls,
lunch at a local prawn farm, a scenic geothermal hotspot called Orakei Korako and finally a geothermal power station near Taupo.

The conference organisers (Paul Bonnington and Geoff Whittle from NZ and Brendan Mckay and Ian Wanless from Australia)
would like to acknowledge the sponsorship of the New Zealand Institute of Mathematics and its Applications (NZIMA), Australian
Mathematical Society (AustMS) and the Centre of Discrete Mathematics and Theoretical Computer Science (CDMTCS).

MAT-TRIAD 2005 - Three Days Full of Matrices

Report by Oskar Maria Baksalary

MAT-TRIAD 2005 - three days full of matrices was held at the Mathematical Research and Conference Center in Bedlewo,
Poland, on March 3-5, 2005. This international workshop attracted 40 participants; 38 representing seven European countries, one
from Canada, and one from the USA. The organizing committee, consisting of Jan Hauke, Augustyn Markiewicz (chair), Tomasz
Szulc, and Waldemar Wotynski, did an excellent job in acquiring generous sponsors and thus there was no registration fee and local

cont’d on page 21

MAT-TRIAD 2005 Conference Photo



Linear Algebra

from World Scientific and Imperial College Press

IC LINEAR ALGEBRA O féxtbook
Inaugural Issue - Call for

by I-Hsiung Lin (National Taiwan Normal University, China) Spring 2005| PapeI’S!

This accessible book for beginners uses intuitive g ric concepts to create abstrac

with a special emphasis on geometric characterizations. The bool lies know

various geometries and their invariants, and presents problel ed with

in real and complex analysis, differential equations, differs manifo INTERNATIONAL IOURNAL
Markov chains and transformation groups. The clear and ind| appro OF NUMBER THEORY (”NT)

among existing books on linear algebra both in presentation and in con
Visit www.worldscinet.com/ijnt.html

856pp Mar 2005 for more information!

981-256-087-4 Us$98

981-256-132-3(pbk)  US$54 Managing Editors

Bruce C Berndt

Univ of lllinois, Urbana-Champaign, USA
Email: berndt@math.uiuc.edu
ANALYTIC NUMBER THEORY 0 féxtbook
An Introductory Course | Dipendra Prasad

by Paul T Bateman & Harold G Diamond (University of lllinois at Urbana-Champaign) Tata Institute of Fundamental Research, INDIA

This valuable book focuses on a collection of powerful methods of analysis sl e e el

that yield deep number-theoretical estimates. Particular attention is given to
counting functions of prime numbers and multiplicative arithmetic functions.
Both real variable (“elementary”) and complex variable (“analytic”) methods
are employed. The reader is assumed to have knowledge of elementary number
theory (abstract algebra will also do) and real and complex analysis. Specialized
analytic techniques, including transform and Tauberian methods, are developed

Michel Waldschmidt
Univ Pierre et Marie Curie, FRANCE
Email: miw@math.jussieu.fr

IINT publishes original research papers and

as needed. review articles on all areas of Number Theory,
376pp Sept 2004 including elementary number theory, analytic
981-238-938-5 US$78

981-256-080-7(pbk)  US$42 number theory, algebraic number theory,
arithmetic algebraic geometry, geometry of

numbers, diophantine equations, diophantine
NONCOMMUTATIVE CHARACTER THEORY OF T
SYMMETRIC GROUP

by Dieter Blessenohl (Christian-Albrechts-Universitét Kiel, Germany)
Manfred Schocker (University of Wales Swansea, UK)

approximation, transcendental number theory,
probabilistic number theory, modular forms,
multiplicative number theory, additive number

This is the first account in book form entirely devoted to the new theory, partitions, and computational number
“noncommutative method”. As a modern and comprehensive survey of t
classical theory the book contains such fundamental results as the Murnaghan—
Nakayama and Littlewood-Richardson rules as well as more recent applications
in enumerative combinatorics and in the theory of the free Lie algebra. But it is
also an introduction to the vibrant theory of certain combinatorial Hopf algebras
such as the Malvenuto-Reutenauer algebra of permutations.

theory.

Request for complimentary copy at
mkt@wspc.com

184pp Jan 2005
1-86094-511-2 US$48

WorldSci

Published by Imperial College Press and distributed by World Scientific Publishin,

Norld Scientific office:
NJ 07601, USA

0 227 7562 E-mail:sales@wspc.com
gdon, Oxon OX14 4YN, UK

Home Page: 00 E-mail:direct.orders@marston.co.uk

http://www.worldscientific.com/ E 66 5775 E-mail:sales@wspc.com.sg




IMAGE 34: Spring 2005 Page 21

MAT-TRIAD cont’d

expenses, such as food and lodging, were covered. Unfortunately, the number of participants was limited to just 40 and this is why
the workshop was not widely advertised beforehand.

The meeting brought together researchers interested in various aspects of matrix analysis and its applications. During the
three days, 27 talks were given and later extensively discussed in a friendly and stimulating atmosphere. Since the attendants of
MAT-TRIAD 2005 left Bedlewo sharing the common opinion that the workshop was extremely fruitful, the participants along with
the organizers are looking forward to the next meeting in the MAT-TRIAD series, which is initially planned for 2007. The list of
attendants of MAT-TRIAD 2005, abstracts of talks given, and the photo gallery are available at http://mtriad05.amu.edu.pl.

Brualdi-Fest: Linear Algebra, Graph Theory and Combinatorics

Report by Bryan L. Shader

An informal two-day conference, Brualdi-fest: Linear Algebra, Graph Theory and Combinatorics, was held April 30-May 1,
2005 at the University of Wisconsin-Madison. The conference was in honor of Richard Brualdi and his numerous contributions to
mathematics. The keynote speaker was Richard Wilson (CalTech).

Over 50 Brualdi-enthusiasts participated in the conference, and the 25 contributed talks illustrated the breadth, depth and
impact of Richard’s mathematical contributions. Participants included: Jackie Anderson, Dwight Bean, Rikki Bostelman, Keith
Chavey, Han Hyuk Cho, Jason Darby, Luz DeAlba, George Dinolt, Cliff Ealy, Mike Engel, Thomas Foregger, Shmuel Friedland,
John Goldwasser, Frank Hall, Sylvia Hobart, Leslie Hogben, Susan Hollingsworth, Suk-geun Hwang, Rebecca Kohler, Elliott
Krop, Mark Lawrence, Doug Lepro, Zhongshan Li, Chi-Kwong Li, Ryan Martin, T. S. Michael, Nancy Neudauer, Arlene Pascasio,
Yiu Poon, Dan Pritikin, Jim Propp, Jennifer Quinn, Hans Schneider, Bryan Shader, Jia-yu Shao, Jian Shen, Jonathan Smith, Wasin
So, Paul Terwilliger, Kevin vander Meulen, Amy Wangsness, Rick Wilson, and Rober Wilson.

The conference was organized by John Goldwasser (U. West Virginia), Hans Schneider (U. Wisconsin-Madison), Bryan
Shader (U. Wyoming), and Robert Wilson (U. Wisconsin-Madison). A photo-journal of the conference can be found at
http://www.oldflutes.com/Kathy&Rick/brualdi.htm.

Richard with some of his past and present Ph.D. students
George Dinolt, Thomas Foregger, John Goldwasser, Dan Pritikin, Suk-geun Hwang, Han Cho, T.S. Michael
Bryan Shader, Keith Chavey, Jennifer Quinn, Mark Lawrence, Nancy Neudauer, Susan Hollingsworth
Adam Berliner and Louis Deatt
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THE 2005 Haifa Matrix Theory Conference

Report by Bryan L. Shader

The Thirteenth Haifa Matrix Theory Conference was held January 3-7, 2005 at the Technion—Israel Institute of Technology.
The Scientific Committee consisted of Abraham Berman (Chair), Moshe Goldberg, Daniel Hershkowitz, Leonid Lerer and Raphael
Loewy. This conference is the thirteenth in a sequence, dating back to 1984, devoted to matrix analysis and the various aspects of
linear algebra and its applications.

The program consisted of over 60 talks, given by speakers from China, the Czech Republic, Germany, India, Ireland, Israel,
The Netherlands, Russia, Slovenia, Taiwan and the United States. The ILAS Lecture, “Soules Matrices and the nonnegative matrix
factorization” was given by Miki Neumann (U. Connecticut).

Linear Algebra and its Applications will publish a special issue devoted to papers presented at the conference. The special
editors are Abraham Berman, Leonid Lerer and Raphael Loewy. The submission deadline was April 30, 2005. The usual standards
of LAA will apply.

In addition to the incredibly rich and broad slate of talks, participants were treated to numerous social events, and excursions.
These included: a bus tour of the lovely city of Haifa, a reception hosted by the Mayor of Haifa, a reception hosted by the Center for
Mathematical Sciences, a tour of the historical site Bet Shearim (During the 3™ and 4 Centuries CE, Bet Shearim was the seat of
the Sanhedrin and the home to the famous Rabbi Yehuda Hanassi. This great scholar was buried among the many catacombs carved
inside this limestone necropolis, an immense labyrinth of vaulted chambers and stone sarcophagi, most of which are still intact), a
reception at the home of Izchak Lewkowicz, and a banquet feast in a hotel that overlooks Haifa.

Haifa Matrix Theory Conference Photo

Carl de Boor honored

ILAS member Carl de Boor was one of 14 scientists (the only one in mathematics) awarded the prestigious U.S. National Medal
of Science during a recent White House Ceremony.

The award honors individuals for pioneering research that has led to a better understanding of the world, and to the development
of significant innovations and technologies. Carl’s work in numerical mathematics, and in particular in the spline theory, is truly
outstanding, and continues to be the mathematical heart of computer aided design, computer graphics, and signal and image
processing.

Congratulations Carl!
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Forthcoming Conferences and Workshops in Linear Algebra

1st International Workshop
on Matrix Analysis
Beijing Normal University, Beijing
9-10, June 2005

This workshop aims to stimulate research and interaction
of mathematicians in all aspects of linear and multilinear
algebra, matrix analysis and their applications and to provide
an opportunity for Chinese as well as for international
researchers to exchange ideas and recent developments
on these subjects. This will be a two-day meeting without
parallel sessions.

Registration will be accepted from through June 6, 2005.
There is no registration fee. Titles and abstracts should be
submitted to Xiuping Zhang no later than June 6, 2005 by
e-mail in LaTeX or TeX.

Talks can be presented in either English or Chinese, and
slides must be in English.

Beijing Normal University (BNU) is located in
Haidian District of Beijing. Transportation to and from
BNU is available and very convenient. The University’s
Lanhui Hotel hosts guests and foreigners at decent rates. A
Workshop Dinner may be scheduled per request by majority
of the participants. No financial aid will be provided to
general participants.

No excursion is planned for this Workshop. However,
we will be happy to provide information for visiting the
Great Wall, the Forbidden City, the Summer Palace, and
other interesting spots.

The organizers are: Dr. Tiangang Lei (National Natural
Science Foundation of China, Chinaleitg@mail.nsfc.go
v.en), Dr. Xiuping Zhang (Beijing Normal University,
China, zhxp@bnu.edu.cn) and Dr. Fuzhen Zhang (Nova
Southeastern University, USA, zhang@nova.edu).

The workshop website is: www.nova.edu/~zhang/
1Matrix Workshop.html.

Combinatorial Matrix Theory
Lincoln, NE
21-23, October 2005

A special session on Combinatorial Matrix Theory, will
be held in conjunction with the 2005 Fall AMS Sectional
meeting (October 21-23) in Lincoln, Nebraska. The deadline
for Contributed Papers for consideration in AMS Special
Sessions is July 5, 2005. Submissions must be done
electronically at the conference website.

There will also be a special session devoted to graph
theory at this meeting, making it particularly attractive

to those with interests in both linear algebra and graph
theory. This meeting was chosen to host the major AMS
public lecture that is held annually at a sectional meeting,
and Sir Michael Atiyah will deliver this lecture on Friday,
October 21, 2005 (most probably from 4:00-5:00 pm). More
information about the meeting can be found on the AMS
website: http://www.ams.org/amsmtgs/2117_program.html.
Confirmed participants include:

Francesco Barioli (Carelton U.),

Luz DeAlba (Drake U.),

Shaun Fallat (U. Regina),

Frank Hall (Georgia State U.),

Elliot Krop (U. Illinois-Chicago),
Chi-Kwong Li (College of William & Mary),
Zhongshan Li (Georgia State U.),

Yiu Poon (Iowa State U.),

Judi MacDonald (Washington State U.),
Wasin So (San Jose State U.),

Kevin Vander Meulen (Redeemer College), and
Amy Wangsness (Iowa State U.)

The special session is being organized by Leslie
Hogben (lhogben@iastate.edu) and Bryan Shader
(bshader@uwyo.edu).

Workshop on Graph Spectra
Aveiro, Portugal
10-12 April 2006

The recognition of the strong developments on spectral
graph theory encouraged the organization of this workshop
which will be a meeting point for many researchers around
the world.

The main goal is to bring together the leading researchers
on graph spectra and related topics, to establish the state of
the art and to discuss the main current achievements and
challenges in this topic.

We are proud with the participation of renown specialists in
spectral graph theory as members of the Scientific Committee
and invited speakers, delivering 10 plenary presentations.
Additionally, we have planned a few parallel contributions
and a problem session in which we expect the participation of
international experts with their most recent results.

The contributors should submit a pdf file of the abstract (no

cont’d on page 23
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Aveiro conference cont’d from page 23

more than two A4 size pages), attached to the registration
form or to a message sent to awgs@mat.ua.pt, by January
15, 2006.

Furthermore, after notification of acceptance (by February 15,
2006), the contributors should also send the corresponding
LaTex file.

A collection of selected papers on spectral graph theory
and related topics will be published in a special issue of
Linear Algebra and Its Applications, to be edited by: Dragos
Cvetkovic, Willem Haemers and Peter Rowlinson.

Participants will be invited to submit their papers during the
workshop or afterwards. The deadline for submission is July
15, 2006.

13" ILLAS Conference
Amsterdam, The Netherlands
18-21, July 2006

The 13" ILAS conference will be held in Amsterdam
during the week preceding the SIAM conference on Linear
Algebra in Dusseldorf, Germany. The dates will be July
18-21 for the ILAS conference. The conference will be
organized at the Vrije Universiteit, located in the southern
part of the city of Amsterdam.

The organizing committee consists of: Harm Bart,
Jan Brandts, Daniel Hershkowitz, Steve Kirkland, Andre
Klein, Andre Ran, Peter Spreij, Henk van der Vorst and
Paul VanDooren. The local organization will be done by Jan
Brandts, Andre Klein, Andre Ran and Peter Sprey.

The conference will be mainly structured around a
number of themes. For each of those themes an invited
lecture will be combined with a mini-symposium. Themes
selected so far include:

- Linear Algebra in Statistics

- Numerical Linear Algebra

- Matrices in Indefinite Scalar Product Spaces
- Structured Matrices

- Positive Linear Algebra

In addition, there will be the possibility for participants
to present their work at the conference, even if it does not
fall under one of the special themes. The website of the
conference is

http://staff.science.uva.nl/~brandts/ILAS06.

The city of Amsterdam can be reached easily from
around the globe. The main airport of the Netherlands,
Schiphol airport, is only a short train ride away from both the
city center and the Vrije Universiteit. In addition, Amsterdam
can be reached from the major cities in Europe easily by

train. Once inside the city, the excellent network of public
transportation will guarantee you an easy trip to your hotel
and the conference location.

Participants are expected to make their own arrangements
for accommodation. This can be done easily online, see for
instance the website www.travel-holland.com/amsterdam.

Although at this time the exact amount for the registration
fee is still uncertain, our aim is to keep the registration cost
as low as possible.

As usual for ILAS meetings, the proceedings will appear
as a volume of Linear Algebra and its Applications. Editors
for the volume will be Harm Bart, Jan Brandts, Andre Ran
and Paul VanDooren.

Applied Linear Algebra
Dusseldorf, Germany
24-27, July 2006

A joint GAMM-SIAM Conference organized in
cooperation with ILAS will be held at the Heinrich-Heine
Universitat in Dusseldorf, Germany from July 24-27, 2006.

Linear algebra problems and linear algebra algorithms
for their solution are at the very heart of almost all numerical
computations and play a prominent role in modern simulation
methods in science and engineering. This conference, which
belongs to a series of tri-annual meetings organized by SIAM
in the US is the premier international conference on applied
linear algebra.

Participants will present and discuss their latest results
in the area of applied linear algebra, ranging from advances
in the theory over the development and analysis of new
precise and efficient algorithms to large scale supercomputer
applications. Ludwig Elsner and Olga Holtz will be ILAS
Lecturers at the conference.

The conference is organized jointly by Heinrich-
Heine Universitait Dusseldorf and Bergische Universitat
Wuppertal, and the co-organizers are Andreas Frommer,
Marlis Hochbruck and Bruno Lang.

The Program Committee consists of: Michele Benzi,
Zlatko Drmac, Heike Fassbender, Sven Hammarling, Daniel
Hershkowitz, Ilse Ipsen, Bo Kagstrom, Steve Kirkland, Rich
Lehoucq, Volker Mehrmann, Julio Moro and Jim Nagy.
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MATLAB Guide, Second Edition
Desmond . Higham and Nicholas J. Higham

“MATLAB Guide, Second Edition, is my new favorite
MATLAB reference because it not only teaches MATLAB,
it fosters a love for all things related to scientific
computation. This well-written book features top notch
examples, the latest MATLAB features, and offers
MATLARB insights that can’t be found anywhere else!”

— Steven H. Frankel, Purdue University.

MATLARB is an interactive system for numerical computation that
is widely used for teaching and research in industry and academia.
It provides a modern programming language and problem solving
environment, with powerful data structures, customizable graphics,
and easy-to-use editing and debugging tools.

This second edition of MATLAB Guide completely revises and
updates the best-selling first edition and is more than 30% longer.
The book remains a lively, concise introduction to the most
popular and important features of MATLAB 7 and the Symbolic
Math Toolbox.

April 2005 - Approx. xxiv + 382 pages - Hardcover - ISBN 0-89871-578-4
List Price $47.00 - SIAM Member Price $32.90 - Order Code OT92

Matrix Analysis for Scientists and Engineers
Alan J. Laub

Matrix Analysis for Scientists and Engineers provides a blend of
undergraduate- and graduate-level topics in matrix theory and
linear algebra that relieves instructors of the burden of reviewing
such material in subsequent courses that depend heavily on the
language of matrices. Consequently, the text provides an often-
needed bridge between undergraduate-level matrix theory and
linear algebra and the level of matrix analysis required for
graduate-level study and research. The text is sufficiently compact
that the material can be taught comfortably in a one-quarter or
one-semester course.

Throughout the book, the author emphasizes the concept of
matrix factorization to provide a foundation for a later course in
numerical linear algebra. The author addresses connections to
differential and difference equations as well as to linear system
theory and encourages instructors to augment these examples with
other applications of their own choosing.

2004 - xiii + 157 pages - Softcover - ISBN 0-89871-576-8
List Price $36.00 - SIAM Member Price $25.20 - Order Code OT9I
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Ants, Bikes, and Clocks: Problem

Solving for Undergraduates
William Briggs
“...The student will be carried along by this
book, and ever anxious to learn the next new
idea. I like Briggs's book so well that I would
certainly make considerable use of his text the
next time that I teach problem-solving.”

anis BHK &
CLOCKS

— Steven G. Krantz, Washington
University, St. Louis.
Supported by narrative, examples, and
exercises, Ants, Bikes, and Clocks: Problem
Solving for Undergraduates is a readable
and enjoyable text designed to strengthen the problem-solving
skills of undergraduate students. The book, which provides
hundreds of mathematical problems, gives special emphasis to
problems in context that require mathematical formulation as a
preliminary step. Both analytical and computational approaches,
as well as the interplay between them, are included. With its lively
and engaging writing style and interesting and entertaining
problems, Ants, Bikes, and Clocks will strengthen students’
mathematical skills, introduce them to new mathematical ideas,
demonstrate for them the connectedness of mathematics, and
improve both their analytical and computational problem solving.

2004 - vi + 168 pages - Softcover - ISBN 0-89871-574-1
List Price $42.00 - SIAM Member Price $29.40 - Order Code OT90

Nonlinear Output Regulation:
Theory and Applications
Jie Huang

This book provides a comprehensive and in-depth treatment of
one of the most important control problems: the nonlinear output
regulation problem. It contains up-to-date research results and
algorithms and tools for approaching and solving the output
regulation problem and other related problems, such as robust
stabilization of nonlinear systems. The author also offers personal
insights about solving the output regulation problem. Qutput
regulation is a general mathematical formulation of many control
problems encountered in daily life including cruise control of
automobiles, landing and takeoff of aircraft, manipulation of robot
arms, orbiting of satellites, and speed regulation of motors.

2004 - xvi + 318 pages - Hardcover - ISBN 0-89871-562-8
List Price $78.00 - SIAM Member Price $54.60 - Order Code DC08

Use your credit card (AMEX, MC, and VISA): Go to www.siam.org/catalog ¢ Call toll-free in USA/Canada:
800-447-SIAM - Worldwide, call: 215-382-9800 ¢ Fax: 215-386-7999 * E-mail: service@siam.org. Send check
or money order to: SIAM, Dept. BKILO5, 3600 University City Science Center, Philadelphia, PA 19104-2688.
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IMAGE Problem Corner: Old Problems, Most With Solutions

We present solutions to IMAGE Problems 33-1 through 33-8 [IMAGE 33 (October 2004), pp. 36 & 35]. Problems 30-3 [IMAGE 30 (April 2003),
p. 36] and 32-4 [IMAGE 32 (April 2004), p. 40] are repeated below without solution; we are still hoping to receive solutions to these problems. We
introduce 10 new problems on pp. 40 & 39 and invite readers to submit solutions to these problems as well as new problems for publication in
IMAGE. Please submit all material both (a) in macro-free ISTgX by e-mail, preferably embedded as text, to hjw.de@uni-bonn.de and (b) two paper
copies (nicely printed please) by classical p-mail to Hans Joachim Werner, IMAGE Editor-in-Chief, Department of Statistics, Faculty of Economics,
University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Please make sure that your name as well as your e-mail and classical p-mail
addresses (in full) are included in both (a) and (b)!

Problem 30-3: Singularity of a Toeplitz Matrix
Proposed by Wiland SCHMALE, Universitdit Oldenburg, Oldenburg, Germany: schmale@uni-oldenburg.de
and Pramod K. SHARMA, Devi Ahilya University, Indore, India: pksharmal944@yahoo.com

Letn >5,c¢1,...,ch—1 € C\{0}, z an indeterminate over the complex numbers C and consider the Toeplitz matrix
Ca c1 x 0 - -+ 0
c3 Ca cic x 0 -+ O
M =
Cnes Cn—a - - - . oz
Cn—2 Cn—3 . . . e c1
Cn—1 Cn—2 : . . o C2

Prove that if the determinant det M = 0 in Clz] and 5 < n < 9, then the first two columns of M are dependent. [We do not know
if the implication is true for n > 10.]

We look forward to receiving solutions to Problem 30-3!

Problem 32-4: A Property in R3*3
Proposed by J. M. F. TEN BERGE, University of Groningen, Groningen, The Netherlands: j.m.f.ten.berge@ppsw.rug.nl

We have real nonsingular matrices X, X5, and X3 of order 3 x 3. We want a real nonsingular 3 x 3 matrix U defining W, =
u1; X1 + u2; X0 4+ u3; X3, j = 1, 2,3, such that each of the six matrices Wj_ka, j # k, has zero trace. Equivalently, we want

(Wj_lVVk)?’ = (ajx)?I3, for certain real scalars a;;. Conceivably, a matrix U as desired does not in general exist, but even a proof
of just that would already be much appreciated.

We look forward to receiving solutions to Problem 32-4!

Problem 33-1: A Range Equality for the Kronecker Product of Matrices
Proposed by Yongge TI1AN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

Let A and B be m; X n1 and ms X ng matrices, respectively. Show that
range(A ® I,,) Nrange(I,,, ® B) = range(A ® B),
where ® denotes the Kronecker product of matrices and I is the identity matrix of the indicated order.

Solution 33-1.1 by G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Consider the orthogonal projectors P1 = Prange(r,,, o) and P> = Prange(a1,,,)- Then P = (Im, ® B)(I;y, ® B)T =
(I, ® B)(I;n, ® BY) = I,, ® BB*. Analogously, P> = (AAT ® I,,,). It follows that PP, = PP = AAT @ BB* =
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(A B)(AT®@BT) = (A® B)(A® B)T = Prange(agp)- Since P, and P, commute, P P> = Prange(Ag B) is the orthogonal
projector on range(A ® B) = range(P; P,) = range(P;) N range(P,) [cf. Rao & Mitra (1971, Theorem 5.1.4)]. This implies
range(A ® I,,,) Nrange(I,,, ® B) = range(A ® B).

Reference
C.R. Rao & S. K. Mitra (1971). Generalized Inverse of Matrices and its Applications. Wiley, New York.

Solution 33-1.2 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: hjw.de@uni-bonn.de

We offer an extremely elementary proof. First, we recall that A ® B := (a;;B); j, where A = (a;;);,;. As usual, let R(-) denote
the range (column space) of the matrix (-). From the definition of the Kronecker product we directly obtain

R(A® B) = {(>_ aijbj)i=1,-.m, | ¥ : b € R(B)} (1
j=1
and ., .
R(Im, ® B)NR(A® I,,) = {(Z @ijCj)im1,my | VJ i c; € CM2 V0 Zaijcj € R(B)} 2
j=1 j=1

So, trivially R(A ® B) C R(Im, ® B) NR(A® I,,). Conversely, let x € R(I,,, ® B) N R(A® I,,,) be represented as in (2).
Clearly, ) aije; € R(B) < >, aijc; = BB~ (3, ajc;), where B~ indicates a generalized inverse of B. Needless to mention,

BB~ (>_; aijc;) = >_, aijBB~c; and BB~ ¢; € R(B). Hence, by letting b; :== BB~ ¢j, z = (Zj aijbj)i’ and so, according to
(1), 2z € R(A® B). Therefore, R(I,;,, ® B) N R(A® I,,,) C R(A® B). So, Problem 33-1 is solved.

Solutions to Problem 33-1 were also received from Yongge Tian and from William F. Trench.

Problem 33-2: Similarity of Two Block Matrices
Proposed by Yongge TI1AN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

Suppose that the two square matrices A and B satisfy A2 = 0 and B? = 0. Show that the two block matrices
A C A0
and
0 B 0 B

A C
rank < 0 B) =rank (A) + rank (B) and AC+CB=0.

are similar if and only if

Solution 33-2.1 by the Proposer Yongge T1AN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

: A C A0 o . : . A C
Suppose the two block matrices 0 B and 0 B are similar, i.e., there is a nonsingular matrix P such that 0 B =

A 0 . A C A 0
P P~1, then it turns out that rank = rank = rank (A) + rank (B), and
B 0 B 0 B

0
A C\? A 0N | A? 0 .
—p pl=p P l=0.
0 B 0 B 0 B2

Expanding the left-hand side of this equality yields AC' + C'B = 0. According to the well-known Roth theorem [see Roth (1952)]:

A C A 0
( 0 B) and < 0 B> are similar if and only if there is an X such that AX — X B = C. Since both A? = 0 and B? = 0, they

can be decomposed, from the similarity theory of matrices, as

e Al) B (o Bl) i
A=P (00P’B_Q00Q’ 3)
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where A; and B; are square matrices of appropriate sizes. In this case, AX — X B = C becomes

0 A1 0 Bl
Y -Y =F. “4)
0 0 0 0
Partition
i Y I By
Y =PXQ = and F'= PCQ = . (5)
Y3 Y4 F3 F4
Then (4) can be expressed as
(A1Y3 A1Y4) (O Y1B1> . <A1Y3 A1Y4 YlBl) . (Fl FQ) (6)
0 0 0 3B,/ \ 0 —~Y3B,; \F R

thatis, A1Y3 = F1,Y3B; = —F,, A1Y, — Y1 B = F3, F3 = 0. According to Mitra (1984), the pair of matrix equations A,Y3 = F}
and Y3B; = —F have a common solution if and only if

range (Fy) C range (A;), range (F]) C range(BY), and A F, + F1B; = 0. (7

The matrix equation A;Y, — Y1 By = Fy is consistent if and only if [see Roth (1952)]

A1 B
rank ( ) = rank (4;) + rank (By). ®)
0 B

The condition F3 = 0, the two range inclusions in (7) and the rank equality (8) are equivalent to the rank equality

0 A1 F1 F2

0 0 F3 F4 0 Al 0 Bl
rank = rank + rank ,
0 0 0 B 0 O 0 O

0 0 0 0
which, by (3) and (5), is further equivalent to

kAC =rank (A k(B 9
ran (O B)ran (A) 4 rank (B). ©)

On the other hand, A; F; + F; B; = 0 is equivalent to

(o Al) (Fa 55)4_(51 zg> (o Bl)__o
0 0 F; Fy F F,J)\o0o o)

which, by (3) and (5), is also equivalent to

1 0 Al 0 Bl 1
P, ) reroe(, ,)et=o

AC +CB =0. (10)

that is,

These results show that if (9) and (10) hold, then the matrix equation (6) is consistent. Correspondingly, the matrix equation (4) is
consistent.

References

W. E. Roth (1952). The equations AX — Y B = C and AX — XB = C in matrices. Proceedings of the American Mathematical Society 3,
392-396.

S. K. Mitra (1984). The matrix equations AX = C, X B = D. Linear Algebra and Its Applications 59, 171-181.

Solution 33-2.2 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: hjw.de@uni-bonn.de

We offer the following very informative solution to this nice and interesting problem.
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THEOREM 1. Let A € C™*™ and B € C"*™ be both nilpotent of index < 2, i.e., let A2 = 0 and B%> = 0. Moreover, let C € C™*™.

For the matrices
A C A 0
Wy = and Ws :=
0 B 0 B

the following conditions are then equivalent:
(a) Wy ~ Wy, i.e., there exists a nonsingular matrix R such that RW,R™' = W.
(b) rank(W7) = rank(Ws) and AC + CB = 0.
(¢) C=AAC+CB B—AA CB Band AC + CB = 0, with ()~ denoting any generalized inverse of (-).
(d C=AA"M + MB~B — AA~ M B~ B for some matrix M and AC + CB = 0.
(e) AX — XB = C for some matrix X.

Our proof of this theorem will be based on the following powerful auxiliary results.

LEMMA 2. Let Wi and Wy be block partitioned matrices as in Theorem 1, where, however, the matrices A and B need noi
necessarily be nilpotent. Then the following conditions are equivalent:

(a) rank(W;) = rank(Ws).

(b) CN(B) C R(A), with N(-) and R(-) denoting the nullspace and the range (column space), respectively, of the matrix ().
(c) C=AAC+(CB B—-—AACB™B.

(d C=AA"M + MB~B — AA~ M B~ B for some matrix M.

PROOF. Clearly, rank(W5) = rank(A) + rank(B). Therefore, according to Corollary 4(c) in Werner (2003), (a) < (b). We next
note that
CN(B)CR(A) & (I—AA")C(I-B B)=0 < C=AAC+CB B—- AA"CB B, (n

where (-)~ indicates a generalized inverse of () and where I stands for an identity matrix of appropriate order. In this context we
note that R(I — B~ B) = N(B) and N(I — AA~) = R(A). Observing that the general solution to (I — AA~)Z(I — B~B) =(
is of the form Z = M — (I — AA7)M(I — B~ B) = AA~M + (I — AA~)M B~ B, where M of suitable order can be arbitrarily
chosen, completes the proof of this lemma. O

LEMMA 3. Let N € C™*" be nilpotent of index < 2, i.e., let N2 = 0. Moreover, let rank(N) = r. Then

Op xr 07'><(7L—27’) I,
N ~ N:= 0(n—27‘)><r 0(n—2r)><(n—27‘) O(n—2r)><r ’ (12]
Opxr Orx(n72r) Orxr

where I, stands for the identity matrix of order r X r, and where 05, denotes the zero matrix of order s X t. If r = 0 or, equivalently,
if N =0, then all blocks except 0(p,_27)x (n—2r) = Onxn are interpreted as absent. If r = n/2, then all blocks except the four corner
blocks are interpreted as absent.

PROOF. Let N = T'U* be a full-rank factorization of N. The matrices T and U are then both of order n x r and of rank . Moreover,
since N2 = 0, clearly U*T = 0,.»,.. Consequently, (T, U) is of order n x 2r and has rank 2r. Needless to say, necessarily r < n/2.
Moreover, if n — 2r > 1, then there exists a n X (n — 2r) matrix V of rank n — 27 such that U*V = 0 and T*V = 0. Otherwise, i.e.
when n = 2r, we interpret V' as absent. Consequently, the nonsingular inverse S=* of S := (T(T*T)~*, V, U)* does exist and is
given by S~ := (T, V(V*V)~!, U(U*U)™ ). Since SNS~' = N, N ~ N and so our proof is complete. O

LEMMA 4. For A € C™*™ B € C"*" and C € C™*", let W1 and Wy, be defined as in Theorem 1. Let rank(A) = ry and lei
rank(B) = ro. If A and B are nilpotent of index < 2, i.e., if A2 = 0 and B? = 0, then there exist nonsingular matrices Sy and Ss
such that

0 0 I, 0 0 I,
S1AST = A= 0 0 0 and SyBS;' =B := 0 0 0 (13)
OT1 Xry 0 O 07‘2><T2 0 0

ie, A~ Aand B ~ B. Moreover, Wy ~ Ws if and only if

e () e (40 14
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where C := S, C’S{1 and where A and B are as in (13). In (13) the orders of all those zero matrices, which are denoted by 0, are
clear from the context and are therefore not explicitly given. Needless to mention, as in Lemma 3, there are situations in which we
interpret some of the blocks in (13) as absent.

PROOF. Lemma 3 tells us that there exist nonsingular matrices .S7 and Sy such that 51 AST 1= Aand SoBSy 1= B, ie., we have
(13). For the nonsingular block-diagonal matrix S := diag(S1, S2) it is easy to check that SW1 S~ = Wy and SWo S~ = Wh.
Hence, as claimed, W7, ~ Wy & Wi ~ W, O

LEMMA 5. [Cf. Theorem 4.4.22 in Horn & Johnson (1991, p. 279).] Let W1 and W5 be block partitioned matrices as in Theorem 1,
where, however, the matrices A and B need not necessarily be nilpotent. Then,

Wi~Wy & 3X: AX -XB=C.

(1)

We are now able to give a first proof of Theorem 1 that allows some deep insights into Problem 33-2 and the results claimed in
Theorem 1. An alternative extremely succinct proof of just the equivalence (a) < (b) will be given later.

In which case, RW,R~' = Wy holds true for

PROOF OF THEOREM 1. Let A and B be such that A> = 0 and B? = 0. Clearly, if W; ~ W, then rank(W;) = rank(W5).
Moreover, since W3 = 0, necessarily W = 0 or, equivalently, AC' + C'B = 0. Hence, (a) = (b). In view of Lemma 1, (b) < (c) <
(d). Moreover, according to Lemma 3, (¢) < (a). So, (d) = (e) remains to be shown. For that purpose, we first note that, according
to Lemma 4, Wy ~ Wy & Wl ~ WQ, where W, and Wg are as in (14). As in Lemma 4, let S; and Sg be such that 51 AST =4
and SQBS;1 B. Since AC + OB = S§;AS7*S,08; " + 510851 S,BSy ! = S1(AC + CB)S;*, trivially AC' + CB=0e
AC + CB = 0. Needless to mention, rank(A) = rank(A), rank(B) = rank(B) and, for i = 1,2, rank(W;) = rank(W) In view
of these observations, it is now clear that it suffices to show that the conditions AC' + C'B = 0 and rank(Wl) = rank(Ws) imply

W, ~ W, or, by virtue of Lemma 5, equivalently, the existence of a matrix X satisfying AX — X B = C'. In what follows, let

é C~’12 C~(13 Xll X12 Xl?)
é = é 6’22 623 and X = Xgl X22 XQ?, (15)
631 C~’32 033 XSI X32 XSS

be partitioned into blocks, where the rows of C and X are partitioned in the same way as the columns of A in (13) and where the
columns of C' and X are partitioned in the same way as the rows of B in (13). Since

031 032 033+C~'11

AC+CB=| 0 0 Con , (16)
0 0 Cay
clearly
Cii Cha C~'13
AO—FCN'B =0 & C~’21 = O,égl = 0,032 = O,égg, = _éll <~ é = 0 6'22 023 . (17)
0 0 —Cn

According to Lemma 2, rank(W;) = rank(WW5) if and only if
C=AA"C+CB B-AACB™ B, (18)
where M~ denotes any generalized inverse of M, i.e. any matrix M ~ satisfying M M~ M = M. It is easy to check that

O O 07‘1 XT1 0 0 OT2 XTr2
0 0 0 and 0 0 0
I, 0 0 L, 0 0
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are generalized inverses of A and B, respectively. By means of these generalized inverses, equation (18) can be rewritten in block-
partitioned from as follows

Cii Cra Ciz Cii Cia Cis 0 0 Ci 0 0 Ci3
Cy Oy Cos = 0 0 0 [+]00 Cxs|—-|0 0 0
Cs1 Csp Css 0 0 0 0 0 Cs3 00 0
Hence, -
Cii Cia Cis
rank(W;) = rank(Ws) < Cy =0, Cp =0, C51=0,C32=0 & C=| 0 0 Cos|. (19)
0 0 Ca
Combining (17) with (19) results in
C~'11 C~Y12 élB
AC+CB=0,C=AAC+CB B-AACB™B & C=| 0 0 Co» |. (20)
0 0 —Cn

We complete our proof by showing that if C is of the form 1(20), then there exists a solution X to the matrix equation AX-XB=C.
Actually, we even show that the matrix equation AX — X B = C is consistent if and only if C is as in (20). For doing so, let X and
C be partitioned as in (15). Then,

X3 Xzo Xz 0 0 Xp Ci Cia Ciz
3JX: AX-XB=C & 0 0 0 |=|00 Xanl|=]|Cun Co Cos|. 1)
0 0 0 0 0 X C31 Csy Cag
Consequently, as just claimed, R ~ ~
Cn Ci2 Cis
3X: AX -XB=C & C=| 0 0 Cy
0 0 -Cn

From (21) it is further clear that if AX — XB = C is consistent, then its general solution is given by
Xu X X3
X =] —Cun Xop Xo3 ) (22)
Cii Ci2 Ciz3+Xu

Wheref(n, 5(12, Xlg, )~(22 and X14, all of suitable orders, can be chosen arbitrarily. In view of AX if(é =C < A(Sl_lf(Sg) —
(S;1X Sy)B = C, it s clear that the general solution to AX — X B = C'is then given by X = S; ' XSy, with X as in (22). O

Our solution is concluded with four remarks. First of all, we emphasize that, as our preceding proof has shown, neither condition
AC+C B = 0 nor condition rank(W7;) = rank(W3) is redundant in characterizing Wi ~ W5 under the matrix set-up of Theorem 1.
Secondly, we mention that Lemma 3 even enables us to present an alternative extremely succinct and more direct proof of (b) = (a)
in Theorem 1. For observe that the conditions under (b) imply that W2 = 0, W3 = 0 and rank(W;) = rank(W,). Lemma 3 thus
tells us that 1/, and W, are both similar to the same matrix W, a matrix structured as NV in (12), but with 7 := rank (/) and with
m + n rows and columns. Therefore, because the similarity relation ~ is transitive, also W7 ~ Ws. Thirdly, by a similar reasoning
as before it is seen that any given m x m matrices, all supposed to be nilpotent of index < 2, are similar to each other if and only if
their ranks coincide. Finally, we show how the following interesting result can be singled out from Theorem 1.

COROLLARY 6. Let A € C™ ™ and B € C™ " be such that A> = 0 and B> = 0. Consider the Kronecker sum M, :=
(I, ® A) + (B ® I,,) and the Kronecker difference M_ = (I, ® A) — (B ® I,,) of the nilpotent matrices A and B, with ‘®’
indicating the Kronecker product of matrices. Moreover, let P := (I — BB~) ® (I — AA™). Then

R(M_) = N(M.) N N(P),

irrespective of the choices of A~ and B~.
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PROOF. We recall that if D, E and F are matrices, for which DEF' is defined, then vec(DEF) = (F' ® D)vec(FE), with (-)’ and
vec(-) indicating the transpose and the vectorization, respectively, of (-). We further recall that B~ is a generalized inverse of B if
and only if (B~)’ is a generalized inverse of B’. Hence, (i) 3X : C = AX — XB' < vec(C) € R(M_), (il) AC+CB’' =0
< vec(C) € N(M,), and (iii) C = AA~C + C(B')"B' — AA~C(B')” B’ & vec(C) € N(P). Theorem 1, with the matrix B
being replaced by B’, now immediately tells us that R(M_) = N (M) N N(P). ]

References

R. A. Horn & Ch. R. Johnson (1991). Topics in Matrix Analysis. Cambridge University Press, Cambridge.

H. J. Werner (2003). The minimal rank of a block matrix with generalized inverses. Solution 29-11.2 IMAGE: The Bulletin of the International
Linear Algebra Society 31 (October 2003), 26-29.

A Solution to Problem 33-2 was also received from Johanns de Andrade Bezerra who mentions that under the ‘if conditions’ of the
problem both block-partitioned matrices are similar to the same Jordan form and therefore also similar to each other.

Problem 33-3: Two Characterizations of an EP Matrix
Proposed by Yongge TI1AN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca
Show that the following statements are equivalent:
(a) a complex square matrix A is EP, i.e., range(A) = range(A*),
(b) range( A — AT) = range( 4 — A3),
(c) range( A + AT) = range( A + A3),
where A* and AT denote the conjugate transpose and the Moore-Penrose inverse of A, respectively.

Solution 33-3.1 by the Proposer Yongge T1AN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

It is well-known that A is EP if and only if AAT = ATA. Insuch case, (A + AT)A%2 = A3 + Aand (A% £ A)ATAT = A+ AT
These two equalities imply that range( A + AT ) = range( A + A3). It is easy to find by the rank formula

A*AA* A*B
rank(D — CA'B) = rank ( ) —rank(A)
CA* D
that
rank(A &+ AT | A+ A%) = rank(A | A*) + rank(A* + A* A%) — rank(A). (23)
Hence, if range(A + A') = range(A £ A3), then
rank(A + AT | A+ A3) = rank(A4 + A%). (24)
The combination of (23) and (24) gives
rank(A | A*) — rank(A) + rank(A* + A*A?) — rank(A + A%) = 0. (25)

From AAT(AT)*(A*+A*A%) A = A+ A3, one can getrank(A*+A* A%) > rank(A4A?). Also note that rank(A | A*) > rank(A).
Thus (25) implies that rank(A | A*) = rank(A), which is equivalent to range(A) = range(A*).

Solution 33-3.2 by Hans Joachim WERNER, Universitdt Bonn, Bonn, Germany: hjw.de@uni-bonn.de

We recall that A € C"*™ is EP if and only if AAT = ATA. Now, let A be EP. Then ATA% = A, A3(A")?2 = A and A(A1)? =
At. Therefore, range(A® — A) = range((A — A)A?) C range(A — A") = range((4% — A)(A")?) C range(A3 — A), so
range(A® — A) = range(A — A'). So, we have (a) = (b). To prove the converse, let range(A — A") = range(A3 — A). Then for
each x € C™ there exists ay € C" such that (A — AT)z = (A% — A)y or, equivalently, ATz = A[x — (A% — I)y]. Consequently,
range(AT) C range(A). We recall that range(AT) = range(A*) and that the rank of a matrix always coincides with the rank of its
conjugate transpose. Combining these observations now results in range(A) = range(A*). This completes the proof of (a) < (b).
The proof of (a) < (c) follows on similar lines.

A Solution to Problem 33-3 was also received from Gétz Trenkler.
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Problem 33-4: An Euclidean Norm Property in R?
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Leta = (a1, az,a3) and b = (by, by, b3)’ be vectors from R3 such that a’b = 0. Show that
la +bll < max{|as| + |az| + [b1], las| + a1 | + [bz], [az| + |a1] + |bs[, [b1] + [b2] + [bs]},

where || - || denotes the usual Euclidean norm.

Solution 33-4.1 by the Proposer G6tz TRENKLER, Universitdit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Consider the matrix

0 —as a9 b1
A= as 0 —aq b2
—as aiq 0 b3

—by —by —b3 O

Its is easily seen that the eigenvalues of A are 0, 0 and ++/—a’a — b'b = +iv/a’a + b’'b. By Gerschgorin’s Theorem [see Meyer
(2000, p. 498)], it follows that all eigenvalues of A are contained in the union of the four circles of the complex plane with common
midpoint 0 and radii r;, ¢ = 1,2,3,4, where ri = |as| + |az| + |b1], r2 = |as| + |a1]| + b2, r3 = |az| + |a1| + |b3], and
rq4 = |b1| + |b2| 4+ |b3|. Hence | £iva'a + 0| < max{r; : i =1,2,3,4}, and by (a 4+ b)'(a +b) = a’a + b'b the assertion follows.

REMARK: Observe that our upper bound can be sharper than ||a]| + ||b]|. To illustrate this, consider a; = (1,—1,0)" and
by = (1,1,1)". Then aja; = 2, biby = 3, ajby = 0, \J/a\a; + Vb1 = V5 ~ 2.2361, |lay|| + ||b1] = V2 + V3 =~ 3.1463
which is larger than our upper bound 3. The upper bound is attained in the following case: ag = (1,0,—1),b2 = (1,0,1). Then
|laz + b2|| = 2, which is also our upper bound. Note that in general the alternative upper bound ||a| + ||b]| is attained if and only if
a and b are linearly dependent. This follows from the Cauchy-Schwarz inequality.

Reference
C. D. Meyer (2000). Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia.

Problem 33-5: Factorization of a Projector
Proposed by Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany. trenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix with possibly complex entries. Show that P can be written as P = R.S, where R is positive definite
and S is nonnegative definite.

Solution 33-5.1 by Dario FASINO, University of Udine, Udine, Italy: fasino@dimi.uniud.it

Any idempotent matrix P is diagonalizable, i.e., P = M DM~ with D a (0, 1)-diagonal matrix. Let R = MM* and S =
(M~1)*DM~1. Then P = RS, R is positive definite, and S is nonnegative definite, as requested.

Solution 33-5.2 by Chi-Kwong L1, The College of William & Mary, Williamsburg, Virginia, USA: ckli@math.wm.edu

Problem 33-5 can be solved by a canonical form of idempotent n x n matrices under unitary similarity [see Djokovi¢ (1991)],
namely, if P? = P then there is a unitary matrix U such that

U'PU=1,30,6P1® - ®F,,

where p + ¢ + 2r = n, and

1 0
Pj< > Withqj'>07 jil,...,T.
g 0

1 g 1 0 ]
R; = ) and S; = , o Jg=1,...r
4 2q; 0 0

Now, Pj = Rj Sj with
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Let R=Ulp1q®R1&---®&R)U*and S=U(I, 0,851 % --- & S,)U*. We get the required factorization of P.
Reference

D.Z. Djokovic (1991). Unitary similarity of projectors. Aequationes Mathematicae 42, no. 2-3, 220-224.

Solution 33-5.3 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wirench@trinity.edu

If P € C" ™ and P # 0, I, then there are positive integers r, s € {1,...,n} and matrices U € C"*" and V' € C"™** such that
r+s=n,PU=U,PV=0,UU=1,,V*V =1, and

P=(U V)(g g)(U vy

In fact, it is straightforward to verify that

~

U . -
(U V)‘1:<‘7>, with U=U*P and V=V*(I-P).

P=(U V)(IOT 8) <g>:(U V)(gz)(ﬁ* f/*)(“;’ 8) <g>:RS, (26)

with R = UU* + VV* and S = U*U = P*UU*P. If z € C", then z*Rz = |U*z|2 + [V*22 and 2*Sz = |[U*Pz2, so
R is positive definite and S is nonnegative definite. From (26), P = UU = U(U*P) is a full rank factorization of P; hence,
Pt = P*UU*PP*U)~'U".

Hence,

Solution 33-5.4 by G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de
and Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: hjw.de@uni-bonn.de

Our solution offers additional insights into the theory of complex idempotent matrices. For a complex matrix A € C™*", let A*,
R(A), and N'(A) denote the conjugate transpose, the range (column space), and the null space, respectively, of A. In what follows,
we consider some subsets of C"*™. For convenience, let N, H", P2, and P2 be the set of all square, the set of all nonsingular,
the set of all Hermitian, the set of all positive definite and Hermitian, and the set of all nonnegative definite and Hermitian n x n
matrices, respectively.

Since the results in our first theorem are straightforward, their easy proofs are left to the interesting reader.

THEOREM 1. Let (R, S) € N x C"*". The following conditions are then equivalent:
(a) RS is idempotent, i.e, R"ISR™'S = R7'8S.
(b) R tisa generalized inverse of S, i.e., SR™15 =65.
(c) (R— S)R™LS = 0 or, equivalently, SR™'(R — S) = 0.
(d) R~Y(R - S) is idempotent, i.e, R"*(R— S)R"Y(R—S) =R Y(R-09).
(e) S and R— S is a pair of bi-complementary matrices, i.e., R(S) ® R(R—S) = C", where @ indicates a direct sum. For more
details concerning bi-complementarity, see Werner (1986).

THEOREM 2. Let P € C"*™ be idempotent, and let R € PZL. The following conditions are then equivalent:
(a) RP € PZ.
(b) RP € H™.
(¢) RP = P*RP.
(d R(I, — P) e PZ.
(e) R(I, — P) € H™
® R(I,-P)=(I,— P)*R(I, — P).

PROOF. (a) < (b) < (c): Trivially, (a) = (b), and (c) = (a). Now, let RP be Hermitian, i.e, let RP = P*R. Then, in view of
P? =P, RP = RPP = P*RP € PZ. So, we also have (b) = (c).

(b) & (d) & (e) < (f) : Trivially, (b) < (e), (d) = (e), and (f) = (d). The proof of (e) = (f) follows on similar lines as (b) = (c)
and is therefore left to the reader. O
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THEOREM 3. Let P € C™*™ be idempotent, and let (R, S) € PL x Pg be such that P = R™'S or, equivalently, RP = S. Then
R=P*RP+(I—P)*R(I—P) and S=P*RP.

PROOF. Because S = RP € PZ, according to Theorem 2(c)&(f), clearly S = P*RP and R = RP+ R(I — P) = P*RP + (I —
P)*R(I — P). B O

THEOREM 4. Let P € C™*" be idempotent, and let W € PZL. For R :== P*WP + (I — P)*W(I — P) and S := P*W P we then
have the following:

(@ Re P2, S=P*RPecPland R—S=(I—-P)*R(I - P) € PL

(b) RP = S or, equivalently, P = R™'S.

PROOF. (a): In view of P2 = P, clearly P*RP = P*SP = Sand (I — P)*R(I — P) = (I — P)*(R—-S){ - P)=R-S.
Since P*WP € PZ and (I — P)*W (I — P) € PZ, trivially R € PZ. Evidently, R(P*WP) = R(P*), R((I - P)*W(I - P)) =
R((I — P)*) and C" = R(P*) & R(I — P*). Therefore, needless to say, R € PZ.

(b): From the definitions of R and .S we directly get RP = S or, equivalently, P = R™1S. O

For a given idempotent matrix P € C™*™, we now immediately obtain, just by combining our previous theorems, the following
complete representation of the set of all those pairs (R, S) € PL x PL for which P = R71S.

COROLLARY 5. Let P be an idempotent complex n x n matrix. For (R, S) € P2 x PZ we then have R~'S = Pifand only if
R=PWP+(I—-P)W({I—-P) and S=P*'WP
Jor some matrix W € PL. In which case,
S=P'RPcP:, R—S=(I—-P)R(I—P)ePZ, and S is bi-complementary to R — S.

Reference
H. J. Werner (1986). Generalized inversion and weak bi-complementarity. Linear and Multilinear Algebra 19, 357-372.

Solutions to Problem 33-5 were also received from Johanns de Andrade Bezarra, from Alicja Smoktunowicz and Iwona Wrobel, and
from Pei Yuan Wu. Smoktunowicz & Wrobel used the same canonical form as Chi-Kwong Li in his Solution 33-5.2, but with a
different reference.

Problem 33-6: Projectors and Similarity
Proposed by G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let P be an idempotent matrix with possibly complex entries. Show that P is Hermitian if and only if P and P* are similar, where
P denotes the Moore-Penrose inverse of P.

Solution 33-6.1 by Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznan, Poland: baxx@amu.edu.pl

Let P be an idempotent matrix and let P* denote its Moore-Penrose inverse. It is well known that if P is Hermitian, then P = P+
[see e.g., Trenkler (1994, Theorem 12, part (i))], and thus P and P are trivially similar. Conversely, if there exists a nonsingular
matrix @ such that Pt = Q' P(Q, then PT is idempotent. Hence, in view of part (v) of Theorem 12 in Trenkler (1994), it follows
that P is Hermitian.

Reference

G. Trenkler (1994). Characterizations of oblique and orthogonal projectors. In: Proceedings of the International Conference on Linear Statistical
Inference LINSTAT 93 (T. Calinski & R. Kala, eds.), Kluwer, Dordrecht, pp. 255-270.

Solution 33-6.2 by Alicja SMOKTUNOWICZ and Iwona WROBEL, Warsaw University of Technology, Warsaw, Poland:
smok@mini.pw.edu.pl; wrubelki@wp.pl

It is known [see Fuji & Furuta (1980)] that if P € C™*™ is idempotent, then there exists a unitary matrix U such that P = UTU*,

where
T < I, B) 7)
~\o o0/’
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with r = rank(P). Here I, denotes an r x r identity matrix. There is no loss of generality in assuming that 1 < r < n. Itis
sufficient to prove the result only for 7". We show that 7" is Hermitian if and only if 7" and 7" are similar.

First let us recall two useful facts. The Moore-Penrose inverse of 7' is given by the formula [cf. Aleksiejczyk & Smoktunowicz

(2000)]
T+ _ (I, +BB*)™* 0 .
B*(I, + BB*)™! 0
To check it, one can easily verify the Moore-Penrose axioms. Notice also that as 7" is an idempotent and 1 < r = rank(T") < n, the

spectra of T and T are
1
T)=1{0,1 d TH) ={0, ——— 28
A1) =101} and o(T) = {0,y 28)
where o (B) are the singular values of B. The last equality can be easily verified with help of the characteristic polynomial of 7+
and the spectral mapping theorem.

To establish the desired equivalence, suppose first that 7" is Hermitian. Then B = 0 in (27) and

T+—<I’” 0)—T
=0 o)~

Now let 7" be similar to 7F. Then T" and 7" have the same spectrum, i.e. o(T) = o(T"). This and (28) imply that B = 0.
Then
I. 0
T = =T,
0 0
References

J. L. Fuji & T. Furuta (1980). Holub’s factorization and normal approximants of idempotent operators. Mathematica Japonica 25/1, 143—145.
M. Aleksiejezyk & A. Smoktunowicz (2000). On properties of quadratic matrices. Mathematica Pannonica 11/2, 239-248.

Solution 33-6.3 by the Proposer G6tz TRENKLER, Universitdit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Necessity is trivial, since P = P* implies P = P*. Assume now P = RP*R~! for some nonsingular R. Then
P? = RPYR™'RPT*R™! and thus P = RP*P*R~! which implies P* = P*tP*. Consulting complement 7(ii), Rao and
Mitra (1971, p. 68), it follows that R(PP*P*) C R(P*) and R(P*PP) C R(P), where R(-) denotes the column space of a
matrix. Since both P and P* are idempotents, we obtain P*PP* = PP* and PP*P = P*P. Then by the well-known cancellation
rule we get P = P* P, i.e. P is Hermitian.

Reference
C.R. Rao & S. K. Mitra (1971). Generalized Inverse of Matrices and its Applications. Wiley, New York.

Solution 33-6.4 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: hjw.de@uni-bonn.de

In what follows, let P be idempotent. If P = P*, then P™ = P, so that necessity is trivial. Conversely, let P* = NPN 1 for
some nonsingular matrix N. Then (PT)? = NP2N~! = NPN~! = P*, and so sufficiency follows just by citing Corollary 2(b)
in Werner (2003): If P is idempotent, then P is idempotent if and only if P is a partial isometry, i.e., if and only if P = PP*P, in
which case P> = P = P* = P*.

Reference
H. J. Werner (2003). A condition for an idempotent matrix to be Hermitian. Solution 30.7-4. IMAGE: The Bulletin of the International Linear
Algebra Society 31 (October 2003), 42-43.

A Solution to Problem 33-6 was also received from Chi-Kwong Li. He used the same canonical form as Smoktunowicz & Wrobel,
but with a different reference.

Problem 33-7: Property of the Cross Product
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let a, b, ¢, and d be vectors from R3. For the matrix
A= (cxd)(bxa)+ (axb)cxd),
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find the unique vector e such that Az = e x x for all z € R?. Here, “x” denotes the usual cross product in R*.

Solution 33-7.1 by Andres SAEZ-SCHWEDT, Universidad de Leén, Ledn, Spain: demass@unileon.es

Set M = (¢ x d)(b x a)’, so that A = M — M’ is skew-symmetric and there exists certainly a unique e such that Az = e x « for
all z in R3: if

0 —€3 €9
A= €3 0 —e1 ,
—ey €1 0
then the associated vector is ¢ = (eg, ea, e3)’.
Suppose a x b = —b x a = (a1,as,a3),c x d = (by,bs,b3)" and let {vy,vo,v3} be the standard basis of R®. Now e; is
the element (3,2) of A, hence e; = viAvs = vi(c x d)(b X a)'va + vi(a X b)(c x d)'va = bz(—az) + asbs, and similarly
eq = vj Avg = —bras + bsay and e3 = vy Av; = byas — baay, which means that e = (¢ x d) X (a x b).

Solution 33-7.2 by Diego SAEZ-SCHWEDT, Universidad ORT, Montevideo, Uruguay: sacz@ort.edu.uy

First of all, as b x a = —a x b we have A = (a x b)(c x d)’ — (¢ x d)(a x b)’, hence for all z € R? one has
Az = (a x b)(cx d)'z — (¢ x d)(a x b) .

If <, > denotes the scalar product and we define u = ¢ X d,v = a x b, then Ax = v < u,z > —u < v,z >. Now, by the triple cross
product identity (u X v) X x =< u,z > v— < v,z > u one has that the equality Az = e x x holds fore = u xv = (¢ xd) x (a xb).
The vector e is unique because A is skew-symmetric (it is equal to a matrix minus its transpose).

Solution 33-7.3 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wirench@trinity.edu

We can write A = Sa’ — af’,wherea=bxa= (a1 s a3 )/ and3=cxd= (B, (2 f3). Therefore,

0 —€3 €9
A= €3 0 —e€1 5
—€9 €1 0

with e = Ckg,@g — agﬁQ, €y = 04361 — O[153 and €3 = O[lﬂg — Ckg,@l. Lete = (61 €y €3 )/ = X ﬁ = (b X CL) X (C X d) Then
Ax =e x z forall z € R3.

A solution to Problem 33-7 was also received from Gotz Trenkler, the proposer of this problem.

Problem 33-8: Singular Value Decomposition of a Skew-Symmetric Real Matrix
Proposed by G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let A be a 3 x 3 skew-symmetric matrix with real entries. Find a singular value decomposition of A4, i.e., provide a representation
A =UDV’, where U and V are orthogonal, and D is a diagonal matrix of singular values of A.

Solution 33-8.1 by Jodo R. CARDOSO, Instituto Superior de Engenharia de Coimbra, Coimbra, Portugal: jocar@isec.pt
Let

0 —c b
A= ¢ 0 -—a
-b a 0
be a 3 x 3 skew-symmetric real matrix and o := v/a? + b + ¢2. The spectrum of A is {0, +ai}. We will assume throughout that

a # 0 (i.e. A #0) and that 8 := Va2 + b? £ 0. We note that if 3 = 0, the problem is trivial.
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First, we find an orthogonal diagonalization of the real symmetric matrix A’A = —A2?. Using the eigenvectors of A and the
Gram-Schmidt orthogonalization process, we have A’A =V D V', where

ajo =b/B  —ac/(ap)
Vi=|b/a a/f —bec/(aB)
c/a 0 B/
is orthogonal and D = diag(0, a2, a?). From the theory of singular values, we know that the matrix A allows the following

singular value decomposition: A = UDV’, where V is the matrix above, D is a diagonal matrix with the singular values of A and
U = [u1 uz ug] is an 3 x 3 orthogonal matrix whose columns satisfy

1 1
uy € N(A), ug = aA’UQ, uz = aA’Ug. (29)

Here N(A’) denotes the null space of A’ and v; (i = 1,2, 3) is the i-th column of V. Using (29) we can easily find the orthogonal
matrix U and write

a/a —ac/(aB) b/p 0 0 0 afa b/ c/a
A=UDV'=| b/la —bc/(af) —a/B 0 a 0 —b/ a/p 0
c/a B 0 0 0 « —ac/(aB) —bc/(af) [la

Solution 33-8.2 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wirench@trinity.edu
If A # 0 we can write A = 0 Ay with o > 0 and

0 —as ag a1
Ay = as 0 —ay |, where a= | ay | e R3
—Aas aq 0 as

is a unit vector. Let b € R? be a unit vector perpendicular to a, and let ¢ = a x b. Since Agy = a x y forall y € R3, Aga = 0,

Apb = ¢, and Age = —b. Since {a, b, ¢} is an orthonormal set, it is straightforward to verify that if
100 —c
Ai=(b ¢ a)|]0 1 0 o,
0 00 a

then Aja = 0 = Aga, A1b = c = Agh, and Ajc = —b = Agc. Since {a, b, c} is a basis for R3, it follows that Ay = A;. Hence,

c 0 0 —c
A=cA1=(b ¢ a)|0 o O b
0 0 0 a
Moreover, A has the spectral representation
ot 0 O u*

A=(u v a)| 0 —0oi O v* |,

with u = (ib + ¢)/v2 and v = (b +ic)/V/2.

Solution 33-8.3 by the Proposer G6tz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de
Let A #£ 0 (the case A = 0 is trivial). Write
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so that A is uniquely determined by the vectora = (a; as a3 ) € R®. Note that a x 2 = Az for all z € R?, where “x” denotes
the vector cross product in R3.

Assume first ||a|| = 1. Then A’A = AA’ = I — aa’ = Q,, which is the orthogonal projector on the two-dimensional subspace
of all vectors orthogonal to a. The eigenvalues of @), are 1, 1, and 0, coinciding with the singular values of A. Choose vectors b
and c of norm 1 satisfying Ab = a x b = ¢ and Ac = a x ¢ = —b. Define the matrices V and U by their column representations:
V=(b ¢ a)andU = (¢ —b a). Then V and U are orthogonal matrices, i.e. U'U = I = V'V. Let D = diag(1,1,0) be
the diagonal matrix of the singular values of A. ThenUD = (¢ —b 0) = AV, and consequently A = UDV' = ¢b’ — bc/, which
is the desired singular value decomposition of A.

For the general case of arbitrary norm of a write A = |a||B, where B = mA. Then the skew-symmetric matrix B is
characterized by the vector b = a/||a||. Thus our preceding derivations apply, and consequently A may be written as A = UD, V"’
with D, = diag(||all, ||a||,0), where U and V" are taken from the representation of B.

A Solution to Problem 33-8 was also received from Dario Fasino.

IMAGE Problem Corner: More New Problems

Problem 34-6: The Schur Complement in an Orthogonal Projector
Proposed by Yongge TIAN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

A
B*
(a) The Schur complement D — B * AT B of A in M satisfies the rank subtractivity condition
rank(D — B*A'B) = rank(D) — rank(B*A'B),

B
Suppose that M = < ) is an orthogonal projector, that is, M? = M = M*. Show that

where AT denotes the Moore-Penrose inverse of A.
(b) {D~} C {(B*A'B)~}, where ()~ denotes a g-inverse of a matrix.
(¢) D = B*A'B < rank(M) = rank(A) < rank(D) = rank(B).

Problem 34-7: A Sufficient Condition for a Matrix to be Normal
Proposed by William F. TRENCH, Trinity University, San Antonio, Texas, USA. wirench@trinity.edu

Suppose that A, R € R"*", R = R~! # 41,,, RAR = AT, and 27 (AT A — AAT)y = 0 whenever Rz = x and Ry = —y. Show
that A is normal.

Problem 34-8: A Property for the Sum of a Matrix A and its Moore-Penrose Inverse A™
Proposed by G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let A be a square complex matrix. Show that the following two statements are equivalent:
(i) A+ AT =24A".
(ii)) A+ AT = AAT + AT A,

Verify that under (i) or (ii), A must be EP, i.e. the column spaces of A and A* coincide.

Problem 34-9: A Sum Property for the Moore-Penrose Inverse of EP Matrices
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let A be an x n EP matrix with complex entries whose rows add up to the same sum s. Show that the Moore-Penrose inverse A"
of A has the property that its rows add up to 1/s if s # 0 and 0 if s = 0.

Problem 34-10: On the Product of Orthogonal Projectors
Proposed by Gtz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Let P and @ be orthogonal projectors with complex entries. Show that PQ is an orthogonal projector if and only if PQP < @,
with <j, indicating the Lowner ordering.

Problems 34-1 through 34-5 are on page 40.



Page 40 Spring 2005: IMAGE 34

IMAGE Problem Corner: New Problems

Please submit solutions, as well as new problems, both (a) in macro-free ISTgX by e-mail to hjw.de@uni-bonn.de, preferably embedded as text,
and (b) with two paper copies by regular mail to Hans Joachim Werner, IMAGE Editor-in-Chief, Department of Statistics, Faculty of Economics,
University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Problems 34-6 through 34-10 are on page 39.

Problem 34-1: A Well-Known Matrix Equation
Proposed by Richard William FAREBROTHER, Bayston Hill, Shrewsbury, England, UK: R.W.Farebrother@man.ac.uk

Let V and W be given n X n and m X m positive semidefinite matrices and let X, y, and z be given n x m, n x 1 and m x 1
matrices. Then the system of n + m equations in n + m unknowns

(o) ()= (2)

is well-known in Mathematical Statistics when W = 0 and z = 0 are both null. Readers are invited to identify at least one other
well-known instance of this matrix equation.

Problem 34-2: Eigenvalues of a Class of Tridiagonal Matrices
Proposed by Steven J. LEON, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA: sleon@umassd.edu

Let o and 3 be real scalars and let A, («, 3) denote the n x n tridiagonal matrix whose entries on the main diagonal are all equal to
« and whose entries on the other two diagonals are all equal to 3 except that the (1, 2) entry is 23. For example,

a 28 0 0
g a [0
A4(Oé,/8) =
0 6 a p
0 0 [ «
Show that the eigenvalues of A,,(«a, 3) are
27 —1
)\j:a+26003M, ji=1,...n.
2n

Problem 34-3: On the Spectral Radius
Proposed by Chi-Kwong LI and Sebastian J. SCHREIBER, The College of William & Mary, Williamsburg, Virginia, USA:
ckli@math.wm.edu; sjschr@wm.edu

Suppose A € M,,,, B € M,, and R is an m X n matrix such that AR = RB.
(a) Suppose R has full column rank. Show that the spectrum of B is a subset of that of A, and hence the spectral radius of B is
not larger than that of A.
(b) If A and B are nonnegative, and if R has no zero rows or zero columns, show that A and B have the same spectral radius.

Problem 34-4: A Range Equality for the Commutator with Two Involutory Matrices
Proposed by Yongge TI1AN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

Suppose that A and B are both involutory matrices of the same order, that is, A2 = B2 = I, where I is the identity matrix. Show
that
range(AB — BA) = range(A — B) Nrange(A + B).

Problem 34-5: A Rank Equality for Sums of Two Outer Inverses of a Matrix
Proposed by Yongge TIAN, University of Alberta, Edmonton, Canada: ytian@stat.ualberta.ca

An m X n matrix X is called an outer inverse of an n x m matrix A if XAX = X. Show thatifa; # 0, as # 0 and a; + a2 # 0,
then rank(a; X1 4+ a2 X3) = rank(X; + X5) for any two outer inverses X; and X5 of A.



