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GENOMIC SIGNAL PROCESSING: FROM MATRIX ALGEBRA TO GENETIC NETWORKS*

ORLY ALTER
DEPARTMENT OF BIOMEDICAL ENGINEERING AND INSTITUTE FOR CELLULAR AND MOLECULAR BIOLOGY,
UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX 78712

1. Introduction.

1.1. DNA Microarray Technology and Genome-Scale Molecular Biological Data. The Human Genome
Project, and the resulting sequencing of complete genomes, fueled the emergence of the DNA microarray hybridization
technology in the past decade. This novel experimental high-throughput technology makes it possible to assay the
hybridization of fluorescently tagged DNA or RNA molecules, which were extracted from a single sample, with several
thousand synthetic oligonucleotides [1] or DNA targets simultaneously. Different types of molecular biological signals,
such as DNA copy number, RNA expression levels and DNA-bound proteins’ occupancy levels, that correspond to
activities of cellular systems, such as DNA replication, RNA transcription and binding of transcription factors to DNA,
can now be measured on genomic scales [2, 3]. For the first time in human history it is possible to monitor the flow of
molecular biological information, as DNA is transcribed to RNA, RNA is translated to proteins, and proteins bind to
DNA, and thus to observe experimentally the global signals that are generated and sensed by cellular systems. Already
laboratories all over the world are producing vast quantities of genome-scale data in studies of cellular processes and
tissue samples [5-7].

Analysis of these new data promises to enhance fundamental understanding of life on the molecular level and might
prove useful in medical diagnosis, treatment and drug design. Comparative analysis of these data among two or more
organisms promises to give new insights into the universality as well as the specialization of evolutionary, biochemical
and genetic pathways. Integrative analysis of different types of these global signals from the same organism promises to
reveal cellular mechanisms of regulation, i.e., global causal coordination of cellular activities.

1.2. From Technology and Large-Scale Data to Discovery and Control of Basic Phenomena Using
Mathematical Models: Analogy from Astronomy. Biology and medicine today, with these recent advances in
DNA microarray technology, may very well be at a point similar to where physics was after the advent of the telescope
in the 17th century. In those days, astronomers were compiling tables detailing observed positions of planets at different
times, for navigation. Popularized by Galileo Galilei, telescopes were being used in these sky surveys, enabling more
accurate and more frequent observations of a growing number of celestial bodies. One astronomer, Tycho Brahe, compiled
some of the more extensive and accurate tables of such astronomical observations. Another astronomer, Johannes Kepler,
used mathematical equations from analytical geometry to describe trends in Brahe’s data, and to determine three laws
of planetary motion, all relating observed time intervals with observed distances. These laws enabled the most accurate
predictions of future positions of planets to date. Kepler’s achievement posed the question: Why are the planetary
motions such that they follow these laws? A few decades later, Isaac Newton considered this question in light of the
experiments of Galileo, the data of Brahe and the models of Kepler. Using mathematical equations from calculus, he
introduced the physical observables mass, momentum and force, and defined them in terms of the observables time and
distance. With these postulates, the three laws of Kepler could be derived within a single mathematical framework,
known as the universal law of gravitation, and Newton concluded that the physical phenomenon of gravitation is the
reason for the trends observed in the motion of the planets [8]. Today, Newton’s discovery and mathematical formulation
of the basic phenomenon that is gravitation enables control of the dynamics of moving bodies, e.g., in exploration of
outer space.

The rapidly growing number of genome-scale molecular biological datasets hold the key to the discovery of previously
unknown molecular biological principles, just as the vast number of astronomical tables compiled by Galileo and Brahe
enabled accurate prediction of planetary motions and later also the discovery of universal gravitation. Just as Kepler and
Newton made their discoveries by using mathematical frameworks to describe trends in these large-scale astronomical
data, also future predictive power, discovery and control in biology and medicine will come from the mathematical
modeling of genome-scale molecular biological data.

1.3. From Complex Signals to Simple Principles Using Mathematical Models: Analogy from Neuro-
science. Genome-scale molecular biological signals appear to be complex, yet they are readily generated and sensed by
the cellular systems. For example, the division cycle of human cells spans an order of one day only of cellular activity.

*Excerpted from Alter, O., “Genomic Signal Processing: From Matrix Algebra to Genetic Networks, to be published in Microarray Data
Analysis: Methods and Applications, Korenberg, M. J., ed. (Humana Press).
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The period of the cell division cycle in yeast is of the order of an hour.

DNA microarray data or genomic scale molecular biological signals in general, may very well be similar to the input
and output signals of the central nervous system, such as images of the natural world that are viewed by the retina
and the electric spike trains that are produced by the neurons in the visual cortex. In a series of classic experiments,
the neuroscientists Hubel and Wiesel [9] recorded the activities of individual neurons in the visual cortex in response
to different patterns of light falling on the retina. They showed that the visual cortex represents a spatial map of the
visual field. They also discovered that there exists a class of neurons, which they called “simple cells,” each of which
responds selectively to a stimulus of an edge of a given scale at a given orientation in the neuron’s region of the visual
field. These discoveries posed the question: What might be the brain’s advantage in processing natural images with a
series of spatially localized scale-selective edge detectors? Barlow [10] suggested that the underlying principle of such
image processing is that of sparse coding, which allows only a few neurons out of a large population to be simultaneously
active when representing any image from the natural world. Naturally, such images are made out of objects and surfaces,
i.e., edges. Two decades later, Olshausen and Field [11] developed a novel algorithm, which separates or decomposes
natural images into their optimal components, where they defined optimality mathematically as the preservation of a
characteristic ensemble of images as well as the sparse representation of this ensemble. They showed that the optimal
sparse linear components of a natural image are spatially localized and scaled edges, thus validating Barlow’s postulate.

The sensing of the complex genomic scale molecular biological signals by the cellular systems might be governed by
simple principles, just as the processing of the complex natural images by the visual cortex appear to be governed by the
simple principle of sparse coding. Just as the natural images could be represented mathematically as superpositions, i.e.,
weighted sums, of images, which correlate with the measured sensory activities of neurons, also the complex genomic scale
molecular biological signals might be represented mathematically as superpositions of signals, which might correspond
to the measured activities of cellular elements.

1.4. Matrix Algebra Models for DNA Microarray Data. The first data-driven predictive models for DNA
microarray data or genomic scale molecular biological signals in general use adaptations and generalizations of matrix
algebra frameworks [12] in order to provide mathematical descriptions of the genetic networks that generate and sense
the measured data [Fig. 1]. The singular value decomposition (SVD) model formulates a dataset as the result of
a simple linear network: The measured gene patterns are expressed mathematically as superpositions of the effects
of a few independent sources, biological or experimental, and the measured sample patterns — as superpositions of
the corresponding cellular states [13-15]. The comparative generalized SVD (GSVD) model formulates two datasets,
e.g., from two different organisms such as yeast and human, as the result of a simple linear comparative network:
The measured gene patterns in each dataset are expressed mathematically simultaneously as superpositions of a few
independent sources that are common to both datasets, as well as sources that are exclusive to one of the datasets or
the other [16]. The integrative pseudoinverse projection model approximates any number of datasets from the same
organism, e.g., of different types of data such as RNA expression levels and proteins’ DNA-binding occupancy levels,
as the result of a simple linear integrative network: The measured sample patterns in each dataset are formulated
simultaneously as superpositions of one chosen set of measured samples, or of profiles extracted mathematically from
these samples, designated the “basis” set [17, 18].

The mathematical variables of these models, i.e., the patterns that these models uncover in the data, represent
biological (or experimental) reality. The “eigengenes” uncovered by SVD, the “genelets” uncovered by GSVD, and the
pseudoinverse correlations uncovered by pseudoinverse projection, correlate with independent processes, biological or ex-
perimental, such as observed genome-wide effects of known regulators or transcription factors, the cellular elements that
generate the genome-wide RNA expression signals most commonly measured by DNA microarrays. The corresponding
“eigenarrays” uncovered by SVD and “arraylets” uncovered by GSVD, correlate with the corresponding cellular states,
such as measured samples in which these regulators or transcription factors are overactive or underactive.

The mathematical operations of these models, e.g., data reconstruction, rotation and classification in subspaces
spanned by these patterns, also represent biological (or experimental) reality. Data reconstruction in subspaces of selected
eigengenes, genelets, or pseudoinverse correlations, and corresponding eigenarrays, or arraylets, simulates experimental
observation of only the processes and cellular states that these patterns represent, respectively. Data rotation in
these subspaces simulates the experimental decoupling of the biological programs that these subspaces span. Data
classification in these subspaces maps the measured gene- and sample patterns onto the processes and cellular states
that these subspaces represent, respectively.

Since these models provide mathematical descriptions of the genetic networks that generate and sense the measured
data, where the mathematical variables and operations represent biological (or experimental) reality, these models have
the capacity to elucidate the design principles of cellular systems as well as guide the design of synthetic ones. These

Cont’d on page 5
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models also have the power to make experimental predictions that might lead to experiments in which the models can
be refuted or validated, and to discover previously unknown molecular biological principles. Ultimately, these models
might enable the control of biological cellular processes in real time and in vivo.

While no mathematical theorem promises that SVD, GSVD and pseudoinverse projection could be used to model
DNA microarray data, or genome-scale molecular biological signals in general, these results are not counterintuitive.
Similar and related mathematical frameworks have already proven successful in describing the physical world, in such
diverse areas as mechanics and perception [19].

First, SVD, GSVD and pseudoinverse projection, interpreted, as they are here, as simple approximations of the
networks or systems that generate and sense the processed signals, belong to a class of algorithms called blind source
separation (BSS) algorithms. BSS algorithms, such as the linear sparse coding algorithm by Olshausen and Field
and the neural network algorithms by Hopfield [20], separate or decompose measured signals into their mathematically
defined optimal components. These algorithms have already proven successful in modeling natural signals and mimicking
computationally the activity of the brain as it expertly perceives these signals, for example, in face recognition [21].

Second, SVD, GSVD and pseudoinverse projection can be also thought of as generalizations of the eigenvalue
decomposition (EVD) and generalized eigenvalue decomposition (GEVD) of symmetric matrices, and inverse projection
onto an orthogonal matrix, respectively. In mechanics, the EVD of the symmetric matrix, which tabulates the energy of
a system of coupled oscillators, uncovers the eigenmodes and eigenfrequencies of this system, i.e., the normal coordinates,
which oscillate independently of one another, and their frequencies of oscillations. One of these eigenmodes represents
the center of mass of the system. The GEVD of the symmetric matrices, which tabulate the kinetic and potential
energies of the oscillators, compares the distribution of kinetic energy among the eigenmodes with that of the potential
energy. The inverse projection onto the orthogonal matrix, which tabulates the eigenmodes of this system, is equivalent
to transformation of coordinates to the frame of reference, which is oscillating with the system [22]. SVD, GSVD and
pseudoinverse projection are, therefore, generalizations of the frameworks that underlie the mathematical theoretical
description of the physical world.
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Fig. 1. The first data-driven predictive models for DNA microarray data. (a) The SVD model. (b) The GSVD
comparative model. (¢) The pseudoinverse projection integrative model.

2. Singular value decomposition (SVD) for modeling DNA microarray data. Let the matrix é of size
N-genes x M-arrays tabulate the genome-scale signal, e.g., RNA expression levels, measured in a set of M samples
using M DNA microarrays. Singular value decomposition (SVD) is a linear transformation of this DNA microarray
dataset from the N-genes x M-arrays space to the reduced L-eigenarrays x L-eigengenes space, where L = min{M, N},

(2.1) é=aeoT.

In this space, the dataset or matrix é is represented by the diagonal nonnegative matrix € of size L-eigenarrays X
L-eigengenes. The diagonality of é means that each eigengene is decoupled of all other eigengenes, and each eigenarray
is decoupled of all other eigenarrays, such that each eigengene is expressed only in the corresponding eigenarray. The
eigengenes and eigenarrays are orthonormal superpositions of the genes and arrays, such that the transformation matrices
7 and 97 are both orthogonal. The eigengenes and eigenarrays are unique up to phase factors of £1 for a real data matrix
é, such that each eigengene and eigenarray captures both parallel and antiparallel gene- and array expression patterns,
except in degenerate subspaces, defined by subsets of equal eigenexpression levels. SVD is, therefore, data-driven, except
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in degenerate subspaces.

The fractions of eigenexpression p; = 612 / Z,le ei, calculated from the “eigenexpression” levels which are listed in the
diagonal of €, indicate for each eigengene and eigenarray their significance in the dataset relative to all other eigengenes
and eigenarrays in terms of the overall expression information that they capture in the data. Note that each fraction
of eigenexpression can be thought of as the probability for any given gene among all genes in the dataset to express
the corresponding eigengene, and at the same time, the probability for any given array among all arrays to express the
corresponding eigenarray.
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Fig. 2. Raster display of the SVD of a yeast cell cycle RNA expression dataset [4], with overexpression (red), no change
in expression (black), and underexpression (green) around the steady state of expression of the 4,579 yeast genes. SVD
is a linear transformation of the data from the 4,579-genes x 22-arrays space to the reduced diagonalized 22-eigenarrays
X 22-eigengenes space, which is spanned by the 4,579-genes x 22-eigenarrays and 22-eigengenes X 22-arrays bases.

SVD is a BSS algorithm that decomposes the measured signal, i.e., the measured gene- and array patterns of, e.g.
RNA expression, into mathematically decorrelated and decoupled patterns, the eigengenes and eigenarrays [13-15]. The
correspondence between these mathematical patterns uncovered in the measured signal and the independent biological
and experimental processes and cellular states that compose the signal was illustrated, e.g., with an analysis of genome-
scale RNA expression data from the yeast Saccharomyces cerevisiae during its cell cycle program [Fig. 2]. Significant
eigengenes and corresponding eigenarrays were shown to correlate with genome-scale effects of independent sources of
expression and their corresponding cellular states. An eigenarray is parallel- and antiparallel associated with the most
likely parallel and antiparallel cellular states, or none thereof, according to the annotations of the two groups of n genes
each, with largest and smallest levels of signal, e.g., expression, in this eigenarray among all N genes, respectively.
A coherent biological theme might be reflected in the annotations of either one of these two groups of genes. The
P-value of a given association by annotation is calculated using combinatorics and assuming hypergeometric probability
distribution of the K annotations among the N genes, and of the subset of &k C K annotations among the subset of

-1
n C N genes, P(kyn, N,K) = (V) S0, (%) (N 5), where (V) = Nn!=1(V — n)!~! is the binomial coefficient [23).
The corresponding eigengene is inferred to represent the corresponding biological process from its pattern of expression.

Mathematical operations with these patterns were shown to simulate biological experiments: (i) the filtering out of

eigengenes and eigenarrays, such as these that are associated with experimental artifacts [14, 15], was shown to simulate

the experimental suppression of the cellular processes and states that these eigengenes and eigenarrays represent; (ii) ro-
tation in an almost degenerate subspace of eigengenes and eigenarrays was shown to simulate experimental decoupling
of the biological programs, such as that the subspace spans; and (iii) the classification of the data according to the
eigengenes and eigenarrays was shown to give a global picture of the dynamics of the biological program these represent,
e.g., of a picture of cell cycle expression that resembles the traditional understanding of yeast cell cycle regulation [24].

It was shown that the SVD model describes, to first order, the RNA expression of most of the yeast genome during
the cell cycle program [25] as being driven by the activities of two periodically oscillating cellular elements or modules,
which are orthogonal, i.e., /2 out of phase relative to one another. The underlying genetic network or circuit suggested
by this model might be parallel in its design to the analog harmonic oscillator. This well-known oscillator design principle
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is at the foundations of numerous physical oscillators, including (i) the mechanical pendulum; (ii) the LC circuit; and
(iii) the chemical Lotka-Volterra irreversible autocatalytic reaction model far from thermodynamic equilibirum [26].

3. Generalized SVD (GSVD) for Comparative Modeling of DNA Microarray Datasets. Let the matrix
é, of size Ni-genes x M;j-arrays tabulate the genome-scale signal, e.g., RNA expression levels, measured in a set of M;
samples using M7 DNA microarrays. Let the matrix és of size Nao-genes x Ma-arrays tabulate the genome-scale signal,
e.g., RNA expression levels, measured in a set of Ms samples under My experimental conditions, that correspond one-
to-one to the M7 conditions underlying é;, such that M; = My = M < max{Ny, No}. This one-to-one correspondence
between the two sets of conditions is at the foundation of the GSVD comparative analysis of the two datasets, and
should be mapped out carefully. GSVD is a simultaneous linear transformation of the two expression datasets é; and
éo from the two Nj-genes x M-arrays and No-genes X M-arrays spaces to the two reduced M-arraylets x M-genelets
spaces,

-1
)

-1
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I
>
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In these spaces the data are represented by the diagonal nonnegative matrices €; and é;. Their diagonality means that
each genelet is decoupled of all other genelets in both datasets simultaneously, such that each genelet is expressed only in
the two corresponding arraylets, each of which is associated with one of the two datasets. The genelets are normalized, but
not necessarily orthogonal, superpositions of the genes of the first dataset and, at the same time, also the second dataset.
The arraylets of the first or the second datasets are orthonormal superpositions of the arrays of the first and second
datasets, respectively. The antisymmetric “angular distances” between the datasets 6, = arctan(ey ,/€am) — 7/4,
calculated from the “generalized eigenexpression” levels which are listed in the diagonals of €; and é;, indicate the
relative significance of each genelet, i.e., its significance in the first dataset relative to that in the second dataset, in
terms of the ratio of expression information captured by this genelet in the first dataset to that in the second.

GSVD is a comparative BSS algorithm that simultaneously decomposes two measured signals, i.e., the measured
gene- and array patterns of, e.g., RNA expression in two organisms, into mathematically decoupled genelets and two
sets of arraylets [16]. The correspondence between these mathematical patterns uncovered in the measured signals and
the similar and dissimilar among the biological programs that compose each of the two signals was illustrated with
a comparative analysis of genome-scale RNA expression data from yeast and human during their cell cycle programs
[Fig. 3]: (i) common genelets and corresponding arraylets were shown to span the common yeast and human cell cycle
subspace, which is common to both the yeast and human genomes, and is manifested in both datasets; and (ii) exclusive
genelets and corresponding arraylets were shown to span the exclusive yeast and human synchronization responses
subspaces. Mathematical operations with these patterns were shown to simulate biological experiments: (i) simultaneous
reconstruction and classification of the yeast and human data in the common subspace outlines the biological similarity
in the regulation of the yeast and human cell cycle programs; whereas (ii) reconstructions and classifications of either
dataset in both the common subspace and the corresponding exclusive subspace simulate experimental observation of
differential expression of the corresponding genome in the two cellular programs of the cell cycle and the synchronization
response, uncovering the pathway- or program-dependent variation in the relations between the expression patterns of,
e.g., the yeast genes KAR/ and CIK1, which are known to be are correlated during mating, yet anticorrelated during
cell cycle progression [27] (and see also [28]).

It was shown that the GSVD comparative model describes, to first order, the RNA expression of most of the yeast
and human [29] genomes during their common cell cycle programs as being driven by the activities of three periodically
oscillating cellular elements or modules, which are /3 out of phase relative to one another. The underlying eukaryotic
genetic network or circuit suggested by this model might be parallel in its design to the digital three-inverters ring
oscillator. Elowitz and Leibler [30] recently demonstrated a synthetic genetic circuit analogous to this digital oscillator.

Comparisons of DNA sequence of entire genomes already give new insights into evolutionary, biochemical and genetic
pathways. Recent studies showed that the addition of RNA expression data to DNA sequence comparisons improves
functional gene annotation and might expand the understanding of how gene expression and diversity evolved. For
example, Stuart, Segal, Koller and Kim [31] and independently also Bergmann, Thmels and Barkai [32] identified pairs
of genes for which RNA coexpression is conserved, in addition to their DNA sequences, across several organisms. The
evolutionary conservation of the coexpression of these gene pairs confers a selective advantage to the functional relations
of these genes. The GSVD comparative model is not limited to genes of conserved DNA sequences, and as such it
elucidates universality as well as specialization of molecular biological mechanisms that are truly on genomic scales.

Cont’d on page 9
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Fig. 3. Raster display of the GSVD of a yeast [4] and a human [5] cell cycles RNA expression datasets, showing a linear
transformation of the yeast and human data from the 4,523-yeast and 12,056-human genes x 18-arrays spaces to the
reduced diagonalized 18-arraylets x 18-genelets spaces, which are spanned by the 4,523- and 12,056-genes x 18-arraylets
bases, respectively, and by the 18-genelets x 18-arrays shared basis.

4. Pseudoinverse projection for integrative modeling of DNA microarray datasets. Let the basis matrix
b of size N-genomic sites or open reading frames (ORFs) x M-basis profiles tabulate M genome-scale molecular biological
profiles of, e.g., RNA expression, measured from a set of M samples or extracted mathematically from a set of M or
more measured samples. Let the data matrix d of size N-ORFs x L-data samples tabulate L genome-scale molecular
biological profiles of, e.g., proteins’ DNA-binding, measured for the same ORF's in L samples from the same organism.
Moore-Penrose pseudoinverse projection of the data matrix d onto the basis matrix b is a linear transformation of the
data from the N-ORFs x L-data samples space to the M-basis profiles x L-data samples space,

(4.1) d — be, bid=e¢

where the matrix bf, i.e., the pseudoinverse of b, satisfies bb'b = b, (b BT)T = bbf, bTbbT = bf, and (BT )T = bT b, such
that the transformation matrices bbT and bb are orthogonal projection matrices for a real basis matrix b. In this space
the data matrix d is represented by the pseudoinverse correlations matrix ¢.

Cont’d on page 11
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Fig. 4. Raster display of the pseudoinverse projection of the yeast cell cycle transcription factors and replication
initiation proteins’” DNA-binding data onto the SVD and GSVD cell cycle RNA expression bases, showing a linear
transformation of the proteins’ binding data from the 2,227 ORFs x 13-data samples space to the nine eigenarrays of
the SVD basis x 13-data samples space (upper), and independently also from the 2,139 ORFs x 13-data samples space
to the six arraylets of the GSVD basis x 13-data samples space (lower).
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Pseudoinverse projection is an integrative BSS algorithm that decomposes the measured gene patterns of any given
“data” signal of, e.g., proteins’ DNA-binding, into mathematically least squares-optimal pseudoinverse correlations with
the measured gene patterns of a chosen “basis” signal of, e.g., RNA expression, in a different set of samples from the same
organism. The measured array patterns of the data signal are least squares-approximated with a decomposition into the
measured array patterns of the basis. The correspondence between these mathematical patterns that are uncovered in
the measured signals and the independent activities of cellular elements that compose the signals was illustrated with
an integration of yeast genome-scale proteins’ DNA-binding occupancy data from cell cycle transcription factors [6] and
DNA replication initiation proteins [7] with the cell cycle time course RNA expression data, using as basis sets the
eigenarrays and arraylets determined by SVD and GSVD, respectively [Fig. 4]. Pseudoinverse correlations uncovered in
the data were shown to correspond to reported functions of, e.g., transcription factors. Mathematical operations with
these patterns were shown to simulate biological experiments: (i) pseudoinverse reconstruction of the data in the basis
simulates experimental observation of only the cellular states manifest in the data that correspond to those in the basis;
and (ii) classification of the basis-reconstructed data samples maps the cellular states of the data onto those of the basis
and gives a global picture of the correlations and possibly also causal coordination of these two sets of states.

It was shown that the pseudoinverse projection integrative model correlates for the first time the binding of repli-
cation initiation proteins with minima or shutdown of the transcription of adjacent ORFs during the cell cycle stage
G [17, 18], under the assumption that the measured cell cycle RNA expression levels are approximately proportional to
cell cycle RNA transcription activity. Diffley, Cocker, Dowell and Rowley [33] showed that replication initiation requires
binding of these proteins at origins of replications across the yeast genome during G;. Micklem et al. [34] showed also
that these replication initiation proteins are involved with transcriptional silencing at the yeast mating loci. Either one
of at least two mechanisms of regulation may be underlying this novel genome-scale correlation between DNA replica-
tion initiation and RNA transcription during the yeast cell cycle: The transcription of genes may reduce the binding

Cont’d on page 13
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efficiency of adjacent origins. Or, the binding of replication initiation proteins to origins of replication may repress, or
even shut down, the transcription of adjacent genes.

Integrative analysis of different types of global signals, such as these measured by DNA microarrays, from the
same organism, promises to reveal global causal coordination of cellular activities. For example, Bussemaker, Li and
Siggia [35] predicted new regulatory motifs by linear regression of profiles of genome-scale RNA expression in yeast
vs. profiles of the abundance levels, or counts, of DNA oligomer motifs in the promoter regions of the same yeast genes.
Lu, Nakorchevskiy and Marcotte [36] associated the knockout phenotype of individual yeast genes with cell cycle arrest
by deconvolution of the RNA expression profiles measured in the corresponding yeast mutants into the RNA expression
profiles measured during the cell cycle for all yeast genes that were microarray-classified as cell cycle-regulated.

This is the first time that a data-driven mathematical model, where the mathematical variables and operations
represent biological reality, has been used to predict a biological principle that is truly on a genome-scale: The ORFs
in either one of the basis or data matrices were selected based on data quality alone, and were not limited to ORFs
that are traditionally or microarray-classified as cell cycle-regulated, suggesting that the RNA transcription signatures
of yeast cell cycle cellular states may span the whole yeast genome. This novel correlation demonstrates the power of
the SVD, GSVD and pseudoinverse projection models to predict previously unknown biological principles.

5. Disscussion: On the Linearity and Orthogonality of Genetic Networks. The SVD model, the GSVD
comparative model and the pseudoinverse projection integrative model are all mathematically linear and orthogonal.
These models formulate genome-scale molecular biological signals as linear superpositions of mathematical patterns,
which correlate with activities of cellular elements, such as regulators or transcription factors, that drive the measured
signal, and cellular states where these elements are active. These models associate the independent cellular states
with orthogonal, i.e., decorrelated, mathematical profiles, suggesting that the overlap or crosstalk between the genome-
scale effects of the corresponding cellular elements or modules is negligible. Recently, Thmels, Levy and Barkai [37]
found evidence for linearity as well as orthogonality in the metabolic network in yeast. Integrating genome-scale
RNA expression data with the structural description of this network, they showed that at the network’s branchpoints,
only distinct branches are coexpressed, and concluded that transcriptional regulation biases the metabolic flow toward
linearity. They also showed that individual isozymes, i.e., chemically distinct but functionally similar enzymes, tend
to be corregulated separately with distinct processes. They concluded that transcriptional regulation uses isozymes as
means for reducing crosstalk between pathways that use a common chemical reaction.

Orthogonality of the cellular states that compose a genetic network suggests an efficient network design: With no
redundant functionality in the activities of the independent cellular elements, the number of such elements needed to
carry out a given set of biological processes is minimized. An efficient network, however, is fragile. The robustness
of biological systems to diverse perturbations, e.g., phenotypic stability despite environmental changes and genetic
variation, suggests functional redundancy in the activities of the cellular elements, and therefore also correlations among
the corresponding cellular states. Carslon and Doyle [38] introduced the framework of “highly optimized tolerance”
to study fundamental aspects of complexity in, among others, biological systems that appear to be naturally selected
for efficiency as well as robustness. They showed that trade-offs between efficiency and robustness might explain the
behavior of such complex systems, including occurrences of catastrophic failure events.

Linearity of a genetic network may seem counterintuitive in light of the nonlinearity of the chemical processes,
which underlie the network. Arkin and Ross showed that enzymatic reaction mechanisms can be thought to compute
the mathematically nonlinear functions of logic gates on the molecular level. They also showed that the qualitative logic
gate behavior of such a reaction mechanism may not change when situated within a model of the cellular program that
uses the reaction: This program functions as a biological switch from one pathway to another in response to chemical
signals, and thus computes a nonlinear logic gate function on the cellular scale. Another cellular program that can
be thought to compute nonlinear functions is the well-known genetic switch in the bacteriophage A, the program of
decision between lysis and lysogeny [40]. McAdams and Shapiro [41] modeled this program with a circuit of integrated
logic components. However, even if the kinetics of biochemical reactions are nonlinear, the mass balance constraints
that govern these reactions are linear. Schilling and Palsson [42] showed that the underlying pathway structure of a
biochemical network, and therefore also its functional capabilities, can be extracted from the linear set of mass balance
constraints corresponding to the set of reactions that compose this network.

That genetic networks might be modeled with linear and orthogonal mathematical frameworks does not necessarily
imply that these networks are linear and orthogonal. Dynamical systems, linear and nonlinear, are regularly studied with
linear orthogonal transforms. For example, SVD might be used to reconstruct the phase-space description of a dynamical
system from a series of observations of the time evolution of the coordinates of the system. In such a reconstruction,
the experimental data are mapped onto a subspace spanned by selected patterns that are uncovered in the data by
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SVD. The phase-space description of linear systems, for which the time evolution, or “motion,” of the coordinates is
periodic, such as the analog harmonic oscillator, is the “limit cycle.” The phase-space description of nonlinear systems,
for which the coordinates’ motion is chaotic, such as the chemical Lotka-Volterra irreversible autocatalytic reaction, is
the “strange attractor.” Broomhead and King [43] were the first to use SVD to reconstruct the strange attractor.

While it is still an open question whether genetic networks are linear and orthogonal, linear and orthogonal mathe-
matical frameworks have already proven successful in describing the physical world, in such diverse areas as mechanics
and perception. It may not be surprising, therefore, that linear and orthogonal mathematical models for genome-scale
molecular biological signals (i) provide mathematical descriptions of the genetic networks that generate and sense the
measured data, where the mathematical variables and operations represent biological (or experimental) reality; (ii) elu-
cidate the design principles of cellular systems as well as guide the design of synthetic ones; and (iii) predict previously
unknown biological principles. These models may become the foundation of a future in which biological systems are
modeled as physical systems are today.
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Professor Richard S. Varga recieves the Hans Schneider Prize
by Michael Neumann

Editor’s note: Richard S. Varga and Richard A. Brualdi were selected as the 2005 Hans Schneider Prize awardees. Richard

Varga received his award at the 2005 ILAS meeting. Richard Brualdi will receive his award at the 2006 ILAS meeting. Below are
some excerpts from Michael Neumann’s presentation of the award to Richard Varga. Michael expresses his thanks to Ljiljana
Cvetkovic, Volker Mehrmann, and Lothar Reichel for their help in preparing the presentation.

Introduction

With the wide ranging contribution and influence that Professor Richard Varga has had over a period of 50 years on the

matrix and linear algebra communities, on the numerical linear algebra community, on the numerical analysis community, on

the

analysis community, and on the approximation theory community, it is truly hard to choose where to begin. But it is also

simple. There are so many statistics about him, that even if the real effect of what lies behind the statistics was not certain, which
it is, Richard would merit a prize just for the size and breadth of his contributions. So let’s start with Richard’s biographical data.

Cont’d on page 16
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Hans Schneider Prize cont’d from page 15

Richard Varga’s Educational Background

Richard Varga was born in the US 76 years ago. He received a B.S. in Mathematics from the Case Institute of Technology, Ohio,
in 1950; an A.M. (“Artium Magister” in Mathematics from Harvard University in 1951; and a PhD in Mathematics from Harvard
University in 1954. His dissertation title was: “Properties of a Special Set of Entire Functions and Their Respective Partial Sums”.
His thesis advisor was J. L. Walsh.

From 1954 until 1960, he worked for Westinghouse Electric Corporation, at the Bettis Atomic Power Laboratory in Pittsburgh.
Since 1960, Richard has held many academic posts. He has been a University Professor in the Department of Mathematical Sciences
at Kent State University in Ohio since 1970. He was the Director of the Institute for Computational Mathematics at Kent State
University from 1980-1998, and he has been its Research Director since then.

Richard Varga has published over 240 papers and he has written 6 books, some of which have been translated into foreign
languages. He has organized many international conferences, meetings, and workshops. Among the most celebrated are the
Gatlingburg conferences (that have since become the Householder meetings) and the Oberwolfach Meetings on Matrix Theory and
Numerical Linear Algebra.

He has had 25 PhD students.

Richard Varga has been an editor of several journals. Among them Numerische Mathematik from 1965—present (and its
Editor—in-Chief from 1988-2002), Electronic Transactions on Numerical Analysis (ETNA) 1983—present, and, of course, for our
community, Linear Algebra and its Applications, from 1968—present.

Some of Richard Varga’s Important and Lasting Contributions

Let me begin with Richard’s contributions to linear algebra, matrix theory, and numerical linear algebra. What immediately
comes to mind is Richard’s notion of a regular splitting of a matrix, for which he proved that an iteration matrix induced by a regular
splitting of a matrix A, has a spectral radius less than 1, if and only if, the matrix A is a monotone matrix.

An important example of a monotone matrix is a nonsingular M--matrix, and Varga’s comparison theorem yields for such a
matrix, a straightforward proof of the well-known Stein-Rosenberg criterion for the comparison of the convergence of the Jacobi
and the Gauss-Seidel methods.

The Gauss-Seidel method can be viewed as a special case of the SOR method, when the relaxation parameter equals 1. The
moment the relaxation parameter exceeds 1, the iteration matrix loses its nonnegativity and comparison theorems are no longer
applicable in coming to decide where in the interval [1,2), the SOR iteration matrix attains its minimal spectral radius.

It is here that Varga’s multiple talents and expertise as an analyst, in particular a complex analyst, come to the fore. He
generalizes Young’s optimal SOR theory for the 2-cyclic case to the general p-cyclic case. His powers as an analyst, as a linear
algebraist, and as a numerical analyst continue in the investigation of semi-iterative methods, including Chebyshev’s, and their
relation to SOR theory. In all the above works what is incredible is Richard’s use of both analytical and combinatorial tools to obtain
the best possible results.

In the 1970s, Richard Varga published another very influential manuscript. The paper is, of course, “On recurring theorems on
diagonal dominance”, which was published in the special LAA issue in honor of Olga Taussky-Todd. What is new in the paper is
the way Richard brings under one umbrella the topics of M-matrices, H-matrices, diagonal dominance, and Gersgorin circles. No
longer does a matrix theorist need to think of them as completely separate entities in matrix theory and numerical linear algebra.

Richard’s work on Gersgorin’s circles is also a marvelous achievement in bringing and generalizing many results under one
roof. He shows how the union of the Gerggorin disks contains the union of Brauer ovals of Cassini, which, in turn, contains the
union of the Brualdi lemniscate sets which, in turn, contains the minimal Gersgorin sets which, in turn, contains the spectrum.

We come now to quite a separate area of contribution and interest of Richard’s, namely, in analysis. Some areas in analysis that
Richard has worked on are: (i) Properties of the exponential function. In part his work on this function has been inspired by his work
on numerical methods for the solution of parabolic differential equations. It involves analysis, approximation theory, and it is all
beautiful mathematics. (ii) Richard has published a sequence of papers that sharpen inequalities related to the Riemann hypothesis.
(iii) He has done numerous works on polynomial and rational approximation in the complex plane.

Some Suggestions Concerning Richard Varga

(a) Don’t attempt to physically attack him by day or by night-he is an experienced wrestler, (b) Don’t be lulled by his challenge
to play table tennis—you are likely to lose, (c) Do go to hear him sing in a choir, (d) When he tells you a joke, don’t tell him that he
told you that one before, and (e) Let him repair your car-he has kept a Mercedes Benz on the road for over 30 years, repairing it
all by himself.

CONGRATULATIONS Richard!
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Book Review: Numerical Linear Algebra by Xiao-qing Jin
and Yi-min Wei, Science Press (Beijing/New York), 2004.
ISBN 7-03-013954-2, vii+174 pages, paperback.

This book was written as a textbook for a course
fully dedicated to Numerical Linear Algebra (NLA) at the
advanced undergraduate and beginning graduate level. With
its emphasis on the rigorous theoretical aspects of the subject,
itis suitable for students majoring in mathematics or scientific
computing. In its 174 pages, and nine chapters, it covers in
substantial detail all the topics covered in modern textbooks
on numerical analysis and also includes more advanced
topics such as Krylov subspace methods, in particular,
conjugate gradients and GMRES, for linear systems. Here is
a short description of its contents.

Direct methods for linear systems

Following Chapter 1, which essentially introduces the
notation used and motivates the study of NLA, Chapter 2
discusses the solution of linear systems by direct methods,
with emphasis on the LU and Cholesky factorizations and
pivoting.

Chapter 3, starting with the subject of norms, discusses
the concept of stability and of condition numbers, and
presents a quite clear and complete treatment of backward
error analysis of LU factorization and solution of linear
systems by Gaussian elimination.

Chapter 4 concerns the solution of linear least squares
problems. Following a brief discussion of the Moore--Penrose
generalized inverse, the relevant condition number, and the
solution of least squares problems via the QR factorization,
the computation of the QR factorization via Householder
transformations and Givens rotations is discussed in detail.

Iterative methods for linear systems

Chapter 5 discusses the classical iterative methods
for the solution of linear systems. The methods discussed
are the Jacobi, Gauss-Seidel, and SOR methods, and their
convergence theory for strictly diagonally dominant matrices
and hermitian positive definite matrices. This chapter also
includes a summary of what is known concerning the optimal
relaxation parameter for SOR in the presence of consistently
ordered matrices.

Chapter 6 is a nice introduction to the subject of Krylov
subspace methods for linear systems. It discusses the
steepest descent method, the method of conjugate gradients,
and GMRES. It also gives a brief introduction to the topic
of preconditioning for conjugate gradients. It provides the
known theories of convergence for all three methods in a
thorough manner.

Eigenvalue problems

Chapter 7 treats the eigenvalue problem for nonsymmetric
matrices. Following a short discussion of the Jordan
canonical form and Schur factorization, the power method

and its variants are discussed. Most of the rest of the chapter is
devoted to the basic QR method (without shifts), and a short
discussion of the QR method with shifts is also provided.

Chapter 8 is devoted to the symmetric eigenvalue
problem. It treats the symmetric QR method with shifts
and the Jacobi method and its variants. The solution of the
symmetric tridiagonal eigenvalue problem by the bisection
and divide-and-conquer methods is also treated.

Applications

Chapter 9 is unique in that it is concerned with the
application of preconditioned GMRES to linear boundary
value problems in ordinary differential equations and to delay
differential equations.

The reviewer has found this book to be a very useful
and pleasant textbook in NLA. The presentation, even of the
difficult topics, is concise but to the point and mathematically
rigorous. In addition, the treatment is clear and in-depth. In
most places, complete proofs are provided; only in a few
places is the student/teacher sent to other literature for proofs.
The subjects discussed in each chapter are supplemented by
exercises that should enhance the knowledge of the student.
What is missing is computer exercises. Such exercises could
be supplied with the help of MATLAB. The English can be
improved somewhat; the authors should have this point in
mind if and when they revise or reprint the book.

In conclusion, the reviewer would like to congratulate
the authors for their success in squeezing so much useful
material in 174 pages in such a pleasant way. He highly
recommends Numerical Linear Algebra as a textbook for
courses in numerical linear algebra.

Reviewed by Avram Sidi
asidi@cs.technion.ac.il

Computer Science Department
Technion--Israel Institute of Technology

What is a Comatrix?

In his excellent book The Professor and the Madman:

A Tale of Murder, Insanity, and the Making of the
Oxford English Dictionary  Simon Winchester (1998)
mentions that a “comatrix” (joint womb) is defined in
Henry Cockerham’s The English dictionary of 1623 as
“a maid who make ready and unready her mistress.”
So far as I am aware, the word comatrix is not
currently employed in matrix theory. This is unfortunate,
as in an ideal world it could perhaps be used for the
transpose of the matrix of cofactors thus freeing “adjoint”
for the transpose of the matrix of complex conjugates
as implied by the term “self-adjoint” (or Hermitian).
An interview with the Editor of the Oxford English
Dictionary (OED) included at the end of the spoken word
Cont’d on page 19
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Image Processing and Analysis:
Variational, PDE, Wavelet,

and Stochastic Methods

Tony F. Chan and Jianhong (Jackie) Shen

“A complete and very informative review of
mathematical advances in image analysis in the
past twenty years. Covers a wide range of
techniques in a very affordable style.”

— Jean-Michel Morel, CMLA ENS Cachan, France.

2005 - xxii + 400 pages - Softcover - ISBN 0-89871-589-X
List Price $75.00 - SIAM Member Price $52.50 - Order Code OT94

Computational Methods for Option Pricing

Yves Achdou and Olivier Pironneau

Here is a book for anyone who would like to become better
acquainted with the modern tools of numerical analysis for several
significant computational problems arising in finance.

2005 - xviii + 297 pages - Softcover - ISBN 0-89871-573-3
List Price $80.00 - SIAM Member Price $56.00 - Order Code FR30

Approximation of Large-Scale
Dynamical Systems
Athanasios C.Antoulas
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Provides a comprehensive picture of model
reduction, combining system theory with
numerical linear algebra and computational
considerations. It addresses the issue of
model reduction and the resulting trade-offs
between accuracy and complexity.

2005 - xxvi + 48| pages - Hardcover - ISBN 0-89871-529-6
List Price $125.00 - SIAM Member Price $87.50 - Order Code DC06

Understanding Search Engines: Mathematical
Modeling and Text Retrieval, Second Edition

Michael W. Berry and Murray Browne

“This book gives a valuable, generally non-technical, insight into how
search engines work, how to improve the users’ success in Information
Retrieval (IR), and an in-depth analysis of a mathematical algorithm for
improving a search engine’s performance....Written in an informal
style, the book is easy to read and is a good introduction on how search

engines operate...”
— Christopher Dean, Mathematics Today, October 1999.

2005 - xviii + 117 pages - Softcover - ISBN 0-89871-581-4
List Price $35.00 - SIAM Member Price $24.50 - Order Code SEI7

=% TO ORDER

Accuracy and Reliability in Scientific Computing
Edited by Bo Einarsson

Developing accurate and reliable scientific software is notoriously
difficult. This book investigates some of the difficulties related to
scientific computing and provides insight into how to overcome
them and obtain dependable results.

2005 - xiv + 338 pages - Softcover - ISBN 0-89871-584-9
List Price $64.00 - SIAM Member Price $44.80 - Order Code SEI8

Spectral Properties of Banded Toeplitz Matrices
Albrecht Bottcher and Sergei M. Grudsky

“This book is a tremendous resource for all
aspects of the spectral theory of banded Toeplity
matrices. It will be the first place I turn when
looking for many results in this field, and given
this book’s amazing breadth and depth, I expect to

find just what I need.”
— Mark Embree, Assistant Professor of
Computational and Applied Mathematics,

Rice University.

2005 - x + 41| pages - Softcover - ISBN 0-89871-599-7
List Price $95.00 - SIAM Member Price $66.50 - Order Code OT96

MATLAB Guide, Second Edition
Desmond J. Higham and Nicholas J. Higham

“MATLAB Guide, Second Edition, is my new favorite MATLAB
reference because it not only teaches MATLAB, it fosters a love for all
things related to scientific computation. This well-written book features
top notch examples, the latest MATLAB features, and offers MATLAB
insights that can’t be found anywhere else!”

— Steven H. Frankel, Purdue University.

2005 - xxiv + 382 pages * Hardcover - ISBN 0-89871-578-4
List Price $47.00 - SIAM Member Price $32.90 - Order Code OT92

Partial Differential Equations:

Modeling, Analysis, Computation

R.M.M. Mattheij, S.W. Rienstra,

and J.H.M. ten Thije Boonkkamp

While most existing texts on PDEs deal with

either analytical or numerical aspects of

PDEs, this innovative and comprehensive

textbook features a unique approach that

integrates analysis and numerical solution methods and includes a
third component—modeling—to address real-life problems.

2005 - xxxiv + 665 pages - Softcover - ISBN 0-89871-594-6
List Price $127.00 - SIAM Member Price $88.90 - Order Code MMI10

> Use your credit card (AMEX, MC, and VISA): Go to www.siam.org/catalog * Call toll-free in USA/Canada:
800-447-SIAM - Worldwide, call: 215-382-9800 « Fax: 215-386-7999 ¢« E-mail: service@siam.org. Send check
or money order to: SIAM, Dept. BKIL0S5, 3600 University City Science Center, Philadelphia, PA 19104-2688.
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edition of Winchester’s book implies that readers wishing to
help with the development of the 20th edition of the OED
should consult the relevant pages at http://www.oed.com.

Reference

Simon Winchester (1998). The Professor and the Madman: A Tale
of Murder, Insanity, and the Making of the Oxford English
Dictionary, Harper-Collins, New York.

Richard William Farebrother
11 Castle Road, Bayston Hill,
Shrewsbury, England SY3 ONF.

A new book in Linear Algebra
submitted by Leiba Rodman

Indefinite Linear Algebra and Applications, Birkhauser
Verlag, Basel, 2005, xii + 357 pages, by Israel Gohberg,
Peter Lancaster, and Leiba Rodman.

The following topics of mathematical analysis have
been developed in the last fifty years: the theory of linear
canonical differential equations with periodic Hamiltonians,
the theory of matrix polynomials with selfadjoint coefficients,
linear differential and difference equations of higher order
with selfadjoint constant coefficients, and algebraic Riccati
equations. All of these theories, and others, are based on
relatively recent results of linear algebra in spaces with an
indefinite inner product, i.e. linear algebra in which the usual
positive definite inner product is replaced by an indefinite
one. More concisely, we call this subject indefinite linear
algebra.

This book has the structure of a graduate text in which
chapters of advanced linear algebra form the core. The
development of the topics follows the lines of a usual linear
algebra course. However, chapters giving comprehensive
treatments of differential and difference equations, matrix
polynomials and Riccati equations are interwoven as the
necessary techniques are developed.

The main source of material is our earlier monograph in
this field: Matrices and Indefinite Scalar Product [GLR3].
The present book differs in objectives and material. Some
chapters have been excluded, others have been added, and
exercises have been added to all chapters. An appendix is
also included which may serve as a summary and refresher
on standard results, as well as a source for some less familiar
material from linear algebra with a definite inner product.

The theory developed here has become an essential part
of linear algebra. This, together with the many significant
areas of application, and the accessible style, make this book
useful for engineers, scientists and mathematicians alike.

It starts with the theory of subspaces and
orthogonalization and then goes on to the theory of matrices,
perturbation and stability theory. All of this material is
developed in the context of linear spaces with an indefinite

inner product. The book also includes applications of the
theory to the study of matrix polynomials with selfadjoint
constant coefficients, to differential and difference equations
(of first and higher order with constant coefficients), and to
algebraic Riccati equations.

In the interests of developing a clearer and more
comprehensive theory, chapters on orthogonal polynomials,
normal matrices, and  definite subspaces have been
introduced. These changes are all intended to make our
subject more accessible

The material has an interesting history. The perturbation
and stability results for unitary matrices in a space with
zones of stability for canonical differential equation with
periodic coefficients were initiated by Krein [K]. The next
development in this direction was made by I. M. Gelfand, V.
B. Lidskii, and M. G. Neigaus [GelLid]. Further contributions
were made by V. M. Starzhinskii and V. A. Yakubovich, W.
A. Coppel and A. Howe as well as N. Levinson. The present
authors have made contributions to the theory of linear
differential and difference matrix equations of higher order
with selfadjoint coefficients and to the theory of algebraic
Riccati equations.

All of these theories are based on the same material
of advanced linear algebra: namely, the theory of matrices
acting on spaces with an indefinite inner product. This
theory includes canonical forms and their invariants for
H-selfadjoint, H-unitary and H-normal matrices, invariant
subspaces of different kinds, and different aspects of
perturbation theory. This material makes the core of
the book and makes up a systematic Indefinite Linear
Algebra. Immediate applications are made to demonstrate
the importance of the theory. These applications are to
the solution of time-invariant differential and difference
equations with certain symmetries in their coefficients, the
solution of algebraic Riccati equations, and to the analysis of
matrix polynomials with selfadjoint coefficients.

The material included has been carefully selected to
represent the area, to be self-contained and accessible, to
follow the lines of a standard linear algebra course, and to
emphasize the differences between the definite and indefinite
linear algebras.

References

[GelLid] I.M. Gelfand and V.B. Lidskii, On the structure of the
regions of stability of linear canonical systems of differential
equations with periodic coefficients. Amer. Math. Soc. Transl.
8:143-181, 1958.

[GLR3] I. Gohberg, P. Lancaster, and L. Rodman, Matrices and
Indefinite Scalar Products, volume 8 of Operator Theory:
Advances and Applications. Birkhauser Verlag, Basel, 1983.

[K] M. G. Krein, Topics in differential and integral equations and
operator theory. Operator Theory: Advances and Applications,
Vol. 7, Birkhéduser Verlag, Basel, 1983. (Translation of 1955
Russian original).
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12" ILAS Conference
report by Doug Farenick and Steve Kirkland

The 12" Conference of the International Linear Algebra Society was held June 26-29, 2005 in Regina, Canada, making that meeting
the first ILAS conference to have been held in Canada. The scientific program for the conference was set by an international
organising committee that consisted of Rajendra Bhatia (India), Robert Guralnick (U.S.A.), Daniel Hershkowitz (Israel, ILAS
Preseident), Steve Kirkland (Canada, Committee Chair), Volker Mehrmann (Germany), Bit-Shun Tam (Taiwan), Pauline van den
Driessche (Canada) and Henry Wolkowicz (Canada).

The conference featured 20 invited speakers, who presented eight one hour and twelve half hour lectures. The invited lectures
covered a wide array of research areas, including matrix theory, geometry, algebraic methods, combinatorics and graph theory,
numerical methods, operator theory, the teaching of linear algebra, and applications ranging from genomic signal processing
to optimization. Among the invited talks, there were four featured lectures: (i) the Hans Schneider Prize Lecture (sponsored by
ILAS) by Richard Varga (Kent State); (ii) the LAA Lecture (sponsored by Linear Algebra and its Applications) by Orly Alter
(Texas); (iii) the LAMA Lecture (sponsored by Linear and Multilinear Algebra) by Chi-Kwong Li (William & Mary); and (iv) the
ILAS Education Lecture by Anna Sierpinksa (Concordia). In addition, there were five minisymposia, consisting of twenty-eight
presentations on a range of fundamental issues of current interest in linear algebra, as well as seventy contributed talks. The journal
Linear Algebra and its Applications will publish a special issue devoted to papers presented at the conference. The Editors of this
volume are Rajendra Bhatia, Robert Guralnick, Steve Kirkland, and Henry Wolkowicz.

Cont’d on page 22
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The ILAS Conference attracted 150 participants, and ILAS’s international character was evident at the meeting, as the list of
participants included people from Africa, Asia, Europe, North America and South America. In addition, there were a number of
graduate students and postdoctoral fellows at the conference. An ILAS-sponsored lunch on the first day of the meeting introduced
the students and postdoctoral fellows by name, and invited all conference participants to welcome these young people in the
informal discussions and social activities that normally occur during a mathematics meeting. Further, a joint initiative of ILAS and
the Canadian Mathematical Society resulted in a Student Social that was held at a downtown restaurant, attracting 27 participants.

One of the conference’s highlights was the presentation of the Hans Schneider Prize, which recognises outstanding contributions
to research in linear algebra. At this year’s conference, the Hans Schneider Prize was awarded to Richard Varga of Kent State
University for his career-long contributions to matrix analysis. Varga’s prize lecture was devoted to Gersgorin’s Circle Theorem, the
subject of his very recent Springer monograph. The prize itself was presented at the conference banquet; those in attendance were
treated to an insightful overview of Professor Varga’s research given by Michael Neumann (Connecticut) as well as a gracious and
good-humoured acceptance speech by Professor Varga. The banquet also featured an after-dinner talk by Chandler Davis (Toronto),
who spoke on the development of linear algebra as a field of independent interest, as seen from the perspective of his career and
experience.

Financial support for the conference came from a number of sources, including Atlas Conference Services, the Canadian
Mathematical Society Student Committee, Elsevier, the Fields Institute, ILAS, the Pacific Institute for the Mathematical Sciences,
Taylor & Francis, and the University of Regina. The conference was supported in a variety of technical aspects by the Fields
Institute and by University of Regina staff and students. The local organizers (Shaun Fallat, Doug Farenick, Chun-Hua Guo and
Steve Kirkland) are pleased that Regina was given the opportunity to be the venue for the 12" ILAS Conference. Like anything that
is really worth doing, the planning and hosting of the meeting was both challeging and rewarding.

Graduate students and post-docs honored at ILAS meeting
report by Jeff Stuart

Instituting a tradition at our conferences, ILAS introduced all of the students and postdocs at a box lunch in their honor. The
twenty six new scholars are listed with their institutions are: Mahmud Akelbek (University of Regina), Oscar Maria Baksalary
(Adam Mickiewicz University), Tom Bella (University of Connecticut), Adam Berliner (University of Wisconsin-Madison), Julius
Borcea (Stockholm University), Sebastian Cioaba (Queen’s University), Louis Deaett (University of Wisconsin-Madison), Sandra
Fital (University of Regina), Adja Fosner (University of Maribor), Vicente Galiano (Miguel Hernandez University), Kent Griffin
(Washington State University), Victoria Herranz (Miguel Hernandez University), Jong Sam Jeon (Washington State University),
Plamen Koev (Massachusetts Institute of Technology), Supranee Lisawadi (University of Regina), Xiaoping Liu (University of
Regina), Ricardo Nuno Fonseca de Campos Pereira Mamede (University of Coimbra), Janko Marovt (University of Maribor), Dipra
Mitra (University of Regina), Farej Omar (University of Regina), Bhanu Pratap Sharma (Canadian Math Society), Nung-sing Sze
(University of Hong Kong), Ryan Tifenbach (University of Regina), Vanesa Cortes Utrillas (University of Zaragoza), Bamdad R.
Yahaghi (Institute for Studies in Theoretical Physics and Mathematics) and Fei Zhou (University of Regina).

i

Graduate students, post-docs and
ILAS Executive Committee
at Regina meeting
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Educational Activities at ILAS 2005
report by Jane M. Day, Education Committee Chair

This is a brief snapshot; more details are available from the ILAS Education page (go to http://www.math.technion.ac.il/iic and
click on IIC, then Education links).

Anna Sierpinska of Concordia University spoke on “Innovations in teaching linear algebra, why you’ll never near the end of
it.” She said linear algebra is hard to learn and to teach when instructors insist students understand the theory of vector spaces, as
they should. This is not surprising since this beautiful theory is the polished result of two centuries of deep applications in which
linear spaces and transformations proved essential. Most students have no knowledge of that history, so the ideas seem strange and
unmotivated.

Nevertheless, the most practical thing we can offer linear algebra students is help learning to think theoretically, because then
they will be able to use their knowledge. No one knows straightforward ways to do this, so dedicated instructors must continue to
innovate! She has developed questions which intend to foster theoretical thinking, and using these in weekly quizzes has improved
the performance of many students (but not the weakest ones). These exercises are posted on her website: http://alcor.concordia.ca/
“sierp/.

Luz DeAlba of Drake Univ. spoke about “Assessment strategies for linear algebra.” Drake has mandated development of
assessment strategies for all courses, and Luz is doing this for linear algebra. She says it is easy to evaluate the best and worst
students but hard to do for the middle ones, who continue to exhibit a mixture of “knowledge and ignorance, care and negligence.”
However she has identified specific learning outcomes for sophomore linear algebra, a list of references on assessment, and
examples of assessment methods and strategies she has developed (which is work in progress). See her slides and handout at http:
//www.drake.edu/mathecs/dealba/.

Guershon Harel of UC San Diego spoke about “What is mathematics? A pedagogical answer to a philosophical question.” He
first defined a teacher’s knowledge base as content (knowledge of mathematics), cognition (knowledge of how students learn), and
pedagogy (knowledge of how to teach), and he defined two categories of knowledge: Way of Understanding and Way of Thinking.
The first corresponds to a product of a mental act, and the second to the character of a mental act. (Interpreting, generalizing and
modeling are examples of mental acts.) Then he defined mathematics as consisting of two complementary sets: the first is all
the institutionalized ways of understanding in mathematics throughout history, and the second is all the ways of thinking that
characterize the mental acts whose products comprise the first set. He demonstrated the impact on teaching when considering

mathematics according to this definition. Visit http://www.math.sdsu.edu/ hare for this paper and other resources.

Sang-Gu Lee of Sungkyunkwan University described “Korea’s e-Campus Vision 2007: a New Learning Environment for
Linear Algebra.” Lecture rooms are now equipped with projection equipment, Viewcams, tablet PC and internet D-base. This is
changing teaching methods: computer demonstrations are easy, students in remote locations can easily participate in classes, and
lectures are recorded so students can review them right after class. Sample lectures and Java and Flash tools for linear algebra
can be found on the ILAS Education page or http://matrix.skku.ac.kr/newMatrixCal/Test.html, and http://matrix.skku.kr/

CLAMC/index.html.

Applied Linear Algebra 2005, in Honor of Richard Varga
report by Daniel Szyld

This conference, sponsored by ILAS took place on October 13-15 in the lakeside resort town of Palic, Serbia and Montenegro.
Sixty eight participants from ten countries gathered to honor Richard Varga and his many contributions to the Linear Algebra
community.

It was Varga’s seventy seventh birthday, which is neither a multiple of five, nor a prime number. Nevertheless it was a fitting
celebration on Varga’s influence to the field through his work, his mentoring, his tireless editorial work, and many international
collaborations, for almost fifty years. During the conference it was announced that Linear Algebra and its Applications will have a
special issue dedicated to Richard Varga’s eightieth birthday, to be published, of course, in three years time.

Several lectures were devoted to the topic of H-matrices, diagonally dominant matrices, and eigenvalue localization. This was
natural, one year after the publication of Varga’s latest book GerSgorin and his circles. There were of course many other topics
discussed exposing the audience to the breadth and health of numerical linear algebra today, with many references to Varga’s
work.

The conference was the brainchild of Ljiljana Cvetkovi¢ of the University of Novi Sad, who, together with a wonderful group
of local organizers, made sure everyone enjoyed their stay.

There was for example an evening celebration which included a large cake with seventy seven candles. Richard Varga made
his secret wish and blew them off in one sweep. This was followed by a dance, accompanied by wonderful live music. The dance
lasted for many hours, but everyone recovered by the time of the morning lecture.

Everyone thanked Prof. Cvetkovi¢ and her colleagues for their warm hospitality which, together with the scientific program,

Cont’d on page 24
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made the meeting a great success.

IMAGE readers can get a glimpse of this by looking at the program or the conference pictures at the conference web site:
http://ala0085.ns.ac.yu. They can also read selected papers related to the conference in the forthcoming special issue of Numerical
Algorithms, which is being edited by Michele Benzi, Ljiljana Cvetkovi¢, Michel Neumann, and Tomasz Szulc.

1** International Workshop on Matrix Analysis and Applications
report by Fuzhen Zhang

The 1% International Workshop on Matrix Analysis and Applications was held June 9-10, 2005 at Beijing Normal University,
Beijing, China. Twenty five people from Canada, China, the Czech Republic and the United States participated in the informal
two-day workshop and contributed sixteen talks. The Organizing Committee consisted of Tiangang Lei (National Natural Science
Foundation of China), Xiuping Zhang (Beijing Normal University) and Fuzhen Zhang (Nova Southeastern University, USA).

The conference was generously supported by the Math Department of Beijing Normal University which provided free delicious
meals to all participants for two days, including a banquet dinner. Some participants greatly enjoyed sightseeing of the Great Wall,

Forbidden City, Summer Palace, and Shi-Cha-Hai Lake, etc.

Conference Photograph

ILAS-NET

ILAS operates ILAS-NET, an electronic news service
that transmits announcements of ILAS activities and
circulates other notices of interest to linear algebraists.
Announcements for ILAS-NET or requests to be on the
mailing list for ILAS-NET, should be sent to Shaun Fallat
(sfallat@math.uregina.ca). Subscription to ILAS-NET is
independent of membership in ILAS and is free.

Call for Submissions to IMAGE

IMAGE welcomes expository articles on emerging
applications and topics in Linear Algebra, announcements of
upcoming meetings, reports on past conferences, historical
essays on linear algebra, book reviews, essays on the
development of Linear Algebra in a certain country or region,
and letters to the editor or signed columns of opinion.
Contributions for IMAGE should be sent to either Bryan
Shader (bshader@uwyo.edu) or Hans Joachim Werner
(hjw.de@uni-bonn.de). The deadlines are October 15 for the
fall issue, and April 15 for the spring issue.
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Forthcoming Conferences and Workshops in Linear Algebra

Workshop on the Teaching of Linear Algebra
Philadelphia, Pennsylvania
25 March 2006

A workshop on the teaching of Linear Algebra will be
held at Drexel University on Saturday March 25, 2006. See

http://www.drexel.edu/coas/math/workshop/
for more details and updated information of the workshop.

Invited speakers are: Robert Busby (Drexel University),
Peter Lax (New York University), Gilbert Strang
(Massachusetts Institute of Technology) and Frank Uhlig
(Auburn University).

In addition, there will be a panel discussion with
moderator David Lay (University of Maryland) and panel
members Jane Day, (San Jose University), Guershon Harel
(University of California, San Diego), David Hill (Temple
University) and Steven Leon (University of Massachusetts,
Dartmouth)

There is a small registration fee of $15 for the workshop.
There is an opportunity for contributed talks and posters.
Please follow the instructions on the workshop website.

The organizers are: Herman Gollwitzer (Drexel University,
hgollwit@math.drexel.edu) and Hugo Woerdeman (Drexel
University, hugo@math.drexel.edu).

Graduate Student Combinatorics Conference
Madison, Wisconsin
22-23, April 2006

The 2006 meeting of the Graduate Student Combinatorics
Conference will be hosted by the University of Wisconsin—
Madison April 22-23, 2006 in Madison, Wisconsin.

The purpose of this conference is to bring together
graduate students in combinatorics, let them practice giving
talks, learn about new topics, and get to know other graduate
students in their field.

The conference will feature contributed 20-minute talks
from graduate students, two keynote addresses by Professor
Doron Zeilberger of Rutgers, and a social program. More
information and an online registration form are available at
the conference’s website at

http://www.math.wisc.edu/~ gsccO6.

Conference organizers are Adam Berliner (University
of Wisconsin), Louis Deaett (University of Wisconsin), and
Dimitrije Kostic (Texas A & M University). To contact the
organizers with any questions or suggestions, send an email
to gsccOB6@math.wisc.edu.

Western Canada Linear Algebra Meeting
Victoria, British Columbia, Canada
23-24 June 2006

The Western Canada Linear Algebra Meeting (W-
CLAM) provides an opportunity for mathematicians in

western Canada working in linear algebra and related
fields to meet, present accounts of their recent research,
and to have informal discussions. While, the meeting has
a regional base, it also attracts people from outside the
geographical area. Participation is open to anyone who is
interested in attending or speaking at the meeting. Previous
W-CLAMs were held in Regina (1993), Lethbridge (1995),
Kananaskis (1996), Victoria (1998), Winnipeg (2000) and
Regina (2002).

For W-CLAM 2006, invited speakers include Richard
Brualdi (Univeristy of Wisconsin-Madison) and Mark
Lewis (University of Alberta).

W-CLAM 2006 is partially funded by the Pacific
Institute for Mathematical Sciences, and is being held just
prior to the STAM Conference on Discrete Mathematics,
which will be in Victoria, June 25-28, 2006.

A website with further information will be available
later. If you wish to be included on an email list for further
information on this meeting, please contact Dale Olesky
(dolesky@cs.uvic.ca,)

The 15™ International Workshop on Matrices and
Statistics
IWMS-2006: Uppsala (Sweden)
13-17 June 2006

The 15" International Workshop on Matrices and
Statistics (IWMS-2006) will be held at the University
of Uppsala (Uppsala, Sweden) on June 13-17, 2006.
This Workshop will be hosted by the Mathematics and
Information Technology Centre at Uppsala University. The
purpose of this Workshop is to stimulate research and, in an
informal setting, to foster the interaction of researchers in
the interface between statistics and matrix theory.

Additional emphasis will be put on related numerical
linear algebra issues and numerical solution methods,
relevant to problems arising in statistics. This Workshop
will provide a forum through which statisticians may be
better informed of the latest developments and newest
techniques in matrix theory and may exchange ideas with
researchers from a wide variety of countries.

The Scientific Organizing Committee (SOC) for this
Workshop comprises R. William Farebrother (Shrewsbury,
England, UK), Augustyn Markiewicz (Poznan, Poland),
Simo Puntanen (Tampere, Finland), Dietrich von Rosen
(Uppsala, Sweden), George P. H. Styan (Montréal, Québec,
Canada), and Hans Joachim Werner (chair; Bonn, Germany,
{hjw.de@uni-bonn.de).

The Local Organizing Committee (LOC) consists
of Zhanna Adrushchenko (Uppsala), Johannes Forkman
(Uppsala), Tatjana Nahtman (Tartu, Estonia), Maya
Neytcheva (Uppsala), and Razaw Al Sarraj (Uppsala) and
will be chaired by Dietrich von Rosen (Uppsala, Sweden,
Dietrich.von.Rosen@bt.slu.se).
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This Workshop will include the presentation of both
invited and contributed papers on matrices and statistics.
Invited Speakers include Theodore W. Anderson (USA), Ake
Bjorck (Sweden), Gene H. Golub (USA), David Harville
(USA), Sabine van Huffel (Belgium), Jeffrey J. Hunter
(New Zealand), Ingram Olkin (USA), Friedrich Pukelsheim
(Germany), Youseff Saad (USA), and Muni Srivastava
(Canada). There will also special sessions for papers
presented by Ph.D. students. In addition a special session in
Honour of Dr. Tarmo Pukkila’s 60" Birthday will be organized
and chaired by Erkki Liski.

If you wish to present a talk, please submit the title
and the abstract to the conference secretariat by February
28, 2006. All abstracts should be no more than 300 words
summarizing the paper, include the title of the talk, keywords
and the names, affiliation, addresses and email addresses of
the authors. Electronic submissions in LaTeX or plain text
format are preferred. All abstracts will be refereed by the
Organizing Committee.

Several social activities for all participants including a
conference dinner and a get-together event will be arranged.
Uppsala has a lot to offer, among others, ancient monuments,
a cat without a tail, churches, memories of Linnaeus, castles,
gardens, etc.

Deadlines are: Abstract Submission (February 28, 2006),
Early-bird registration (February 28, 2006), and Registration
(April 23, 2006).

Further information about Uppsala, travel and lodging
arrangements can be found at the Workshop web page:

http://www.bt.slu.se/iwms2006/iwms06.html

The Contact information is:
1SIWMSO06/Dietrich von Rosen
Department of Biometry and Engineering SLU
Box 7032, SE-75007 Uppsala
Phone: (+46) 18671000
Swedish University of Agricultural Sciences
Phone: (+46) 18672025 (Dietrich von Rosen)
Fax: (+46) 1867-35-29
Email: iwmsO6@bt.slu.se

This Workshop which will be the fifteenth in a series
but the first one in Sweden is supported by the Centre of
Biostochastics, the Scandinavian Airlines (SAS), the Swedish
Research Council, the Swedish Statistical Association, the
Swedish Research Council for Environment, Agricultural
Sciences & Spatial Planning, and by John Wiley & Sons,
Ltd. It is also endorsed by the International Linear Algebra
Society.

You might like to combine your participation in IWMS-
2006 with the 5" International Conference on Probability and
Statistics which will be held at Smolenice Castle, Slovakia
(June 5-9, 2006), and/or with the 13" ILAS Conference which
will be held in Amsterdam, The Netherlands (July 18-21,
2006).

8" Workshop on Numerical Ranges and Radii
Bremen, Germany
15-16 July 2006

The 8" Workshop on Numerical Ranges and Numerical
Radii (WONRA) will take place at Universitait Bremen,
Germany from July 15 to July 16, 2006. See

http://www.math.uni-bremen.de/aag/wonraO6
for more details and updated information of the workshop.The
purpose of the workshop is to stimulate research and foster
interaction of researchers interested in the subject. The
informal workshop atmosphere will guarantee the exchange
of ideas from different research areas and, hopefully, the
participants will leave informed of the latest developments
and newest ideas. One may visit the WONRA website

http://www.math.wm.edu/~ ckli/wonra.html
for some background about the subject and previous
meetings. The workshop is endorsed and sponsored by
ILAS, and Professor Man-Duen Choi will be the ILAS
Lecturer.

There will be no registration fees for the workshop.
The 8™ WONRA will be run in conjunction with the 13th
International Linear Algebra Society (ILAS) Conference at
Amsterdam (July 18 -21, 2006).

People who are interested in participating or giving a
talk at the 8th WONRA should contact the organizers: Chi-
Kwong Li (College of William and Mary, Williamsburg,
VA, USA, ckli@math.wm.edu), Leiba Rodman
(College of William and Mary, Williamsburg, VA, USA,
Ixrodm@math.wm.edu), and Christiane Tretter (Universitat
Bremen, ctretter@math.uni-bremen.de). A special issue
of Linear and Multilinear Algebra will be devoted to the
meeting. The organizers of the workshop will be the special
editors.

13" ILAS Conference
Amsterdam, The Netherlands
18-21 July, 2006

From July 18 to 21, 2006 the 13th ILAS conference
will be held in Amsterdam. This is in the week before the
GAMM-SIAM conference on Linear Algebra in Dusseldorf,
Germany. The ILAS will also run in conjunction with the 8
WONRA Workshop on Numerical Ranges and Numerical
Radii which will take place at Universitat Bremen, Germany,
on July 15-16, 2006.

The conference will be organized at the Vrije Universiteit,
located in the southern part of the city of Amsterdam, the
capital of the Netherlands.

The conference will be mainly structured around a
number of themes. For each of those themes an invited lecture
will be combined with a mini-symposium. Themes selected
so far include:Linear Algebra in Statistics, Numerical Linear
Algebra, Matrices in Indefinite Scalar Product Spaces,
Structured Matrices, and Positive Linear Algebra.

In addition, there will be the possibility for participants
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to present their work at the conference, even if it does not fall
under one of the special themes.

The registration fee is 140 euros if paid before April 1,
2006, by bank transfer. Otherwise, you pay 160 euros, which
then can also be paid cash on arrival. There is no possibility
to pay with credit cards!

The conference dinner is 30 euros and an additional 50
euros for each accompanying person. For registration for
ILAS 2006 and conference dinner (including bank details)
abstract submission, and application for financial support,
see the conference website:

http://staff.science.uva.nl/ “brandts/ILAS06/

The most important deadlines and dates are: February
12 (Application for financial support) March 1(Decision on
financial support applications), April 1 (Title and abstract
submission), April 1 (Early registration of 140 euros by bank
transfer), July 1 (Late registration of 160 euros by bank
transfer), and July 17 (Late registration fee of 160 euros
cash).

The city of Amsterdam can be reached easily from
around the globe. The main airport of the Netherlands,
Schiphol airport, is only a short train ride away from both
the city centre and the Vrije Universiteit. In addition,
Amsterdam can be reached from the major cities in Europe
easily by train. Once inside the city, the excellent network of
public transportation will guarantee you an easy trip to your
hotel and the conference location.Participants are expected
to make their own arrangements for accomodation. This can
be done easily online.

The proceedings will appear as a volume of Linear
Algebra and its Applications. Editors for the volume are
Harm Bart, Jan Brandts, Andre Ran and Paul Van Dooren.

GAMM-SIAM Conference on Applied Linear Algebra
Dusseldorf, Germany
24-27 July 2006

The Joint GAMM-SIAM Conference on Applied
Linear Algebra organized in cooperation with ILAS will be
held at the University of Dusseldorf, Germany, from July 24-
27,2006. This conference takes place the week following the
13th ILAS Conference, Amsterdam, July 18-21.

Linear algebra problems and linear algebra algorithms
for their solution are at the very heart of almost all numerical
computations and play a prominent role in modern simulation
methods in science and engineering.

This conference, which belongs to a series of triannual
meetings organized by SIAM in the US, is the premier
international conference on applied linear algebra. We
expect about 250 participants coming from countries all over
the world, working in academia, research labs or industry.
The conference is organized jointly by Heinrich-Heine-

Universitat Dusseldorf (Marlis Hochbruck) and Bergische
Universitat Wuppertal (Andreas Frommer, Bruno Lang).

Participants will present and discuss their latest results
in the area of applied linear algebra, ranging from advances
in the theory over the development and analysis of new
precise and efficient algorithms to large scale supercomputer
applications.

The Program Committee consists of: Michele Benzi,
(Atlanta), Zlatko Drmac (Zagreb), Heike Fassbender,
(Braunschweig), Sven Hammarling, (Oxford), Daniel
Hershkowitz (Haifa), Ilse Ipsen (Raleigh), Bo Kagstrom
(Umea), Steve Kirkland (Regina), Rich Lehoucq,
(Albuquerque), Volker Mehrmann (Berlin), Julio Moro
(Madrid), Jim Nagy (Atlanta), and Paul Van Dooren
(Louvain-la-Neuve).

Additional details can be found at the conference
website: http://www.ala2006.de/

2 International Workshop on Matrix Analysis and
Applications
Fort Lauderdale, Florida, USA
15-16 December, 2006

This two-day workshop aims to stimulate research and
interaction of mathematicians in all aspects of linear algebra
and matrix analysis and their applications and to provide an
opportunity for researchers to exchange ideas and recent
developments on the subjects.

The meeting is sponsored by Nova Southeastern
University and the International Linear Algebra Society
(ILAS). Richard Brualdi, University of Wisconsin—Madison,
will be the ILAS sponsored lecturer.

Online registrations will be accepted until Dec. 8,
2006. A registration fee of $50 will be charged to cover
admission tickets and bus transportation for an excursion
of tropical Florida. Titles and abstracts should be submitted
to Chi-Kwong Li no later than Dec. 8, 2006 by e-mail in
LaTeX/TeX . Detailed information about transportation and
accommodation will be available via web or e-mail.

The organizing committee consists of Zhong-Zhi
Bai (Chinese Academy of Sciences, bzz@lsec.cc.ac.cn),
Chi-Kwong Li, (College of William and Mary,
ckli@math.wm.edu), Bryan L Shader (University of
Wyoming, bshader@uwyo.edu), Hugo Woerdeman (Drexel
University, hugo@math.drexel.edu), Fuzhen Zhang (Chair)
(Nova Southeastern University, zhang@nova.edu), and
Qingling Zhang (Northeastern University, qlzhang@mail.
new.edu.cn).

A special issue, Matrix Analysis and Applications, of the
International J. of Control and Information Sciences will be
devoted to the meeting, and the editors are Dennis Bernstein
(University of Michigan-Ann Harbor), Fuzhen Zhang
(Nova Southeastern University), Hugo Woerdeman (Drexel
University) and Qingling Zhang (Northeastern University).
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IMAGE Problem Corner: Old Problems, Most With Solutions

We present solutions to IMAGE Problems 34-1 through 34-10 [IMAGE 34 (Spring 2005), pp. 40 & 39]. Problems 30-3 [IMAGE 30 (April 2003),
p- 36] and 32-4 [IMAGE 32 (April 2004), p. 40] are repeated below without solution; we are still hoping to receive solutions to these problems.
We introduce 9 new problems on pp. 44 & 43 and invite readers to submit solutions to these problems as well as new problems for publication in
IMAGE. Please submit all material both (a) in macro-free I5STgX by e-mail, preferably embedded as text, to hjw.de @uni-bonn.de and (b) two paper
copies (nicely printed please) by classical p-mail to Hans Joachim Werner, IMAGE Editor-in-Chief, Department of Statistics, Faculty of Economics,
University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. Please make sure that your name as well as your e-mail and classical p-mail
addresses (in full) are included in both (a) and (b)!

Problem 30-3: Singularity of a Toeplitz Matrix
Proposed by Wiland SCHMALE, Universitdit Oldenburg, Oldenburg, Germany: schmale @uni-oldenburg.de
and Pramod K. SHARMA, Devi Ahilya University, Indore, India: pksharmal944@yahoo.com

Letn > 5,¢1,...,ch—1 € C\{0}, z an indeterminate over the complex numbers C and consider the Toeplitz matrix
Co c1 x 0 - -+ 0
c3 [ cc x 0 --- 0
M =
Cne3 Cnea - - - oz
Cned Cn—g - - - o
Cp—1 Cn—2 . . . e C2

Prove that if the determinant det M = 0 in C[z] and 5 < n < 9, then the first two columns of M are dependent. [We do not know
if the implication is true for n > 10.]

While we have received one belated solution to this problem which will be considered for possible publication in
IMAGE 36, we also look forward to receiving some further solutions to Problem 30-3!

Problem 32-4: A Property in R3*3
Proposed by J. M. FE. TEN BERGE, University of Groningen, Groningen, The Netherlands: j.m.f.ten.berge @ppsw.rug.nl

We have real nonsingular matrices X, X, and X3 of order 3 x 3. We want a real nonsingular 3 x 3 matrix U defining W; =
u1; X1 + u2; X2 + uz; X3, j = 1,2, 3, such that each of the six matrices W]-*IW;C, j # k, has zero trace. Equivalently, we want
(W]71Wk)3 = (ajk)?’l 3, for certain real scalars a ;. Conceivably, a matrix U as desired does not in general exist, but even a proof
of just that would already be much appreciated.

We still look forward to receiving solutions to Problem 32-4!

Problem 34-1: A Well-Known Matrix Equation
Proposed by Richard William FAREBROTHER, Bayston Hill, Shrewsbury, England, UK: R.W.Farebrother @Manchester.ac.uk

Let V and W be given n x n and m X m positive semidefinite matrices and let X, y, and z be givenn x m, n x 1 and m x 1
matrices. Then the system of n + m equations in n + m unknowns

(o w) ()= (2)

is well-known in Mathematical Statistics when W = 0 and z = 0 are both null. Readers are invited to identify at least one other
well-known instance of this matrix equation.

Solution 34-1.1 by the Proposer Richard William FAREBROTHER, Bayston Hill, Shrewsbury, England, UK:
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R.W.Farebrother @Manchester.ac.uk
Consider the problem of estimating z’( in the general linear statistical model
u=Xp+e, E(E) =0 E(£) =0,

where u, z, 3and € are n x 1, m x 1, m x 1 and n x 1 matrices and o2 is a positive constant.

Let a be an n x 1 matrix. Then a’u is a linear unbiased estimator of 2’3 with mean a’ X 3 and variance o2a’Va provided
a’ X 8 = 2/ for all values of 3. Thus, our problem becomes one of minimizing the scaled variance a’Va subject to X'a = 2.

Formulating the Lagrangian function for this problem
1
L= ia’Va +V(X'a—2)

where b is an m x 1 matrix of Lagrange coefficients, and differentiating L with respect to a and b, we have the first order conditions
Va+ Xb=0and X'a = z which may be written in the required form with W = 0 and y = 0.

Problem 34-2: Eigenvalues of a Class of Tridiagonal Matrices
Proposed by Steven J. LEON, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA: sleon@umassd.edu

Let o and (3 be real scalars and let A, («, 3) denote the n x n tridiagonal matrix whose entries on the main diagonal are all equal to
« and whose entries on the other two diagonals are all equal to 3 except that the (1, 2) entry is 23. For example,

a 28 0 O
g a 0
A4(OL,6) =
0 6 a p
0 0 (8 «
Show that the eigenvalues of A, («, §) are
27 -1
)\j:a+2ﬁcosM, ji=1,...n.
2n

Solution 34-2.1 by the Proposer Steven J. LEON, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA:
sleon@umassd.edu

Since A, (a, ) = al 4+ 2BA(0, 3) it suffices to show that the eigenvalues of A(0, ) are A; = cos (2]2_7”1)” . j=1,...n. These

A;’s are just the roots of the nth degree Chebyshev polynomial 7;,. This follows from the well known property of Chebyshev
polynomials that T, (cos ) = cos nf. This property can also be used to show that the Chebyshev polynomials satisfy the recursion
relations T3 (z) = aTp(x) and Ti41(x) = 22T () — Tk—1(x) (for k > 1). If X is any root of T}, and we substitute z = A into the
first n of the recursion equations, we end up with a system that can be written in matrix form

0 1 To(N) To(N)
1o L T1(\) Ti(A)
i 0 3 Tr—2(A) Ta—2(N)
3 0 Tr-1(N) Tu-1()

It follows then that the eigenvalues of A, (0, 1) are the roots of T,.

Solution 34-2.2 by Andres SAEZ-SCHWEDT, Departamento de Matematicas Universidad de Leon, Leon, Espania:
demass @unileon.es

We want to compute the roots of the polynomial f,,(x) = det(4, («, 8) — «I), for example:
a—x 203 0 0
I} a—zx 16 0
goa—xz B
0 0 Jé] a—x

f4 (SC) = det
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The first values of f,,(z) are fo(z) = (o — 1) — 262, f3(x) = (o — 2)® — 33%(av — x), and for n > 4 we obtain a recurrence
relation by expanding the determinant f,,(x) by the last column:

falx) = (@ = @) fai1(z) = 52 fa—a(2). (M
For convenience, we also define fo(x) = 2 and f1(z) = o — x, so that the previous recurrence still holds for n = 2 and n = 3.
On the other hand, for any y; = %’ j = 1...n, one has cos(ny;) = 0. But cos(nvy;) = T,(cos(v;)), where T}, is the

Chebyshev polynomial of degree n given by Ty (z) = 1,73 (z) = x and
To(x) =22Th—1(x) — Th—2(x) 2)

r—o

forn > 2. The elements {cos(;)} are exactly the n roots of the equation T}, (x) = 0, therefore the n roots of T, (“37*) are precisely
the elements {\; = « + 23cos(v;)}. If # = 0 the proposed problem is trivial. Otherwise, let us prove the following formula:

Fal) = 20=0)"Tu("557). ©)
The assertion is certainly true for n = 0,1, since fo(z) = 2 and fi(z) = (o — x) = —26(%5*). Now suppose that (3) is valid for
n — 2 and n — 1. Substituting in the recurrence (1) we obtain:
N of a1 T—a o o ano oo r—a T—a, r—a

which by (2) is equal to 2(—5)"T,, (”“{—5*) , completing the proof of the claim (3). As 8 # 0, f,,(z) and T, (%) have the same
roots, which are the elements {\; = a + 2(cos(y;)}, as we wanted to prove.
Solution 34-2.3 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wtrench@trinity.edu
The following argument is valid for complex « and (3.
A nonzero vector z = [x1 o -+ x,]7 is a A-eigenvector of A, («, 3) if and only if

Bxr_1 + (Oé - A)xr + ﬁxr-i-l =0, 1<r<n, 4

with zg = x5 and x,, 41 = 0. Let
B2% + (a =Nz + 8 =Bz = )z = 1/0). 5)

The solutions of (4) such that x,,1 = 0 are of the form
T, =" ¢ 1< <.

The condition 2y = x5 dictates that (~"~1 — ("1 = ("l — ¢("~1 With ¢ = €, this is equivalent to sin(n + 1)§ =

sin(n — 1)§, which in turn is equivalent to cosnfsinf = 0. Letting §; = (2j — 1)n/2n and ¢ = 1/2i yields the eigenvector
R P AT wi

xj =[x X5 -+ Tp;]" with

2 —-D(r—n—-1m
2n ’

Tpj = sin

From (5), A = a + B(¢ + 1/¢). Setting ¢ = €% yields the eigenvalue ;.
Now let

SE -
o™ e
e ™ o
D © o

0 0 26 « 0 20 «
and let B, (o, 8) and C),(«, 3) be their obvious generalizations. The components of the eigenvectors of these matrices satisfy (4)
with g = 0, z,,—1 = Zp41 for By (a,b) and xg = x2, Tp1 = x,—1 for Cp(a, B).
An argument similar to the one used for A, (a, 3) shows that B, («, 3) has the same eigenvalues A1, ..., A, as A, («, 3), with
associated eigenvectors vector x; = [x1; Ta; - -+ Tp;]7 defined by

(2j — L)rm

Ty = sin o <r<mn,
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This conclusion can also be obtained by noting that B, («, 3) = J,A,(«, 8)J,, where J, is the n x n flip matrix; i.e., J, =
[0i,n—j+1]7 =1

By inspection, \; = a+23 and \,, = o — 213 are eigenvalues of C,, (v, 3) with associated eigenvectors z1 = [r11 Ta1 -+ Tp1]t
and ¥, = [T1n T2y -+ Tpn)? given by 2,1 = 1 and x,,, = (—1)", 1 < r < n. The components of the other eigenvectors of

Cp(a, () are of the form x,, = ¢1(" + c2( ™", where
a(1=C)+e(1-¢2) =0, a(1-3C)" ! +el-¢ )" =0, (6)

which has a nontrivial solution with { # +1 if and only if

(= =m0 g <j<n—1. (7)
Thus, the eigenvalues are
2(j— Dm .
)\j:a+2ﬁ(}05m, ]:1,...,n.

With ¢ as in (7), (6) has the solution ¢; = (1 — C;Z)/%, o = —(1 = ¢3)/2i, which yields the eigenvector z; = [x1; xg; -+ Tpz]"

with

2 —Yrm 2= )(r =2
2(n—1) 2(n—1) ’

Tp; = sin 1<r<n, 2<j5<n-1.

Solutions to Problem 34-2 were also received from Carlos Martins da Fonseca and from Nathan Krislock, Veronica Piccialli &
Henry Wolcowicz.

Problem 34-3: On the Spectral Radius
Proposed by Chi-Kwong L1 and Sebastian J. SCHREIBER, The College of William & Mary, Williamsburg, Virginia, USA:

ckli@math.wm.edu; sjschr@wm.edu
Suppose A € M,,, B € M, and R is an m X n matrix such that AR = RB.
(a) Suppose R has full column rank. Show that the spectrum of B is a subset of that of A, and hence the spectral radius of B is
not larger than that of A.
(b) If A and B are nonnegative, and if R has no zero rows or zero columns, show that A and B have the same spectral radius.

Solution 34-3.1 by Hans Joachim WERNER, Universitdt Bonn, Bonn, Germany: hjw.de @uni-bonn.de

We first prove a slightly more general result than (a). Then we show that claim (b) is actually incorrect. And finally, we give a
corrected version of (b).

THEOREM 1. Let A € C™*™ B € C" ™ and R € C™*" be such that AR = RB. If [R(B) + N(B)| N N(R) = {0}, then
o(B) C o(A) and so, in particular, p(B) < p(A), with R(-), N(-), o(-), and p(-) denoting the range (column space), the null
space, the spectrum, and the spectral radius, respectively, of the matrix (-).

PROOF: Let (), x) be any eigenpair of B. Then Bx = Az and = # 0. Needless to say, z € N(B) when A = 0, and x € R(B)
when 0 # A € o(B). In any case, by means of [R(B) + N (B)] NN (R) = {0}, therefore Rx # 0. From ARz = RBx = ARx it
now follows that (A, Rx) is an eigenpair of A. Consequently, o(B) C o(A) and so, as claimed, p(B) < p(A). O

Our result deserves some further comments. First of all, we emphasize that if R is of full column rank or, equivalently, if
N(R) = {0}, then trivially [N(B) + R(B)] N N(R) = {0}. Since the converse implication, however, does not always hold,
it is clear that our theorem is indeed a generalization of claim (a). Secondly, we mention that if our condition is replaced by the
less restrictive one R(B) N N (R) = {0}, then as in the preceding proof it follows that (o(B)\{0}) C o(A) and so even then
p(B) < p(A) still holds true.

That claim (b) of Problem 34-3 is incorrect is seen as follows. Consider

(0, s ne (7).
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Although AR = RB, A > 0, B > 0 and R has no zero rows or zero columns, we have 3 = p(A) # p(B) = 1, contrary to the
assertion. It is now interesting to ask for conditions on A, B and R which are sufficient for p(B) = p(A) to hold. An answer is
given by our concluding theorem.

THEOREM 2. Let A € R™*™, B € R" "™ and R € R™*™ be such that AR = RB. If A, B and R are nonnegative matrices and
RB is a positive matrix, then p(B) = p(A).

PROOF: The generalization of Perron’s theorem to nonnegative matrices tells us that if M > 0, then p(M) € o (M), and there exists
an associated eigenvector > 0 such that Ma = p(M)z; cf. Meyer (2000, p. 670). It is also well known that o(M) = o(M’),
with M’ denoting the transpose of M; cf. Meyer (2000, p. 503). Since B > 0 and A > 0, therefore Bx = p(B)z for some
0 # x > 0 and likewise A’y = p(A)y for some 0 # y > 0. Consequently, in virtue of AR = RB > 0, ARz = RBx > 0.
Hence, ARz = p(B)Rxz > 0 and so p(B) > 0 and Rx > 0. Moreover, y’ ARz = p(B)y’Rxz > 0. On the other hand, also
y' ARx = p(A)y' Rx. Therefore, p(A)y’ Rz = p(B)y’ Rz, which in turn can happen only if p(A) = p(B). O

Reference
C. D. Meyer (2000). Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia.

A belated solution to Problem 33-3 was also received from the Proposers Chi-Kwong Li & Sebastian J. Schreiber.

Problem 34-4: A Range Equality for the Commutator with Two Involutory Matrices
Proposed by Yongge TIAN, Shanghai University of Finance and Economics, Shanghai, China: yongge @mail.shufe.edu.cn

Suppose that A and B are both involutory matrices of the same order, that is, A?> = B? = I, where I is the identity matrix. Show
that
range(AB — BA) = range(A — B) Nrange(A + B).

Solution 34-4.1 by Andres SAEZ-SCHWEDT, Universidad de Leon, Leon, Esparia: demass@unileon.es

First, it is easy to see that (i) (A — B)(A+ B) = AB — BA = (A+ B)(B — A) and (ii) A(AB — BA) = (BA— AB)A =
—(AB — BA)A. From (i), we see that any element in the range of AB — BA is both in the range of A — B and in the range
of A+ B. Conversely, let v = (A + B)x = (A — B)y be a vector in range(A — B) Nrange(A + B). By (i), we have that
(A— B)v=(AB — BA)x and (A + B)v = —(AB — BA)y. Adding both equations we obtain 2Av = (AB — BA)(x — y), and
hence, using (ii), we see that

v =A% = %A-2Av - %A(AB ~BA)(x —y) = —%(AB — BA)A(z —y) = (AB — BA)A <y§x> ,

which lies in the range of AB — BA.

Solution 34-4.2 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: hjw.de @uni-bonn.de

For a complex matrix A, let A*, R(A), and A/ (A) denote, as usual, the conjugate transpose, the range (column space), and the null
space, respectively, of A. By I,, we denote the identity matrix of order n.

Our solution to Problem 34-4 offers some further insights into the theory of idempotent matrices and makes use of the next three
results.

THEOREM 1. The matrix R € C"*™ is an involutory matrix, i.e., R* = I,,, if and only if there exists an idempotent matrix P € C"*"
such that R = I,, — 2P.

PROOF. If R is involutory, then (I,, — R)? = 2(I,, — R). For P := (I,, — R)/2, thus P> = P and R = I — 2P, so that the proof of
necessity is complete. Conversely, let R = I,, — 2P for some idempotent matrix P. Then R? = (I, —2P)? = I,, —4P + 4P = I,,,
i.e., R is indeed involutory, as claimed. O

THEOREM 2. Let P,Q € C™"*" be idempotent matrices. Then:

O NP-Q)=[R(P)NRQ)|&NPYNN(Q)], N(I,—P—-Q) = [N(P)NR(Q)] & [R(P)NN(Q)], with ‘®’ indicating

a direct sum.
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(i) N(P)NN(PQ) = N(P)NR(Q)] & N (P) NN(Q), R(P) NN ((In — P)Q) = [R(P) NR(Q)] & [R(P) N N(Q)].
(i) N(PQ - QP) = [R(Q) NN (P)] & N(Q) NN(P)] & [R(Q) NR(P)] & [N(Q) N R(P)].

PROOF. It is known that if P is idempotent, then I,, — P is idempotent, R(I,, — P) = N(P), N(I,, — P) = R(P), and
C" = R(P) ® N(P); cf. Lancaster (1969, p. 83). Any z € C" can thus be uniquely written as © = z1 + 3, where 1 € R(P)
and xo € N(P). Wethenobtainz = x1 + 12 e N(P - Q)& 21 = Q11 + Qua & (I, — Q)11 = Qro & ([, — Q)1 =0 &
Qra=0& 11 € R(P)NR(Q) & z2 € N(P)NN(Q), and so the first claim of (i) is established. Since I,, — P is also idempotent,
the second result of (i) follows from the first result of (i) just by replacing P by I — P. For proving (ii), consider z € N/ (P). In view
of C" = R(Q) ® N(Q), there uniquely exist y; € R(Q) and yo € N'(Q) such that z = y; + y2. Hence z = y; + 32 € N(PQ) &
PQz=0% Py, =0< y; € N(P)NR(Q), and so z € N (P) N N(PQ) if and only if z € [N (P) NR(Q)] ® [N (P) NN (Q)].
This is the first claim of (ii). Since I,, — P is idempotent and N'(I,, — P) = R(P), the second claim of (ii) follows from the first
part of (ii) just by replacing P by I,, — P. All that remains now is to prove (iii). For that purpose, let z € C™ again be written as
x = o1 + 2, where z1 € R(P) and 2 € N(P). Then z = 21 + 22 € N(PQ — QP) & PQ(z1 + 22) = QP(x1 + 22) &
& 22 € [IN(P) NR(Q)] & [N(P) N N(Q)], where the last equivalence follows by virtue of (ii). O

The following interesting observation is an immediate consequence of Theorem 2 (i) & (iii).

THEOREM 3. Let P,Q € C™"*"™ be idempotent matrices. Then

N(PQ_QP):N(P_Q)@N(In_P_Q)- 3)

Theorem 3 enables us now to prove the following version of Problem 34-4.

THEOREM 4. Let A, B € C™*" be involutory matrices. Then
N(AB - BA)=N(A—-B)®N(A+ B). 9)

PROOF. From Theorem 1 we know that there exist idempotent matrices P, Q € C™**"™ such that A = I, — 2P and B = I,, — 2Q).
Then AB — BA = (I, — 2P)(I,, — 2Q) — (I, — 2Q)(I,, — 2P) = 4(PQ — QP), A— B = (I,, — 2P) — (I,, — 2Q) = 2(Q — P),
and A+ B = (I, —2P) + (I, — 2Q) = 2(I,, — P — Q). Consequently, N (AB — BA) = N (PQ—-QP),N(A—B) =N(P—-Q),
and N (A+ B) =N (I, — P — Q), and so it is clear that (9) is an immediate consequence of (8). O

That (9) is equivalent to the claimed problem follows by means of the following three well-known facts: (1) A matrix R is
involutory if and if R* is involutory. (2) For any matrix M, we have (N(M*))+ = R(M), with (-)* indicating the orthogonal
complement of the linear space (-) with respect to the usual inner product. (3) If M and N are linear subspaces of C", then

(M+N)*E = MEnN-

Reference
P. Lancaster (1969). Theory of Matrices. Academic Press. New York.

Solutions to Problem 34-4 were also received from Johanns de Andrade Bezerra and from the Proposer Yongge Tian.

Problem 34-5: A Rank Equality for Sums of Two Outer Inverses of a Matrix
Proposed by Yongge TIAN, Shanghai University of Finance and Economics, Shanghai, China: yongge @mail.shufe.edu.cn

An m x n matrix X is called an outer inverse of an n x m matrix A if X AX = X. Show that if a; # 0, az # 0 and a1 + as # 0,
then rank(a; X1 + a2 X5) = rank(X; + X5) for any two outer inverses X; and X5 of A.

Solution 34-5.1 by the Proposer Yongge T1AN, Shanghai Univ. of Finance & Economics, Shanghai, China: yongge @mail.shufe.edu.cn
Note that rank of a matrix is invariant under elementary block matrix operations. Hence by elementary block matrix operations
X1 0 aXy X; 0 0
rank | 0 Xo asXo | =rank| 0 Xy 0 = rank(Xy) + rank(Xs) 4 rank(a; X1 + a2 X>).
X1 X5 0 0 0 —a1 X1 —asXs
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On the other hand, note that X; AX; = X; and X3 AX5 = X5. Also by elementary block matrix operations

X1 0 ale Xl 0 ale (1+a1a;1)X1 0 ale
rank | 0 X3 asXs | =rank | —X24X; 0 a92Xs | =rank 0 0 axXs | =
X1 XQ 0 X1 X2 0 X1 XQ 0
X3 0 0 al(al + ag)_1a2X1 Xs X1 Xs
rank [ O O azXo = rank +rank(X;) = rank +rank(X7).
0 Xo —ar(1+aray’) X,y Xo 0 Xy 0

Combining the above two rank equalities gives
X1

rank(a; X1 + a2 Xs) = rank (
2

Xo
0 > —rank(Xs) = rank(X; + X5).

Problem 34-6: The Schur Complement in an Orthogonal Projector
Proposed by Yongge TIAN, Shanghai University of Finance and Economics, Shanghai, China: yongge @mail.shufe.edu.cn

A
B*
(a) The Schur complement D — B* AT B of A in M satisfies the rank subtractivity condition

B
Suppose that M = ( D) is an orthogonal projector, that is, M? = M = M*. Show that

rank(D — B*A'B) = rank(D) — rank(B*A'B),

where A" denotes the Moore-Penrose inverse of A.
(b) {D~} C {(B*A'B)~}, where ()~ denotes a g-inverse of a matrix.
(¢) D= B*A'B & rank(M) = rank(A) < rank(D) = rank(B).

Solution 34-6.1 by Veronica PICCIALLI, University of Rome “La Sapienza”, Rome, Italy: Veronica. Piccialli@dis.uniromal.it
and Henry WOLKOWICZ, University of Waterloo, Waterloo, Ontario, Canada: hwolkowicz@uwaterloo.ca

First note that M2 = M* = M implies A = A*, D = D* and
A2+ BB*=A, AB+ BD = B. (10)

Define the two Hermitian matrices K := D — B*A'B, L := B*A'B. Then D = K + L.

(@): In view of (10) and the properties of the Moore-Penrose inverse, it follows that LK = (B*ATB)(D — B*A'B) =
B*A'BD — B*A'BB*A'B = B*AY(B — AB) — B*AT(A — A)A'B = B*AY(B — AB) — B*A'B — B*ATAB = 0. Since
both matrices are Hermitian, we get (LK)* = KL = 0. Therefore, the matrices commute and we conclude that the ranges are
orthogonal complements and get the direct sum decomposition

Dg 0 By 0 0 y
RK)®R(L)=R(K+L)=R(D), D=P P*+P P, (11)
0 0 0 D
for some unitary P. Therefore, we get the desired rank additivity for K, L (or subtractivity for D, L) result.
(b): Let D~ be a g-inverse of D. From (11), note that both R(K'), R(L) are D-invariant subspaces. Therefore (easy to show
using D = DD~ D), these subspaces are invariant for the g-inverse D~ as well. Therefore, D~ is a g-inverse of L. (And, clearly it
is a g-inverse for K as well.)

(c): Define
0 ( 1 0) 4 R=QMQ" ( A B —AATB)
= an = = .
—B*AT T B* — B*AtA K

From M = M* = M? = M*M, we see M is positive semidefinite. Since () is nonsingular, the congruence (and Sylvester’s
Theorem) implies that R is positive semidefinite. We now conclude:

D=B*ATB = K=0= B—-AA'B=0 (since R positive semidefinite) = rank (M) = rank (4).
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Conversely, suppose that rank (M) = rank (A). Then the range R(B) is a subspace of the range R(A). Since AAT is the orthogonal
projection on R(A), we conclude that B — AATB = 0. Therefore, R is block diagonal and, by the nonsingular congruence has the
same rank as M and also A. Therefore, K = 0, i.e. we have completed the proof of the first equivalence.

Now, suppose that rank (M) = rank (A). Then K = 0. Since the rank of a product of matrices is not greater than the smallest
rank of the matrices, we conclude that rank D < rank B. Now assume that rank D < rank B. Then N (B) ¢ AN(D) and there
exists v such that Dv = 0 but Bv # 0. Choose w so that w* Bv < 0. Now consider the positive semidefinite quadratic form

A B w

0 < (w* tv*) < ) ( ) = w* Aw + tv* Dtv + 2w* Btv = w* Aw + 2w™ Btwv.
B* D tv

i.e. N(B) ¢ N (D) leads to a contradiction when ¢ becomes large (positive). Hence we get N'(B) C N(D). Thus we conclude that

rank D = rank B.

Finally, to conclude the proof we assume that rank D = rank B and show that K = 0. Since M > 0, the principal submatrices
A, D >1, 0 and we can form orthogonal diagonalizations P; APy = A, P5DPp = Ap. Now define

S::(Pj O>M<PA 0):< Aa PZBPD)'

0 Pj 0 Pp PpB* P} Ap

Then S is an orthogonal projection and we maintain the rank equivalence between A p and P} B Pp. Since S is positive semidefinite,
(Ap)i; = 0 implies that the rest of the i-th column of S, and so also of P} BPp, is 0. Therefore, we can ignore these columns (and
corresponding rows) and so we assume, without loss of generality, that Ap is nonsingular. Our rank assumption now implies that
P} BPp is full column rank. We can now assume the same for D and B. And, similarly, we can assume without loss of generality
that A is nonsingular. Therefore, B*ATB = B*A~'B is a full rank congruence of a nonsingular matrix and so is of nonsingular.
Now by part (b), we conclude that D~! = (B*A~'B)~!. Therefore, D"'K = D™'D — D!B*A=1B =0.

Solution 34-6.2 by the Proposer Yongge TIAN, Shanghai University of Finance and Economics, Shanghai, China:
yongge @mail.shufe.edu.cn

Because M is an orthogonal projector, range(B) C range(A) holds. Thus its rank can be written as
rank(M) = rank(A) + rank( D — B*A'B).

Also from IMAGE Problem 25-4(b) (see Tian (2000)), the rank of M is rank(M) = rank(A) +rank(D) —rank(B). Thus rank( D —
B*A'B) = rank(D) — rank(B). However, rank(B* A’ B) = rank(A'B) = rank(B). Thus we have the result in (a). Applying a
well-known result:

{A7} C{B7} & rank(A — B) = rank(A) — rank(B)

to (a) gives (b). The equivalences in (c) are from (a) and (b).

Reference
Y. Tian (2000). Problem 25-4: Two rank equalities associated with blocks of an orthogonal projector. IMAGE: The Bulletin of the International
Linear Algebra Society 25 (October 2000), 16.

Solution 34-6.3 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: hjw.de @uni-bonn.de

Our solution offers some additional insights into the partitioning of (not necessarily orthogonal) projectors. For example, we reobtain

the known result that the Schur complements of the north-west and the south-east block in a symmetrically partitioned orthogonal

projector are again orthogonal projectors; see Corollary 2.1 in Baksalary, Baksalary and Szulc (2004). We also show how Problem

34-6 can be extended to cover block-partitioned oblique projectors, i.e., idempotent non-Hermitian matrices. In what follows, for a

complex matrix A € C"*", let A*, rank(A), R(A), and N (A) denote the conjugate transpose, the rank, the range (column space),
and the null space, respectively, of A.

A

Let M :=
(o
following six conditions do hold simultaneously:

B
D ) Clearly, M is an orthogonal projector if and only if M = M* = M? or, equivalently, if and only if the

A= A" D=D* A(I—A)=BB*, D(I-D)=DB*B, B*(I— A) = DB*, (I — A)B = BD. (12)

We note that R(BB*) = R(B). Therefore, by the third condition in (12), R(B) C R(A) or, equivalently, AA~ B = B, irrespective
of the choice of A~, with A~ indicating a generalized inverse of A, i.e., any matrix G satisfying AGA = A. We note that
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AA™B = Bisequivalent to B*(A™)*A = B*, since A = A*. It is also useful to mention that B*A~B = B*AT B. Since AT is
nonnegative and Hermitian, B* A~ B is also so. From

(—B*(IA—)* 3)M(é _AI_B>:(§ D—OB*A—B)

it follows that rank (M) = rank(A) +rank(D — B* A~ B). Consequently, rank(M) = rank(A) if and only if D = B*A~ B, which
is claim (c) of Problem 34-6. By using the conditions in (12), it is further easy to check that D — B*A~B = (D — B*A~B)* =
(D — B*A~ B)?, thus showing that D — B* A~ B, the Schur complement of A in M, is an orthogonal projector. More precisely,

D—-B*A™B = PDN(B)7

where Pp () stands for the orthogonal projector that projects onto DA(B) along (DN(B))* = R(B*) ® N(D), and where
‘@’ indicates a direct sum. Therefore, in particular, (D — B*A~B)B*A~B = 0 and so R(B*A~B)NR(D — B*A~B) = {0}.
Because B*A~ B and D — B* A~ B are (nonnegative definite and) Hermitian matrices it is now clear that D — B* A~ B is weakly
bicomplementary to B* A~ B. For the sake of clarity, we mention that two matrices, say .S and T, are called weakly bicomplementary
to each other (or often also disjoint matrices) if and only if R(S) N R(T") = {0} and R(S*) N R(T*) = {0}; see Werner (1986)
or Jain, Mitra and Werner (1996). Since, according to Theorems 2.1 and 3.1 in Werner (1986), see also Theorem 2.3 in Jain, Mitra
and Werner (1996), R is weakly bicomplementary to S < R(S + 1) = R(S) ® R(T') < rank(S + T') = rank(S) + rank(7T") <
{(R+S) "} C{R } n{T}, (a) and (b) of Problem 34-6 are obvious.

We conclude with mentioning that Problem 34-6 allows a more general version. Note that the restrictive assumptions in our next
Theorem are all redundant if M is an orthogonal projector. The proof of our extension can be left to the reader.

A B
THEOREM. Let M := o D) be a symmetrically partitioned idempotent matrix satisfying R(B) C R(A), R(C) C R(D),

N(A) CN(C), and N(B) C N(D). Then:
(i) rank(D) = rank(D — CA™ B) + rank(CA~B).
() {D~}C{(D-CA B)"}n{(CA~B)"}.
(ili) D = CA™ B < rank(M) = rank(A) < rank(D) = rank(C A~ B).

(iv) The Schur complements of A and D in M are both idempotent but not necessarily Hermitian.

References

J. K. Baksalary, O. K. Baksalary & T. Szulc (2004). Properties of Schur complements in partitioned idempotent matrices. Linear Algebra and Its
Applications 379, 303-318.

H. J. Werner (1986). Generalized inversion and weak bi-complementarity. Linear and Multilinear Algebra 19, 357-372.

S. K. Jain, S. K. Mitra & H. J. Werner (1996). Extensions of G-based matrix partial orders. SIAM Journal on Matrix Analysis and Applications 17,
834-850.

A solution to Problem 34-6 was also received from Oskar Maria Baksalary & Xiaoji Liu.

Problem 34-7: A Sufficient Condition for a Matrix to be Normal
Proposed by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wtrench@trinity.edu

Suppose that A, R € R"*", R = R~! # +1,,, RAR = AT, and 27 (AT A — AAT)y = 0 whenever Rx = x and Ry = —y. Show
that A is normal.

Solution 34-7.1 by Johanns DE ANDRADE BEZERRA, Campina Grande, PB, Brazil: talita.tao@zipmail.com.br

If RAR = AT and R? = (RT)? = I, then RTRARRT = RTATRT = A, and hence it follows that ARRT = RRT A and
ARTR = RTRA. Consequently, ATA = RARRTATRT = R2RTAATRT = RTAATRT, and so ATA = RAATR. Since
R? = I, it follows that U & V = R"*!, where U and V are the eigenspaces of R corresponding to the eigenvalues 1 and —1,
respectively.
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Next, let x € U and y € V be arbitrarily chosen. Because of xT(ATA — AAT)y = 0 and ATRRT = RRT AT, clearly
(x, AT Ay) — (2, AATy) = (Ax, Ay) — (z, AATy) = (RTATRT2z, RTATRTy) — (2, AATy) = (RTz, ARRTATRTy) —
(x,AATY) = (RTa, AATRRTRTy) — (z, AATy) = —(RTx, AATy) — (v, AATy) = 0, and so (x, (RAAT + AAT)y) = 0.
Since z is an arbitrary vector from U, it follows that (RAAT + AAT)y € U*. But R(RAAT + AAT)y = (RAAT + AAT)y, and
so (RAAT 4+ AAT)y € U. Hence (RAAT + AAT)y € UNU* = {0}, this yields RAATy = —AATy.

On the other hand, (z, AT Ay) — (z, AATy) = (AT Az,y) — (ATz, ATy) = (AT Az,y) — (RARz, RARy) = (AT Ax,y) +
(RAz, RAy) = (AT Az, y) + (ATRTRAz,y) = (AT Az, y) + (RTRAT Az, y) = (AT Az, y) + (AT Az, R" Ry) = (AT Az, y) —
(AT Az, RTy) = 0, since ATRTR = RTRAT, and so ((ATA — RAT A)x,y) = 0. Thus, since y is an arbitrary vector from V/, it
follows that (ATA — RATA)x € V*+. But R(ATA — RATA)x = —(ATA — RAT A)z, and so (AT A — RAT A)x € V. Hence
(ATA — RATA)z € VN VL = {0}, this yields RAT Az = AT Ax.

In view of ATA = RAATR, clearly RATA = AATR. Thus, RATAz = AATRx = AATx = AT Az, for any z € U.
Similarly, RAT Ay = AATRy = —AATy = RAATy, then R(AT Ay — AATy) = 0, and so AATy = AT Ay, forany y € V.
Therefore, AAT = AT A, that is, A is normal.

Solution 34-7.2 by the Proposer William F. TRENCH, Trinity University, San Antonio, Texas, USA: wtrench@trinity.edu
Let B= AT A — AAT. We must show that B = 0. Since R? = I and RAR = A7, it follows that RATR = A and

RBR = (RATR)(RAR) — (RAR)(RATR) = AAT — ATA = —B. (13)

Since the minimal polynomial of R is 2% — 1,

R=(P Q)(Ir ’ )(P Q)"
B 0 —I,
where r, s > 0,
P'P=1,, and QTQ=1.,. (14)
Moreover, we can write
B=(P Q)(B” B”)(P Q) (15)
By1 B
with By; € R"*". Then
Bi1 =By 1
RBR=(P Q) (P Q). (16)
—Bs1  DBa»
From (13), comparing (15) and (16) yields
0 Bijs -1
B=(P P
o, )

Therefore PB1; = BQ and QBy; = BP, so (14) implies that B;3 = PTBQ and By; = QT BP. Since RP = P and RQ = —Q,
the last assumption implies that B = 0 and By; = 0. Hence, B = 0.

Solution 34-7.3 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: hjw.de @uni-bonn.de

For a complex matrix A € C™*™, let A*, R(A), and N'(A) denote the conjugate transpose, the range (column space), and the null
space, respectively, of A. We recall that a square matrix R € C™*" is called involutory if and only if R? = I,,, where I,, stands
for the identitiy matrix of order n. In what follows, we make extensive use of the following powerful characterization of involutory
matrices. An easy proof of that theorem may be found in Werner (2005).

THEOREM 1. The matrix R € C"*™ is an involutory matrix if and only if there exists an idempotent matrix P, i.e., P?> = P, such
that R = I,, — 2P. In which case, P = (I, — R)/2.

It is worth mentioning that there is an obvious one-to-one correspondence between the set of involutory matrices and the set of
idempotent matrices. Theorem 1 enables us to prove the following more general version of Problem 34-7.

THEOREM 2. Let R € C™*™ be an involutory matrix, i.e., let R = I,, — 2P for some idempotent matrix P. For given A € C"*",
let B := RAR. The following conditions are then equivalent:
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(i) B and A commute, i.e., BA = AB.
(i) (BA— AB)P = 0and (BA — AB)(I, — P) = 0.
(iii) (BA — AB)(I, — R) = 0 and (BA — AB)(I, + R) = 0.
(iv) (I, + R)BA(I, — R)=0and (I, — R)BA(I, + R) = 0.
v) (In+ R)AB(I,, — R) =0and (I,, — R)AB(I,, + R) = 0.
(vi) (I, — P)BAP =0and PBA(I,, — P) = 0.
(vii) (I, — PYABP = 0 and PAB(I,, — P) = 0.
(viiil) BAP = PBA, i.e., BA and P commute.

(ix) ABP = PAB, i.e., AB and P commute.

(x) ARAP = PARA, i.e., ARA and P commute.

xi) (In+R)*(BA—-AB)(I,—R)=0and (I, — R)*(BA—- AB)(I, + R) =0.

PROOF. In view of P + (I,, — P) = I,, I, — R = 2P, and I, + R = 2(I,, — P), clearly (i) < (ii) < (iii), (iv) < (vi), and (v)
< (vii). Trivially, (i) = (xi). By means of (I,, — R)R = R(I, — R) = —(I, — R) and (I, + R)R = R(I, + R) = I, + R,
we obtain (BA — AB)(I,, — R) = (RARA+ ARA)(I, — R) = (I, + R)ARA(I,, — R) = (I, + R)RARA(I,, — R) = (I, +
R)BA(I,—R) = —(I,+R)AB(I,—R) and (BA— AB)(I,+R) = (RARA—ARAR)(I,+ R) = (RARA— ARA)(I,+R) =
—(I,—R)ARA(I,+R) = (I,— R)RARA(I,+R) = (I,—R)BA(I,+ R) = —(I,,— R)AB(I,,+ R), and hence (iii) < (iv) &
(v). Because P? = P, trivially (vi) < (viii) and (vii) < (ix). By means of R? = I,,, R(I,,+R) = I,,+ R and the definition of B, (ix)
& (x). We have already seen that (BA— AB)(I,, — R) = (I,,+ R)BA(I,, — R) and (BA— AB)(I, + R) = (I, — R)BA(I, + R).
If M and N are matrices such that M N is defined, then it is well known that M*M N = 0 if and only if M N = 0. With this in
mind, it is now clear that (iv) follows from (xi), so that the proof of this theorem is complete. O

From Theorem 2 we single out the following special case.

COROLLARY 3. Let R € C"*™ be an involutory matrix, i.e., let R = I, — 2P for some idempotent matrix P. Moreover, let
A € C™*™ be such that A* = RAR. The following conditions are then equivalent:

(i) Aisnormal, i.e, A*A= AA*.

(i) A*AP = PA*A.

(iii) AA*P = PAA*.

(iv) ARAP = PARA, i.e., ARA and P commute.

v) (In+ R)*(A*A — AA*)(I,, — R) = 0.

(vi) z*(A*A — AA*)y = 0 whenever Rx = x and Ry = —vy.

PROOF. According to Theorem 2, clearly (i) < (ii) < (iii) < (iv). Applying the conjugate transpose operation on both sides of
equation (I, + R)*(A*A — AA*)(I,, — R) = 0 results in equation (I, — R)*(A*A — AA*)(I,, + R) = 0, and so we know from
Theorem 2 that (v) is equivalent to (i). In virtue of Rz =z & (I, —R)Jz =0 Pr=0& z € N(P) & z € R(I, — P)
sreR(I,+R)andRy=-y< ([, +Ry=0&(I,—Ply=0syeN{,—P)syecR(P)syec R, — R),itis
finally also clear that (v) < (vi). O

Corollary 3 contains with (i) < (vi) the complex analog of the claim of Problem 34-7, and so our solution is complete.
Reference

H.J. Werner (2005). A range equality for the commutator with two involutory matrices. Solution 34-4.2. IMAGE: The Bulletin of the International
Linear Algebra Society 35 (Fall 2005), 32-33.

A belated solution to Problem 34-7 was also received from Nadya Zharko.

Problem 34-8: A Property for the Sum of a Matrix A and its Moore-Penrose Inverse A"
Proposed by Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler @statistik.uni-dortmund.de

Let A be a square complex matrix. Show that the following two statements are equivalent:
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(1) A+ AT =24AT.
(i) A+ AT = AAT + AT A,
Verify that under (i) or (ii), A must be EP, i.e. the column spaces of A and A* coincide.
Solution 34-8.1 by Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznan, Poland: baxx @amu.edu.pl
and Xiaoji L1U, Guangxi University for Nationalities, Nanning, China: xiaojiliu72@yahoo.com.cn
Let A € C,, ,, of rank 7 have a singular value decomposition of the form
D 0
A=U v, 17)
0 0
where U,V € C,, ,, are unitary and D € C,. ;. is a positive definite diagonal matrix. Clearly, the Moore-Penrose inverse of A is given
by
D' 0
At =v U*. (18)
0 0
If matrices U and V' utilized in (17) are partitioned as U = (Uy : Uz) and V = (Vi : V5), where Uy, Vi € C,, , and Us, Vo € Cyy .y,
then the product V*U € C,, ,, can be written as
Wi W,
VU = ( 11 12)) (19)
War Wa

where W;; = V;*U;, 4,5 = 1,2, and thus Wy € C,. ., Wip € C,jyyp, Woy € €y, and Wop € Cyy . It is easily seen that

7
matrix V*U is unitary and from condition (V*U)(V*U)* = I,,, where I,, is the identity matrix of indicated order, it follows that

WllWl*l + W12W1*2 =1, W11W2*1 + W12W2*2 =0, W21W2*1 + W22W2*2 =1I,_,. (20)
The solution will be based on the following result related to Theorem 2.2 in Baksalary, Baksalary & Liu (2003).

LEMMA. Let A € C,,,, be of rank r and have a singular value decomposition of the form (17) with V*U partitioned as in (19).
Then A is an EP matrix if and only of W15 = 0, Wa1 = 0, and W11 as well as Woq are unitary.

PROOF. Assume that A is an EP matrix. Then substituting (17) and (18) to condition AAT = A A and premultiplying the obtained
equality by V'*, postmultiplying it by U, and adopting notation (19) leads to W15 = 0, W53 = 0. Under these conditions, from the
first and the last equality in (20) it follows that W7, and Wss are unitary.

For the converse implication first observe that orthogonal projectors AA' and AT A composed of matrices of the forms (17) and
(18) are equal U; U7 and V1 V¥, respectively. The fact that W1, is unitary can be expressed as V;*U U7 V1 = I,- and by premultiplying
this condition by V;, postmultiplying it by V;*, and utilizing the observation above, it follows that ATAAATATA = AT A. Hence it is
seen that product of two orthogonal projectors AAT and A A is idempotent, for which it is necessary and sufficient that the projectors
commute, i.e., that AATATA = ATAAAT. Taking the above facts into account and denoting the range of a matrix argument by R(-)
it follows that

R(A*) = R(ATA) = R(ATAAATATA) = R(AATATA) C R(A).

Combining the inclusion R(A*) C R(A) with the observation that rank(A) = rank(A*), leads to equality R(A*) = R(A), which
expresses the fact that A is an EP matrix. O

The solution to the problem is given in what follows.
THEOREM. Let A € C,, ,, and let AT be its Moore-Penrose inverse. Then the following statements are equivalent:
(i) A+ AT =24AT, (i) A+ AT = 247 A, (i) A+ AT = AAT + ATA. 1)
Moreover, each of conditions (i)—(iii) implies AAT = AT A.

PROOF. In fact, it is enough to show that each of conditions (i)—(iii) forces A to be an EP matrix. Then the equivalence between

conditions (i)—(iii) will be easily seen by rearranging the right-hand sides of the equalities constituting them with the use of equality
AAT = ATA.
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Substituting (17) and (18) to condition (i) in (21), premultiplying the obtained equality by V*, postmultiplying it by U, and
adopting notation (19) leads to

W11 DW11 + D '= 2Why, W11 DWi5 = 0. 22)

Postmultiplying the former of these conditions by D entails W11 D (21, — W11 D) = I,., and thus it is clear that W11 D is nonsingular.
Consequently, from the latter condition in (22) it follows that W15 = 0. Substituting this condition to the first equality in (20) shows
that W71 is unitary, and further from the second equality that W5; = 0. In consequence, from the third equality in (20) it is seen that
also Wss is unitary. Thus, on account of Lemma it is clear that condition (i) in (21) implies that A is an EP matrix. The corresponding
implication with condition (i) replaced by condition (ii) is established analogously.

Substituting now (17) and (18) to condition (iii) in (21) and premultiplying the obtained equality by V'* and postmultiplying it
by V yields W5; = 0. Substituting this condition to the last equality in (20) shows that Wy, is unitary, and further from the second
equality that W15 = 0. In consequence, from the first equality in (20) it is seen that also W7 is unitary. Thus, on account of Lemma
it is clear that also condition (iii) in (21) implies that A is an EP matrix. O

Reference

J. K. Baksalary, O. M. Baksalary & X. Liu (2003). Further properties of the star, left-star, right-star, and minus partial orderings. Linear Algebra
and Its Applications 375, 83-94.

Solution 34-8.2 by the Proposer Gtz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler @statistik.uni-dortmund.de

Following Hartwig and Spindelbdck, Corollary 6 (1984), any square matrix A € C™*"™ can be written in the form

YK 3L
A:U( )U*,
0 0

where U is a unitary matrix, K K* + LL* = I, ¥ = diag(o11,,,...,0¢l,), 71+ 12+ ...+ 1 = r = rank(A), and o1 > 09 >
... > oy > 0 being the singular values of A. Using this representation, we get

K*3-1 0 K*K K*L I, 0
At =U U*, ATA=U U*, AAT =U U*.
s~ 0 LK L*L 00

Some straightforward calculations then show that each of the conditions (i) and (ii) is equivalentto L = 0 and YK + K 'YX~ = 21I,.,
which can be rephrased as L = 0 and (XK — I,.)? = 0.
Observe that the condition L = 0 is equivalent for A to be EP (see Corollary 6, Hartwig and Spindelbock, 1984).

Reference
R. E. Hartwig & K. Spindelbock (1984). Matrices for which A* and A" commute. Linear and Multilinear Algebra 14, 241-256.

Solution 34-8.3 by Hans Joachim WERNER, Universitit Bonn, Bonn, Germany: hjw.de @uni-bonn.de

The following well-known elementary results open the door to prove this problem. First of all, we recall that if V' is any nonnegative
definite and Hermitian n x n matrix and M is any linear subspace of C", then (VM) N M+ = {0}, where M is the orthogonal
complement of M with respect to the usual inner product; cf. Werner (2003; Theorem in IMAGE Solution 29-5.4). Secondly, we
note that if M € C™*", then (N (M*))* = R(M) and (R(M*))*+ = N (M), with (-)*, N'(-), and R(-) denoting the conjugate
transpose, the null space, and the range (column space), respectively, of the matrix (-). Thirdly, we mention that M M+ and M+ M
are orthogonal projectors onto R(M) (along N'(M*)) and onto R(M*) (along N'(M)), respectively, and so MM and M+ M
are, in particular, both nonnegative definite and Hermitian matrices. Fourthly, we note that N'(M ™) = A(M*). And finally, we
recall to the following characterization: M € C"*" is EP & R(M) = R(M*) & N (M) = N(M*) < MM*™ = M*TM. In
view of all these observations, it is clear that each of the problem statements (i) and (ii) implies that A + AT is a nonnegative
definite and Hermitian matrix. Therefore, [(A + AT)N(A*)] NR(A) = {0} & (AN(A*)) NR(A) = {0} & AN (4*) = {0} &
N(A*) CN(A) & N(A*) =N(A) & R(A*) =R(A) & AisEP & AAT + AT A = 2AA™. This completes our proof.

Reference
H. J. Werner (2003). Product of two Hermitian nonnegative definite matrices. Solution 29-5.4. IMAGE: The Bulletin of the International Linear
Algebra Society 30 (April 2003), 25.




Problem 34-9: A Sum Property for the Moore-Penrose Inverse of EP Matrices
Proposed by Gotz TRENKLER, Universitdit Dortmund, Dortmund, Germany: trenkler @statistik.uni-dortmund.de

Let A be an x n EP matrix with complex entries whose rows add up to the same sum s. Show that the Moore-Penrose inverse A™
of A has the property that its rows add up to 1/s if s # 0 and 0 if s = 0.

Solution 34-9.1 by Johanns DE ANDRADE BEZERRA, Campina Grande, PB, Brazil: talita.tao@zipmail.com.br

Let . € C" be the vector with all elements equal to unity. We note that A is EP if and only if AAT = A% A. In which case, in
particular, At AT A = AT, Therefore, if A. = 0, then also AT, = 0. Next, let Ac = s¢, where s # 0. Then : = s~'A; and so
Aty =s1TATA = s 1AAT L = s 2AAT AL =524 = s 14,

Solution 34-9.2 by Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznan, Poland: baxx @amu.edu.pl
Let A € C,, , be an EP (range-Hermitian) matrix, i.e., let AAT = A' A, where At is the Moore-Penrose inverse of A. It is to be
shown that if A is such that

Al =51, (23)

where 1 is the vector of n ones and s € C, then Al satisfies

s ifs#0

(24)
0, if s = 0.

Af1 =51, where st = {

It is known [see Ben-Israel and Greville (2003, Corollary 3, p. 166)] that A is an EP matrix if and only if A is expressible as
polynomial in A. For nonzero vector « € C,, 1, consider the class of matrices

A(z) ={A € C,,,: Az = Az for some X € C}.

It is easily seen that the identity matrix of order n belongs to .A(x) and, moreover, that for A;, As € A(x) and v € C, also A1 A,,
Ay + Ay, and vA; € A(z). Thus, A € A(x) implies AT € A(x).

Let Ar = Az and ATz = pz. If u = 0, then AAT = AT A along with AATA = A imply that A = 0. If 1 # 0, then AAT = ATA
along with ATAAT = Af entail (A — 1)z = 0. Since x # 0, it follows that Az = 1. Consequently, if Az = Az, then ATz = ATz
and the solution to the problem follows by taking x to be the vector of n ones.

Parenthetically notice that the version of Problem 34-9 with A € C,, ,, in (23) replaced by not necessarily EP matrix A € R,, ,,
and A" in (24) replaced by AP, where AP denotes the unique Drazin inverse of A, was solved by Schmidt and Trenkler (2001,
Section 3). The solution provided therein is closely related to the one presented above, for if A is an EP matrix, then AT = AP,

References
A. Ben-Israel & T. N. E. Greville (2003). Generalized Inverses: Theory and Applications (2nd ed.). Springer, New York.

K. Schmidt & G. Trenkler (2001). The Moore-Penrose inverse of a semi-magic square is semi-magic. International Journal of Mathematical
Education in Science and Technology 32, 624-629.

Solution 34-9.3 by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wtrench@trinity.edu
A is an EP matrix if and only if AAT = A1 A. If s # 0 and (s, z) is an eigenpair of A, then

st =Ax = AAT Az = sAATx = sAT Az = s> ATz,

so Atz = x/s. Since A = AATA = A?A" and AT = ATAAT = (AT)?A, A and A" have the same null space. Letting
x= (1,1, ---, 1) yields the stated conclusion.

Solution 34-9.4 by the Proposer Gtz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler @statistik.uni-dortmund.de

Since A is EP, we have AAT = AT A. Let . denote the n x 1 vector of ones. Now A: = s implies AT Ar = sAT. and thus
AATL = sAT.. Assume s # 0. Then ¢ € R(A) and AATL = 1, since AA™ is the orthogonal projector on R(A). Hence we obtain
v = sAT v or equivalently A*, = 4. When s = 0 we have AAT. = 0. Premultiplying by A™ then yields A™¢ = 0.
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Problem 34-10: On the Product of Orthogonal Projectors
Proposed by Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler @statistik.uni-dortmund.de

Let P and () be orthogonal projectors with complex entries. Show that P() is an orthogonal projector if and only if PQP < Q,
with <, indicating the Lowner ordering.

Solution 34-10.1 by Oskar Maria BAKSALARY, Adam Mickiewicz University, Poznan, Poland: baxx @amu.edu.pl
and Xiaoji L1U, Guangxi University for Nationalities, Nanning, China: xiaojiliu72@yahoo.com.cn

Let P, @ € C,, ,, be orthogonal projectors and let P be of rank r. Then P and () can be represented as

I, 0
P:U< )U* and Q:U(Qil Q12>U*, (25)
0 0 Q1y Q22
where U € C,, ,, is unitary, I, denotes the identity matrix of order 7, and Q11 € C,,, Q22 € C,,_, ,_, are Hermitian. Then
condition PQP <, ( is equivalent to
0 Q2. .,
0L U . U*. (26)
Qi Q2

In view of Theorem 1 in Albert (1969), condition (26) is fulfilled if and only if Q12 = 0 and 0 < Q22. Since @ is an orthogonal
projector, the latter condition is always fulfilled while the former one ensures that P and @) defined in (25) satisfy PQ) = Q P, which
is a well known necessary and sufficient condition for the product P() to be an orthogonal projector.

Reference
A. Albert (1969). Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM Journal on Applied Mathematics 17,

434-440.
Solution 34-10.2 by the Proposer G6tz TRENKLER, Universitdt Dortmund, Dortmund, Germany: trenkler@statistik.uni-dortmund.de

Following Baksalary, Kala and Ktaczynski (1983, Theorem 1), by taking M = ) and B = B* = P, the condition PQP < @ is
equivalent to PQP = QP.

Since (PQ)™ is idempotent (see Greville, 1974), we may write
(PRt =U (I’" H) U
o \o0 o ’
where U is a unitary matrix (see Hartwig and Loewy, 1992). Hence
E 0
PQ=(PQ)** =U ( ) U,
Q= (PQ) E o
where E = (I, + HH*)~!. From this we get
PQP =PQQP=U ( £ Er ) U*
B - \H*E? H'E*H)
The condition PQP = QP then entails H = 0, or, equivalently, PQ) is an orthogonal projector.
REMARK: According to Corollary 6 in Baksalary, Kala and Ktaczyriski (1983), the condition PQP < (@ is equivalent to
rank(Q) — PQP) = rank(Q) — rank(PQP).
References

J. K. Baksalary, R. Kala & K. Ktaczynski (1983). The matrix inequality M > B*M B. Linear Algebra and Its Applications 54, 77-86.

T. N. E. Greville (1974). Solutions to the matrix equation X AX = X and relations between oblique and orthogonal projectors. SIAM Journal on
Applied Mathematics 26, 828—832.

R. E. Hartwig & R. Loewy (1992). Maximal elements under the three partial orders. Linear Algebra and Its Applications 175, 39-61.
Solution 34-10.3 by Hans Joachim WERNER, Universitdit Bonn, Bonn, Germany: hjw.de @uni-bonn.de

It is well-known that a complex square matrix M is an orthogonal projector if and only if M is idempotent and Hermitian, i.e., if
and only if M = M? = M?*, where M* stands for the conjugate transpose of M. Then, evidently, M = MM?*, i.e., orthogonal



projectors are in particular nonnegative definite and Hermitian. For later use we mention that if M is an orthogonal projector, then
N(M) =R(I — M), with N(-) and R(-) denoting the null space and the range (column space), respectively, of the matrix (-).

=:Let P,  and PQ be orthogonal projectors, i.e., let P, ) and PQ) be idempotent and Hermitian. Then (I —P)Q = [(I—P)Q|* =
[(I—-P)Q)?% ie., (I—P)Q is also an orthogonal projector. Consequently, 0 <1, (I — P)Q = Q — PQ = Q — PQP and so necessity
is established.

«: Conversely, let Q — PQP >1, 0. Since @ and P are orthogonal projectors, @ >y 0 and PQP > 0, and so, clearly,
Q — PQP >1 0= PQPN(Q) = {0} & QPN(Q) = {0} & QP - Q) = 0+ QP = QPQ & QP = PQ & QP =
(QP)* = (QP)? < QP is an orthogonal projector.

IMAGE Problem Corner: More New Problems

Problem 35-6: Spectral Representation of an Arbitrary Diagonalizable Complex Matrix
Proposed by William F. TRENCH, Trinity University, San Antonio, Texas, USA: wtrench@trinity.edu

p(x)/(z = A
k.

Suppose A € C™*™ has minimal polynomial p(z) = (x — A1) - (z — Ag) with Ay, ...\ distinct. Let p;(x)
< Show that

and suppose @; € C™*™ has columns that form an orthonormal basis for the column space of p;(A), 1
AQi=N\Qi 1<i <k 3F  n; =n,and

i <

k
A=) ANQiQ; :
LN
Show that A is normal if and only if
Di(A) . ,
Qi =Qi, 1<i<k
P'(Ni)

Problem 35-7: A Characterization of Oblique Projectors
Proposed by Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler @statistik.uni-dortmund.de

Let A be a square matrix with complex entries. Show that A is an oblique projector if and only if A is similar to an orthogonal
projector.

Problem 35-8: A Characterization of a Particular Class of Square Complex Matrices
Proposed by Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler @statistik.uni-dortmund.de

Characterize the class of all square matrices A with complex entries satisfying the identity
At + AP =241 A%
where A and A* denote the Moore-Penrose inverse and the group inverse of A, respectively.

Problem 35-9: A Range Equality for Idempotent Hermitian Matrices
Proposed by Gotz TRENKLER, Universitit Dortmund, Dortmund, Germany: trenkler @statistik.uni-dortmund.de

Let P and () be idempotent and Hermitian matrices of the same order. Show that
R(P+Q—PQ) =R(P)+R(Q),
where R(-) denotes the range of a matrix.

Problems 35-1 through 35-5 are on page 44.
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IMAGE Problem Corner: New Problems

Please submit solutions, as well as new problems, both (a) in macro-free KTEX by e-mail to hjw.de@uni-bonn.de, preferably embedded as text,
and (b) with two paper copies by regular mail to Hans Joachim Werner, IMAGE Editor-in-Chief, Department of Statistics, Faculty of Economics,
University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany.

Problem 35-1: An Upper Bound for the Norm of a Matrix Exponential
Proposed by Ken DRIESSEL, Colorado State University, Fort Collins, Colorado, USA: driessel @math.colostate.edu
and Wasin S0, San Jose State University, San Jose, California, USA: so@math.sjsu.edu

Let N be a strictly upper-triangular matrix with all ones.
1. Prove that ||e~™V|| < /e where || - || is the spectral norm.
2. Is equality possible?

Problem 35-2: Matrix Polynomials as Group Inverses
Proposed by Richard William FAREBROTHER, Bayston Hill, Shrewsbury, England, UK: R.W.Farebrother @Manchester.ac.uk

Let A be an n X n nonzero matrix with complex elements. Establish general conditions under which the matrix polynomial P(A)
serves as a group inverse A% of A:
AA#" = AT A, AATA = A, A7AA" = A7,

Develop this general result for (i) the case in which rank(A) = n — 1, and (ii) the case in which A% = A™ for some value of m > 0.

Problem 35-3: Partitioned Inverse of a Matrix Product
Proposed by Richard William FAREBROTHER, Bayston Hill, Shrewsbury, England, UK: R.W.Farebrother @Manchester.ac.uk

Let X = (X; Xo)andY = (Y7 Y3) be n x k matrices of rank & partitioned by their first k; columns and the remaining
ko := k — k1 columns in such a way that X{Y7, X,Y5 and X'Y are nonsingular. Obtain explicit expressions for the columns of the
n X kmatrices P = (P; Py)and Q = (@1 (@2 ) partitioned conformably with X = (X; Xs)andY = (Y; Y3)insucha
way that P'Q = (X'Y)~L.

Problem 35-4: Which Sizes have the Matrices?
Proposed by Alexander KOVACEC, University of Coimbra, Coimbra, Portugal: kovacec@mat.uc.pt

Consider a matrix P, at least three units higher than broad whose lu-diagonal (containing the left upper corner) is filled by 1’s; whose
rl-diagonal (containing the right lower corner) is filled by —1’s; whose diagonal two units above the rl-diagonal is filled by 1’s;
and whose remaining entries are 0. Let b be a column of height of P of the form b = (1,0,...,0,1, —1)". Which sizes, if any, are
possible for P if Px = b is solvable?

Problem 35-5: First and Second Moments Involving a Camouflaged Wishart Matrix
Proposed by Heinz NEUDECKER, Universiteit van Amsterdam, Amsterdam, The Netherlands: ericaengels173 @hotmail.com

Consider the m x (n +m — 1) matrix C’ := (A’, B’), where A € R™~1™ is constant, B € R™™ is such that B’B follows a
central Wishart distribution W (€2, n), n > m + 1, and where rank(C') = m. As usual, let E denote the expected value operator and
D denote the variance operator. Prove the following:

1) ECX, [(A7,b,)]?) = n - tr(A’A)*Q, where, for i = 1,2,---,n, b; denotes the i-th column vector of B, and where | - |, ()*,
and tr(-) stand for the determinant, the adjoint, and the trace, respectively, of ().

(i) D(X, (A7, b;)[2) = n2 - {tr(A'A)*Q}2 + 2n - tr{(A'A)*Q}2.

Problems 35-6 through 35-9 are on page 43.



