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MATHEMATICAL PRELUDE
Another Proof of the Two-sidedness of Matrix Inverses

Oskar Maria Baksalary1 and Götz Trenkler2

Let A and B be n × n complex matrices and let In denote the identity matrix of order n. Inspired by [1] and [2], we
provide a concise proof of the known fact that when AB = In, then BA = In.
Let AB = In and let rk(.) be the rank of a matrix argument. Then n = rk(In) = rk(AB) 6 rk(A) 6 n. Hence rk(A) = n.
But rk(A) = rk(A†A), where A† denotes the Moore–Penrose inverse of A. Since A†A is idempotent and an idempotent
matrix of full rank necessarily coincides with the identity matrix, we conclude that A†A = In. On the other hand,
the equation AB = In has the solution for B as B = A† + (In − A†A)Z = A† for some n × n complex matrix Z. In
consequence, BA = A†A = In.
References

[1] R.A. Beauregard, A short proof of the two-sidedness of matrix inverses, Mathematics Magazine 80 (2007) 135–136.
[2] F. Sandomierski, An elementary proof of the two-sidedness of matrix inverses, Mathematics Magazine 85 (2012) 289.

1Adam Mickiewicz University, Poznań, Poland; Obaksalary@gmail.com
2Dortmund University of Technology, Dortmund, Germany; trenkler@statistik.tu-dortmund.de
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FEATURE INTERVIEW

A Conversation with Professor Tsuyoshi Ando
Tsuyoshi Ando Interviewed by Chi-Kwong Li1

C-K. Li and T. Ando

Professor Ando is a well-known figure in the mathematics community. His research covers
a wide range of areas including a large component in matrix and operator theory. He has
won many awards including the Béla Szőkefalvi-Nagy Medal and the 2002 Hans Schneider
Prize. At the age of 80, he is still very active in mathematical research, participating in
conferences, as well as doing editorial and referee work.

Li - When/how did you decide to be a mathematician?
Ando - When I was in an elementary school, Japan was in war against the USA and
European countries. I wanted to become a military officer or even a general as other boys
did. In April 1945, having finished the first year of a middle school, I entered a Cadet school
(a preliminary school for military academy). But in August of the same year Japan lost
the war. Consequently, the Cadet school was closed and I returned to the middle school.
After the war, on the recommendation of the U.S.A., Japan changed its education system
to more closely align with the U.S.A. In 1949, I entered Hokkaido University as one of the
first students of the new system. I liked natural sciences better than humanities.
After 1.5 years of general education, students had to choose their major subjects. Among
students there was excitement caused by the first Nobel prize by Japanese physicist Dr.
Hideki Yukawa. Many colleagues of mine wanted to go to physics. But I decided to go to
mathematics, wishing to become a researcher in university. There were only five students

majoring in mathematics that year.
The Department of Mathematics had four chairs (that is, four full professors in German style); two in analysis, one in
geometry and one in algebra. When I entered the university, those professors were not on good terms and three left the
university, leaving only the professor of geometry. In the last year of my undergraduate study, Dr. Hidegoro Nakano was
invited from Tokyo University to take a professorship in functional analysis at Hokkaido University.
Li - How did you choose your graduate school adviser and research topics?
Ando - When I got B.Sc. in mathematics, the graduate school was newly established in the university, and I was happy
that my status as a “graduate student” was guaranteed for the next five years. This may sound a little strange. Until the
new university system began, Japanese university had no established graduate programs. Generally it was considered
that a doctor’s degree was endowed after one had done many research works and attained a certain age, say 40.
As my family was not rich enough and the society was still in confusion, it was unthinkable for me to pursue graduate
studies at other universities. Though the geometry professor was an expert of differential geometry based on Ricci
calculus, I did not like it. Therefore my only choice was to study functional analysis under the supervision of Professor
H. Nakano. My supervisor had made significant achievements in function space theory as well as Hilbert space operator
theory during the difficult war time. His work related to unbounded normal operators is now called Wecken-Nakano
theory and is the subject of P. Halmos’ small book Introduction to Hilbert spaces. His profound contributions are seen in
the construction of (abstract) function space theory from the stand point of ordered linear spaces (usually called Riesz
spaces or Banach lattices). He introduced a meaningful generalization of Orlicz spaces known as “modulared semi-ordered
linear spaces.” His approach was always completely abstract and beautiful; he did not give any applications. I inherited
my lifelong interest of order structure from Prof. H. Nakano.
In my thesis Positive linear operators in semi-ordered linear spaces, I gave a slight generalization of the Perron-Frobenius
theorem on non-quasi-nilpotency for certain positive linear operators. Professor H. Nakano had a progressive view of the
Ph.D., saying that Ph.D. should be merely a passport to the community of researchers. While not common at the time,
this view is now prevalent in Japan.
I was the first Ph.D. under the new graduate program of Hokkaido University in 1958. Though it was hard to find an
academic position, upon my doctorate, Prof. H. Nakano squeezed me into an assistantship at the Research Institute of
Applied Electricity, which belonged to Hokkaido University. Here I was subsequently promoted to full professor, and
remained until retirement! As this is a research institute, I had little teaching experience, but I did become associated
with some graduate students.

1Ferguson Professor of Mathematics, The College of William & Mary, Williamsburg, VA 23187-8795, USA; math.ckli@gmail.com
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Li - Could you talk about some important events in your career?
Ando - There are several events.
First, when I was in the course of general education at the university, Japan had not yet recovered from the damage
caused by the war and the economy was not active. Modern-style books of mathematics for beginners were not published
yet. By chance, in the library for citizens established by the US Army, I found a book written by G. Birkhoff and
S. Mac Lane: A Survey of Modern Algebra. By reading this book, I came to understand the difference between a matrix
which describes a linear transform (with fixed basis system) and the matrix which describes the change of basis. This is
my true encounter with matrices. When I stayed for one year in CalTech (1963), I enjoyed the elementary seminar run
by Olga Taussky and my interest in matrices began. Since my initial academic career focused on functional analysis,
my approach to matrices was always from the stand point of functional analysis, in other words, I viewed a matrix as a
specialization of a linear operator on a Hilbert space.
Second, in a seminar under the leadership of Prof. H. Nakano, an elder colleague of mine, Dr. T. Ito, introduced a
problem which he had learned from an abstract of a talk at a conference in Hungary. It asks, given a pair of commuting
contractions A, B of a Hilbert space, whether there exists a pair of commuting unitary operators U, V on a superspace
such that

〈AnBmx|x〉 = 〈UnV mx|x〉 for all n,m = 0, 1, . . . , and for all vectors x.

After a few days, I was able to give an affirmative answer as an exercise of operator theory [2]. Yet this result attracted
many mathematicians and was later extended to a wide theory of the commutant lifting theorem, which is now a leading
topic in linear systems theory. But at the time, I was not able to extend the result more broadly.
Third, in the field of Hilbert space operators, I had a joint paper [1] with a more senior colleague of mine, Professor I.
Amemiya. We proved that given a finite number of contractive selfadjoint operators T1, . . . , TN every random product
Tσ1Tσ2 · · ·Tσn , where σk ∈ {1, 2, . . . , N} is a random choice, converges weakly to a limit provided every Tk (k = 1, 2, . . . , N)
appears infinitely often. At first I could not imagine that random choice is possible. It was a motto of Prof. I. Amemiya
that once the problem is well-formulated, then the problem itself is already almost solved. He showed me how to formulate
the problem in this case. Whether strong convergence is possible or not in this result has stood as an open problem,
attracting several mathematicians. Recently I heard some mathematician gave a counter example for strong convergence.
Fourth, I am secretly proud of a paper [6] of mine on matrix (or operator) inequalities which has few citations. Nowadays
many mathematicians are interested in giving a reasonable definition of a geometric mean of an n-tuple of positive definite
matrices. I read a paper of W. N. Anderson et al., in which they gave the geometric mean as the limit of successive
iterations of symmetric function means. In this connection they raised several problems on matrix inequalities. Let me
consider the simplest case of a triple A := (A1, A2, A3) of positive definite matrices. Define

S(A) := 1
2

{
A1 : (A2 +A3) +A2 : (A3 +A1) +A3 : (A1 +A2)

}
and

s(A) := 2
{

(A1 +A2 : A3) : (A2 +A3 : A1) : (A3 +A1 : A2)
}

where, for C,D > 0, the symbol C : D denotes their parallel sum, that is, C : D = (C−1 +D−1)−1. Therefore 2 · C : D
is their harmonic mean.
Anderson et al. asked whether S(A) ≥ s(A) for any triple A of positive definite matrices. For a commuting triple,
equality holds. As usual, I started to try the numerical inequalities for a given triple A:

〈S(A)x|x〉 ≥ 〈s(A)x|x〉 for all vectors x

One day, a new idea came to my mind. Since s(A)−1 = S(A−1), the inequality in question becomes: for fixed x, y

〈S(A)x|x〉 + 〈S(A−1)y|y〉 ≥ 2|〈x|y〉| for all A

which means that the infimum with respect to all triples A on the left-hand side should be not less than 2|〈x|y〉|. This
approach was successful on the basis that the parallel addition is determined as an infimum:

〈(C : D)x|x〉 = inf
{
〈Cy|y〉+ 〈Dz|z〉 : x = y + z

}
.

I was happy to see that this change of approach was successful.
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Li - What do you see as your main contribution to linear algebra and other topics?
Ando - First, my research in Hilbert space operators and matrices was mostly from the standpoint of order structure.
Here ordering is induced by the cone of positive semi-definite operators (Löwner order). In studying the paper of M.G.
Krein on extension of positive symmetric operators, I found that his result, credited to I. Gelfand, implies that the
Schur complement of a positive semi-definite matrix S is characterized as the maximum among those positive semi-
definite matrices dominated by S and vanishing on the suitable subspace. I wrote my first matrix paper [5]. A related
observation brought me to a construction of a natural Lebesque type decomposition of a positive operator [3].
Second, around 1978 I had a chance to give a lecture on operator inequalities, focusing on functions which preserve the
order relation via functional calculus, namely operator-monotone functions. In this connection, I studied the mathemat-
ical background of the Löwner theory of operator monotone functions. Physicists had more interest in functions of this
type than mathematicians. My lecture notes were well-accepted, even by physicists. Around the same time, E. Lieb
solved, affirmatively, the so-called Dyson-Yanase conjecture on joint concavity of certain bilinear functional related to
fractional powers of positive operators. I came to an observation that this result can be seen as the joint concavity of
the map

(A,B) 7−→ A1−α ⊗Bα (0 ≤ α ≤ 1)

on the space of pairs (A,B) of positive definite matrices. Starting from this observation I could prove a theorem of the
following type: that the map

(A,B) 7−→ f [Φ(A)−1 ⊗Ψ(B)] · (Φ(A)⊗ I)

is concave if the maps Φ(·) and Ψ(·) are concave and if f(·) is operator monotone function. I wrote a slightly long paper
on this theme with wide applications to inequalities for Schur (Hadamard) products of positive definite matrices [4]. My
interest in operator monotone functions continued. With a younger colleague, Dr. F. Kubo, I introduced the notion of
a mean for a pair of positive operators, especially the geometric mean [12].
Third, my interest in order structure included the indefinite case. The Krein space is a Hilbert space equipped with an
indefinite inner product [x|y] induced by a selfajdoint involution J , that is, J = J∗ = J−1 and [x|y] := 〈Jx|y〉. Naturally

J-selfadjointness and J-positivity are defined in a natural way. For instance, A
J
≥ B means that JA ≥ JB in the

usual sense. My lecture notes on operators on Krein Spaces were warmly accepted among those who were interested in
J-structure. I could prove a J-generalization of the Löwner theorem of operator monotone functions [9]. Consequently,
if A,B are J-selfadjoint with all their eigenvalues in a real interval (α, β) and f(·) is an operator monotone function on

(α, β) then A
J
≥ B =⇒ f(A)

J
≥ f(B). This seems to be the first contribution in this direction.

Fourth, in the 1960s I had an interest inmajorization. This was based on the information from a talented colleague of mine,
Dr. T. Shimogaki, an active researcher in the field of functions spaces (especially the space created by G.G. Lorentz) who
passed away at the age of 40. The norm in a Lorentz space is rearrangement invariant, and decreasing rearrangement
comes into consideration. Meantime I was impressed by the monumental paper by Ky Fan that the Ky Fan norms
control all unitarily invariant norms. I wrote several joint papers on majorization and norm inequalities with several
mathematicians, including R. Horn, C.R. Johnson, F. Hiai and X. Zhan. But my most meaningful contribution to this
field seems to be the comparison of eigenvalues of the usual product and those of the Schur product of two positive
definite matrices [7]. The same result was independently discovered by G. Visick.
Fifth, every square matrix A admits a polar decomposition A = V |A| where |A| := (A∗A) 1

2 and V is a partial isometry.
The matrix ∆(A) := |A| 12V |A| 12 is called the Aluthge transform ofA. This gives one-step smoothing ofA toward normality.
In fact, any limiting element of the iterates ∆n(A), n = 1, 2, . . . , is a normal matrix with the same eigenvalues as A. I
could prove that the intersection of all numerical ranges of ∆n(A) coincides with the convex hull of the eigenvalues of A,
and that the convex hull of the eigenvalues of A coincides with its numerical range if and only if the numerical range of
A coincides with that of ∆(A). [8].
Li - Do you see much change in the mathematical research environment in the past few years?
Ando - The number of research papers published each year is rapidly increasing. LAA in the early years published only
few hundred pages, I suppose, but now over 6,000 pages appear. This is inevitable because of the dominance of the
so-called “Publish or Perish” principle: mathematicians should publish as many papers as possible each year to keep or
get an academic position. Citation number is not the only indicator of the true trend of mathematical research. Though
it seems hard, in guiding Ph.D. students, a professor should show his/her conviction about the direction of the future
development of mathematical research.
Li - Do you want to share any interesting stories about your research, teaching, editorial work, etc.?
Ando - Story 1. Somewhere I learned that Olga Taussky told students something like the following: “If you recognize
some relations hold for numbers, then try to see whether the corresponding relations hold for 2 × 2 matrices.” When I
stayed in CalTech (1963), a female graduate student was interacting with Olga regarding her thesis on a topic related
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to 2 × 2 matrices. I wondered whether a topic on (a finite number of) 2 × 2 matrices could deserve to be a subject of
a Ph.D. thesis. Many years later I wrote a short paper with Dr. T. Yamazaki on the convergence of iterated Aluthge
transforms of any 2× 2 matrix (to a normal matrix) [11]. The result makes the point that the limit establishes a natural
retract to the subset of normal matrices. Though it was for the case of 2× 2 matrices, our proof was quite difficult and
we could not solve the corresponding result for the case of n× n matrices with n > 2. This made me change my view on
2 × 2 matrices. (The general case was settled later by several mathematicians, including Prof. Tin-Yau Tam (Auburn)
by completely different methods.)
Story 2. My family name begins with the character “A,” the first character of the alphabet. The community of
mathematics has had tradition that the names of co-authors of a joint paper are arranged according in alphabetical
order. This implied that I was typically listed as the first author. In most of other natural sciences, the first author
is usually the person who made the principal contributions to the growth of the paper. Therefore physicists and/or
chemists are always nervous as to the number of papers for which they are first authors. Now that many mathematicians
are interested in extensions of concept of geometric means of several positive definite matrices, my joint paper [10] is
frequently referenced. Someone may imagine that I made the central contribution. But it is not the case. The principal
part of the paper was initiated by C-K. Li and R. Mathias, and I made few comments.2 I think that it is now time for
the mathematics community to get rid of the old tradition of arranging the names of co-authors in alphabetical order.
Li - Do you have any advice for young researchers?
Ando - First suggestion. My thesis supervisor, Prof. H. Nakano, once said something like the following: “A mathemati-
cian is the one who has created or is creating his own original theory. The one who could or can only solve some problems
can not be called a mathematician.” Quite a severe criterion! I could not agree with him completely. Quite recently, a
favorite colleague of mine, Prof. F. Hiai, wrote that the character of T. Ando has been fit to solving challenging problems
rather than to developing a new theory. I agree with him. There can be mathematicians of different types. A young
mathematician should find their fit, and do their best.
Another suggestion. Prof. W. Takahashi, who is an esteemed friend of mine and the chief editor of the Journal of
Nonlinear and Convex Analysis, once told me that some percentage of the journal is reserved for young mathematicians
in order to encourage them. This is a clever consideration of the editor. Even if the first paper is not of high standard,
a young mathematician should always try to improve the standard at each step, not staying at the same level.
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Introduction. In numerical linear algebra, linear systems of equations, Ax = b where A ∈ Rn×n and x, b ∈ Rn, are often
solved by exploiting the structure or sparsity of the coefficient matrix A. If A is upper triangular, then a simple back
substitution will require O(n2), instead of O(n3), flops to solve the system. For very large systems, iterative methods
such as the conjugate gradient method only uses matrix-vector products to compute an approximate solution; thus, it
is highly advantageous to have a sparse and/or structured matrix A to perform these operations very quickly. In the
recently developed framework called compressed sensing (CS) in signal processing, the sparsity and/or structure of the
solution, x, and not necessarily that of A, is exploited. This framework has yielded very interesting results and has
become a highly active area of research within the last few years for mathematicians, computer scientists, statisticians,
and engineers because of its potential to greatly reduce the amount of data we have to collect to infer vast amounts of
information. Many expository articles have been written on this subject (see e.g., [3, 9, 12, 24, 26, 33]), but they generally
approach this topic from an engineering perspective. This particular article is meant to present compressed sensing to
the broader linear algebra community.
Motivation. Large digital files, such as JPEG images and MP3 audio files, are often compressed to take less memory
space for storage and to facilitate file transfer or download. The compression process results in a substantial reduction
in file size without a perceptible loss in quality. For example, a 10 megapixel image taken from a digital camera is
frequently reduced to a file size in the order of a few hundred kilobytes, with a minimal perceptual difference that is only
noticeable when the image is enlarged. In JPEG compression for instance, the image is transformed using the discrete
cosine transform (DCT), and only the significant nonzero coefficients are stored and transmitted (see [23] for details).
Intuitively, scene objects have relatively smooth surfaces and can be represented by smooth basis functions, such as cosine
functions. Since neighboring pixels in a digital image generally have similar intensity values, only very few functions are
needed to represent the image. Thus, the basis coefficients are mostly zeros, i.e., the image has a sparse representation
in the discrete cosine basis. Fig. 1 shows the coefficients of an image in two different bases (DCT and wavelets) and how
retaining only one-fifth of the coefficients still leads to a faithful approximation to the original image.
What the compressibility of images in these basis functions indicates is that most of an image’s energy is concentrated
on only a fraction of the basis elements. In other words, a raw image contains a lot of redundant information that can be
discarded in the compression stage. If that is indeed the case, then it would seem that taking direct, high-resolution point
samples of a scene at specific locations is very wasteful. Rather, it would be more efficient to take fewer measurements
that would identify the significant coefficients of the image in the sparsifying basis. The relatively new framework of
compressed sensing (also known as compressive sampling) [11, 16] has provided mathematical insights on how to take
such measurements. In particular, by taking judiciously chosen linear projections of the original scene, highly accurate
representations can be obtained with very high probability.
Example: Consider the simple example of a 4× 4 pixel image F ? with only 1 nonzero element with pixel intensity 255
in the (2,2) position of the image, as on line (1). (Think of a night sky with only one star represented by a single pixel.
Most gray-scale image pixels are represented by 8-bit strings with values between 0 and 255, with 0 being black and 255,
white.) Taking an image of F ? directly will require 16 measurements (one for each pixel to guarantee that no pixel is
missed). However, by taking linear projections of F ?, we can reduce the number of measurements, in particular, by using
a binary search pattern (see [33]). In linear algebra notation, we can represent this as follows. First, stack the columns
of F ? to obtain f? ∈ R16. For example,

F ? =

0 0 0 0
0 255 0 0
0 0 0 0
0 0 0 0

 −→ f? = [ 0 0 0 0 0 255 0 0 0 0 0 0 0 0 0 0 ]T . (1)

Consider the following linear mapping R ∈ R4×16:

R =

 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 . (2)

Instead of directly measuring F ? (e.g., using a camera with a 4 × 4 pixel photo-detector), we could compute the linear
projection of f? using R, which has the following interpretation. Let y = Rf?. Then the first element of y, y1, is

mailto:rmarcia@ucmerced.edu
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: A demonstration of the compressibility of the “cameraman” image in the discrete cosine transform (DCT) and
wavelet bases. (a) Original image. (b) The DCT coefficients (in log scale). (c) The largest 20% DCT coefficients in
magnitude. (d) The representation of the original image using only the top 20% DCT coefficients. (e) The same image
as in (a). (f) The wavelet coefficients of the image (in log scale). (g) The largest 20% wavelet coefficients in magnitude.
(h) The representation of the original image using only the top 20% wavelet coefficients.

the inner product of the first row of R with f?, which identifies which half of the image the nonzero pixel is located.
The second measurement, y2, identifies which quadrant; the third identifies which octant, and so forth. In this case,
y = [ 255 0 255 0 ]T , which indicates that the nonzero element has value 255 and is located on the left half, not in the
first column, on the top half, and not on the first row. Using this strategy, it will take only log(16) = 4 measurements to
perfectly reconstruct F ?. Thus, to image a 4×4 scene with only one nonzero pixel value, we can use a 2×2 pixel camera
that takes linear projections of the scene rather than a 4 × 4 pixel camera. For real-world applications, this reduction
in resolution can lead not only to substantial savings in the materials for constructing the camera and in the batteries
needed to power it (e.g., for remote sensing applications), but to a significant decrease in the size and weight of the
camera, features which can be crucial in some settings, e.g., its portability and maneuverability in video surveillance.
Problem formulation. For the remainder of this article, we will represent the signal or image of interest by a vector
f? ∈ Rn and express it in some sparsifying basis W ∈ Rn×n, i.e., f? = Wθ?, where the coefficients θ? ∈ Rn. (In the
example above, W is the identity matrix and θ? = f? since f? is already sparse to begin with.) It is common for W to
be orthogonal, such as the DCT and wavelet transform used in Fig. 1. When only k � n coefficients in θ? are significant
(i.e., sufficiently large in magnitude), we say that f? is sparse or compressible in the basis W . Let R ∈ Rm×n be an
underdetermined linear projection matrix, and denote the low-resolution measurement by the vector y ∈ Rm obtained
from projecting f? using R, i.e., y = Rf?. Let A = RW so that y = Rf? = RWθ? = Aθ?. In practice, the measurements
are corrupted by noise, which we represent by adding a zero-mean vector w ∈ Rm whose elements follow a Gaussian
distribution. Thus,

y
 =

 A



θ?


+

w
 . (3)

Now, in the example above, even though A is underdetermined and this inverse problem is ill-posed, we are able to
solve for θ? because we used the a priori knowledge that the scene we are imaging contains only one nonzero pixel
element. Compressed sensing extends this approach to vectors θ? with k nonzero elements (so-called k-sparse vectors)
and can be summarized as follows: θ? can be accurately recovered provided (i) the measurement matrix A satisfies a
certain statistical property (see below), (ii) the coefficients θ? of the high-dimensional image to be recovered is sufficiently
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sparse, and (iii) an appropriate optimization problem is solved. We discuss each of these items more fully.
Projection matrices. A crucial component of the CS framework is determining a measurement matrix A that leads
to an accurate reconstruction of the original scene. In the example above, the measurement matrix R samples half the
pixels with each measurement. For instance, y1 is the sum of all pixel intensities on the left-half of the image. In other
words, the sampling is sufficiently rich in information so that an accurate reconstruction of F ? can be obtained with only
four measurements. One sufficient condition on A for recovering a k-sparse vector θ is known as the Restricted Isometry
Property (RIP):
Definition: (Restricted Isometry Property [11]). The matrix A satisfies the Restricted Isometry Property of order k with
parameter δk ∈ [0, 1) if

(1− δk)‖θ‖2
2 ≤ ‖Aθ‖2

2 ≤ (1 + δk)‖θ‖2
2 (4)

holds simultaneously for all sparse vectors θ having no more than k nonzero entries.
Assuming that δk is chosen to be the smallest value such that (4) holds, δk can be shown to be the largest distance from
1 of all the eigenvalues of all the matrices of the form ATkAk, where Ak is any m× k submatrix of A (see [8]).
Matrices with this property are denoted RIP(k, δk). Roughly speaking, this means that A mostly preserves the Euclidean
length of any vector θ that has at most k nonzero entries, i.e., when restricted to k-sparse vectors, A is almost an isometry.
Alternatively, we can view RIP as a condition on A that states that the the energy of the observation vector Aθ must
be comparable to the energy of the original signal. For example, if A is a matrix whose entries are independent and
identically drawn from a normal distribution with mean zero and variance 1/m, then A is RIP(k, δk) with high probability
as long as k = O(m/ log(n)) [4, 11]. (For instance, see Fig. 2. Note that the corresponding Gramian matrix G = ATA ≈ I,
which intuitively explains why ‖θ‖2 ≈ ‖Aθ‖2 and why Eq. (4) would hold true.) Another example of a RIP-satisfying
projection matrix is one whose entries are drawn from a Bernoulli distribution, taking only the values 1/

√
m or −1/

√
m

with equal probability. Finally, structured matrices like Toeplitz and circulant matrices whose entries are drawn from an
appropriate distribution can be shown to be RIP-satisfying matrices as well [2].

(a) A (b) G = ATA

Figure 2: An example of a compressive sensing matrix A. (a) Here, A is 32 × 128 whose elements are drawn from a
normal distribution with mean zero. (b) The 128 × 128 Gramian matrix G = ATA. Note that off-diagonal entries of G
are relatively small in magnitude compared to the diagonal entries.

We note that there are other criteria on A for guaranteeing accurate signal recovery which we will not discuss here (e.g.,
see [17]). Given that the observation matrix A is RIP-satisfying, the following theorem guarantees that the original signal
(an Rn vector) can be accurately approximated from an Rm observation vector (where m� n):
Theorem 1 [9, 10]: Let A be a matrix satisfying RIP(2k, δ2k) with δ2k <

√
2 − 1, and let y = Aθ? + w be a vector of

noisy observations of any signal θ? ∈ Rn, where the w is a noise or error term with ‖w‖2 ≤ ε. Let θ?k be the best k-sparse
approximation to θ?, i.e., θ?k is the approximation obtained by keeping the k largest entries of θ? and setting the others
to zero. Then the estimate

θ̂ = arg min
θ∈Rn

‖θ‖1 subject to ‖y −Aθ‖2 ≤ ε, (5)

satisfies
‖θ? − θ̂‖2 ≤ Ckε+ C̃k

‖θ? − θ?k‖1√
k

,

where Ck and C̃k are constants which depend on k but not on n or m.
Here ε is the variance on the noise in the data. This theorem implies that if the data are not corrupted by noise (i.e.,
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ε = 0) and if the signal is truly k-sparse (i.e., θ? = θ?k), then the approximation θ̂ is exact. In other words, k-sparse signals
are guaranteed to be fully recovered without error. Finally, the requirement that A is a matrix satisfying RIP(2k, δ2k)
with δ2k <

√
2− 1 guarantees that θ will be reconstructed uniquely from y and A (see Lemma 1.3 in [11]).

Convex relaxation. To compute a sparse approximation θ̂ to θ? from y, Theorem 1 suggests that we solve the nonlinear
optimization problem (5) even though the original inverse problem (3) is linear. More specifically, it involves minimizing
the `1 norm of θ to compute a sparse approximation θ̂. Now, the `1 norm has long been used as an alternative norm for
promoting sparsity in the solution [29] since minimizing the number of nonzero entries in θ (the so-called `0 semi-norm)
is a combinatorial problem, which for large problems is computationally intractable and is therefore not a practical
approach. Fig. 3 illustrates why an `1 relaxation to compute a sparse solution is intuitively a reasonable approach.

Figure 3: A comparison between `1 and `2 minimization. Here θ?`1
minimizes ‖θ‖1 for all θ satisfying Aθ = y and B1

is the `1 ball with radius ‖θ?`1
‖1. Any θ smaller in `1 norm than θ?`1

will lie inside B1 and, therefore, will not satisfy
Aθ = y. Note that the minimizer θ?`1

will generally lie on one of the corners of an `1 ball, where some of the components
will be zero and hence generate a sparse solution. In contrast, the `2 ball, B2, is isotropic, and therefore, the minimizer
will be independent of directions with any zero components. Thus the `2 minimizer, θ?`2

, will not generally produce a
sparse solution.

Relaxing the optimization problem using an `1 norm has several advantages. The optimization problem (5) can be
written equivalently as

θ̂ = arg min
θ∈Rn

1
2‖y −Aθ‖

2
2 + τ‖θ‖1, (6)

where τ > 0 is a regularization parameter that balances the data-fidelity least-squares error term with the `1 sparsity-
promoting regularization term. Even though this optimization problem is nonlinear, it is convex, which means that its
minimizer will be the global minimizer. Also, the objective function now depends continuously on θ. Next, we will
formulate the problem so that its derivatives can be computed, and hence, calculus of variations approaches can be used
to solve for its minimizer. The `1 regularization term could in practice be replaced by a `2-norm Tikhonov regularization
term, but as Fig. 3 shows, this approach will not yield a sparse solution.
Optimization. The `1 norm is not differentiable at 0, and consequently, gradient-based optimization methods cannot
be directly applied to solve (6). However, the objective function can be transformed so that it can be differentiated by
introducing a new vector u ∈ Rn with nonnegative components that serve as bounds on the magnitude of the components
of θ: −ui ≤ θi ≤ ui for all 1 ≤ i ≤ n. The `1 norm of θ can then be replaced by the sum of the ui’s, and the optimization
problem becomes

(θ̂, û) = arg min
θ,u∈Rn

1
2‖y −Aθ‖

2
2 + τeTu (7)

subject to −u ≤ θ ≤ u

Here, e ∈ Rn is the vector of ones. Note that although the number of variables over which to minimize has doubled
and bound constraints have been introduced, the optimization problem has become a typical quadratic programming
problem. There are numerous algorithms for solving these sparse signal recovery problems, including those that use
projected gradient methods [7, 18, 32], interior-point methods [19, 22], augmented Lagrangian methods [30], and iterative
shrinking/thresholding methods [6, 34]. There are also non-gradient based approaches for compressed sensing. One family
of such approaches is based on greedy methods called matching pursuits [14, 15, 31]. For a more complete listing of
existing methods, see http://dsp.rice.edu/cs.
Other sparsity norms: Another widely used norm for measuring an image’s sparsity is the total variation (TV) norm
[27], which essentially measures the change in intensity values among adjacent pixels horizontally and vertically. Objects
in natural scenes generally have smooth surfaces. Therefore, pixels near each other tend to have the same intensity
values, and abrupt changes in pixel values generally correspond to an edge on the object. Thus, it is reasonable to store

http://dsp.rice.edu/cs
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(a) (b) (c)

Figure 4: An illustration of total variations as a sparsity measure. (a) A closeup of the cameraman. (b) The difference
in magnitude between two adjacent pixels horizontally. (c) The difference in magnitude between two adjacent pixels
vertically. Note the strong vertical edge of the inside collar; this corresponds to a large change in the horizontal direction,
which is shown in (b). Similarly, the strong horizontal edge on the cameraman’s right shoulder corresponds to a large
change in the vertical direction, which is shown in (c). Finally, note that the edges of the diagonally-oriented pan handle
part of the camera tripod appear in both (b) and (c).

only where the pixel intensities change. The TV norm can therefore be viewed as a way of measuring the magnitude of
the “gradient” of an image. Fig. 4 illustrates the changes of pixel intensities on an image both horizontally and vertically.
The TV norm can be defined in multiple ways. The anisotropic TV norm is equivalent to the `1 norm of the changes in
pixel intensities in an image and is given by the following: If F is an N ×N image, then

‖F‖TV =
N−1∑
i=1

N∑
j=1
|Fi,j − Fi+1,j | +

N∑
i=1

N−1∑
j=1
|Fi,j − Fi,j+1|. (8)

Many optimization methods for solving the CS problem (6) with a TV norm regularization term also exist. For example,
see [5, 13, 25, 35].
Noise. In a variety of imaging applications such as medical imaging, night-sky imaging, and nocturnal wildlife observa-
tions, the measurements collected consist of counts of photons hitting a detector. Noise due to low photon count levels
are modeled more accurately by Poisson processes [28] than the zero-mean additive Gaussian noise typically assumed
in compressed sensing. In the Poisson model, the variance of the noisy observations is proportional to the signal inten-
sity; and instead of using the `2 data-fitting term in (6) (which can lead to over-fitting in high-intensity regions and
over-smoothing in low-intensity regions), the following penalized negative log-likelihood optimization is solved:

θ̂ = arg min
θ∈Rn

{ n∑
j=1

(Aθ)j − yj log(Aθ)j
}

+ τ‖θ‖1 (9)

subject to Wθ ≥ 0.

Although the observations y are still linear projections of the original signal Aθ, much like (6), we must solve a nonlinear
problem to promote sparsity in the solution and to counteract the effects of the noise. However, note that (9) is
not quadratic, has potential singularities due to the log function term, and has linear constraints on the variables θ.
Consequently, this is more difficult to solve than the `2 − `1 CS minimization problem in (6). Existing methods for
solving (9) (or similar problems) can be found, for example, in [1, 21].
Illustration. Here, we describe one way a compressed sensing imaging system can be implemented in practice. Conven-
tional digital cameras take direct point samples of a scene at specific locations. Thus, the resolution of the image is limited
by the resolution of the focal plane (light-sensing pixel) array. One method of obtaining compressive measurements is
through the use of coded apertures, which is a grid pattern of openings that can be designed so that the corresponding
measurement matrix satisfies RIP (see e.g., [20]). The encoded observation does not resemble the scene; but by solving
the `2 − `1 minimization problem (6) (the post-processing decoding step), a high-resolution approximation of the scene
can be obtained (see Fig. 5).
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Comments on the Development of Linear Algebra in Poznań, Poland
Jan Hauke, Adam Mickiewicz University, Poland, jhauke@amu.edu.pl; and

Augustyn Markiewicz, Poznań University of Life Sciences, Poland, amark@up.poznan.pl

Linear algebra belongs to the parts of mathematics whose development is strongly caused by proper applications. Among
the Polish mathematicians who significantly contributed to linear algebra through applications was Józef Hoene-Wroński,
who used properties of matrices in the study of differential equations, introducing the Wronskian as early as 1811. Hoene-
Wroński was born in Wolsztyn (close to Poznań); there is an archive located in the Kórnik castle (also close to Poznań)
that includes important parts of his work. Another well-known Polish astronomer and mathematician that dealt with
matrices was T. Banachiewicz, who, in 1922, introduced Cracovians (matrices with specifically defined operations) for
use in astronomy; cf. [J. Grala, A. Markiewicz, and G.P.H. Styan, “Tadeusz Banachiewicz: 1882–1954,” IMAGE, 25
(2000) 24].
Linear algebra is frequently applied in statistics, which have been developed in Poland from the beginning of 20th

century (with large contributions by J. Neyman). During the 1970s, there was a group of statisticians, created under
the direction of Professor Tadeusz Caliński at the Agricultural University in Poznań, who started intensive research into
matrix methods with applications in statistics. There have been noted contributions of Jerzy K. Baksalary and Radosław
Kala, along with some of their Ph.D. students, who continued the research oriented towards linear algebra with emphases
on generalized inverses of matrices, projectors, partial orderings, matrix equations and inequalities, modified matrices; cf.
[O.M. Baksalary, G.P.H. Styan, Some comments on the life and publications of Jerzy K. Baksalary (1944-2005), Linear
Algebra Appl., 410 (2005) 3–53].
Near the end of the 1980s, Tomasz Szulc began researching applications of matrix analysis in numerical analysis at
the Faculty of Mathematics and Computer Science of Adam Mickiewicz University in Poznań. In the mid 1990s, Jan
Hauke, Augustyn Markiewicz, and Tomasz Szulc started to cooperate by organizing seminars on linear algebra and
its applications, later called the Poznań Linear Algebra Group (PLAG); cf. [IMAGE 34 (2005) 15]. One of the most
important parts of these activities was to host visitors who would deliver speeches. This activity started in 1996, in
connection with the second part of the “Linear Operators” semester held at the Banach Center in Warsaw (co-organized
by Professor Jaroslav Zemánek from the Institute of Mathematics of the Polish Academy of Science). Some of the
leading specialists in linear algebra and its applications visited the Faculty of Mathematics and Computer Science of
Adam Mickiewicz University in Poznań within the last twenty years, one in particular being Hans Schneider. Some
participants of the “Linear Operators” semester, as well as guests of the Faculty, also attended the PLAG seminar; one of
them was Volker Mehrmann who encouraged us to attend the 1996 ILAS meeting in Chemnitz. The next year’s visitors
and collaborators from Poland included A. Smoktunowicz, Z. Woźnicki, K. Ziętak (working in the area of numerical
algebra) and M. Niezgoda. Visitors from abroad included S. Puntanen, D. von Rosen, G.P.H. Styan, working on the
border between linear algebra and statistics, and J. Barlow, R. Beuvens, R. Bru, L. Cvetković, L. Elsner, A. Frommer,
C. Johnson, V. Mehrmann, C-K. Li, J. Peña, and S. Rump, working more directly in linear algebra.
The seminars have been regularly scheduled for every second Thursday since 1999. These group meetings were actively
attended by J.K. Baksalary, his son O.M. Baksalary, K. Filipiak, and Ph.D. students. Seven of the Ph.D. students have
successfully completed their theses; three from A. Markiewicz, three from T. Szulc, and one from C.R. Johnson. Our
discussions have resulted in published papers, several of which are included in Linear Algebra and Its Applications. J.K.
Baksalary has published 50 papers in this journal, some of them with O.M. Baksalary, J. Hauke, A. Markiewicz, and T.
Szulc as co-authors. The PLAG members published 80 papers in this journal.

mailto:jhauke@amu.edu.pl
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Another form of international collaboration was the organization of workshops and conferences. First came the 13th

International Workshop On Matrices and Statistics (IWMS), held in Będlewo in celebration of Ingram Olkin’s 80th

birthday, with the participation of famous mathematicians such as T.W. Anderson, G. Golub, and Volker Mehrmann.
Selected papers presented during the conference were published in special issue of Linear Algebra and Its Applications,
Vol. 417, 2006 (with guest editors L. Elsner, A. Markiewicz and T. Szulc). Next year, encouraged by V. Mehrmann,
we organized the first conference in the MatTriad series which was also held at the Bȩdlewo Conference Center. The
MatTriad conferences are devoted to applications of linear algebra, including applications in statistics. They were
organized every two years: in 2007 and 2009 in Będlewo, and in 2011 in Tomar, Portugal (publishing selected papers in
the Electronic Journal of Linear Algebra with O.M. Baksalary as one of the guests editors). The fifth conference will be
held in Herceg Novi, Montenegro; http://mattriad2013.pmf.uns.ac.rs/. The Scientific Committee of the conference
consists of Tomasz Szulc (chair), Natália Bebiano (Portugal), Ljiljana Cvetković (Serbia), Heike Faßbender (Germany),
and Simo Puntanen (Finland). It became a tradition that an important part of the conference program are short courses.
These were delivered by A. Cegielski and C.R. Johnson in 2009, N. Balakrishnan, Ali S. Hadi, and V. Mehrmann in 2011,
and in 2013 lectures will be delivered by Adi Ben-Israel and S. Rump.
The work of young scientists has a special position in the MatTriad conferences. Awards are given to the best poster, as
well as the best talk, of graduate students or scientists with a recently completed Ph.D. Prize-winning works are widely
publicized and promoted by the conference and winners are invited as speakers for the next issue of the conference, Olivia
Walch and Paulo Canas Rodrigues are the MatTriad 2013 invited speakers for Young Scientists Awards (YSA) in 2011.
Some participants in our PLAG seminar are also statisticians, who are involved in the organization of the LinStat
conferences, in 2008 in Bȩdlewo, in 2010 in Tomar, Portugal, and in 2012 combined with the 21st IWMS in Bȩdlewo.
The next LinStat conference will be held in Linköping, Sweden; http://www.mai.liu.se/LinStat2014/, and 22nd

IWMS will be held in 2013 in the Fields Institute in Toronto, Canada; http://www.fields.utoronto.ca/programs/
scientific/13-14/IWMS/.

Chebyshev, Krylov and other Legends of Linear Algebra in Russia
Eugene Tyrtyshnikov, Institute of Numerical Mathematics, Russian Academy of Sciences, Russia

eugene.tyrtyshnikov@gmail.com

There are at least two legendary Russian mathematicians who are tremendously well-cited in linear algebra papers:
Pafnuty Lvovich Chebyshev (1821-1894) and Alexei Nickolaevich Krylov (1863-1945).
The marvelous Chebyshev polynomials are defined as monic polynomials on a closed interval with minimal deviation
from zero. They appeared in his original memoir of 1857 with the French title “Sur les questions de minima qui se
rattachent à la représentation approximative des fonctions,” published in Memoirs of Imperial Academy of Sciences.
Chebyshev’s polynomials are recognized as the beginning of approximation theory. As is typical for the many other
Russian mathematicians who contributed to linear algebra, it is not appropriate to say that his name belongs merely to
linear algebra. In fact, Chebyshev is considered as a founding father of Russian mathematics in the whole, with thousands
of scientific descendants and with quite a few of them becoming really great names, such as Dmitry Grave, Alexander
Lyapunov, Andrei Markov, Georgy Voronoi, Julian Sokhotski, Egor Zolotarev and others. Besides many achievements
in mathematics, mechanics and education, Pafnuty Chebyshev created the first mathematical journal in Russia which is
regularly translated in English and well-known in the West as Sbornik Mathematics.
Alexei Krylov was primarily a naval engineer and applied mathematician. He founded the theory of magnetic and
gyro-compasses and proposed a special device, called the dromoscope, to automatically calculate the deviation for a
compass. By suggesting the theory of oscillating motions of the ship, he became the first foreigner in Great Britain who
received the Gold Medal from the Royal Institution of Naval Architects. He put forth the theory of damping of ship
rolling and pitching, and proposed the method of gyroscopic damping of the roll. As he claimed himself, his primary
profession was shipbuilding, or, more accurately, application of mathematics to various questions of the maritime science.
In linear algebra, the name of Alexei Krylov is given to special subspaces which are fundamental in most numerical
methods pervasive in applications, such as Conjugate Gradients (CG), Generalized Minimal Residuals (GMRES), Lanczos
bidiagonalization algorithm, etc.
The Krylov subspaces were born in 1931, in the paper titled “On numerical solution of the equation of technical sciences
for frequencies of small oscillations in material systems”. In this paper, Krylov proposed a method for the computation
of the coefficients of characteristic polynomial of a matrix. Krylov’s idea was to reduce the equation

det

a11 − λ a21 . . . an1
a12 a22 − λ . . . an2
. . . . . . . . . . . .
a1n a2n . . . ann − λ

 = 0 (10)

http://mattriad2013.pmf.uns.ac.rs/
http://www.mai.liu.se/LinStat2014/
http://www.fields.utoronto.ca/programs/scientific/13-14/IWMS/
http://www.fields.utoronto.ca/programs/scientific/13-14/IWMS/
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to an easier calculated form

det

 b11 − λ b21 . . . bn1
b12 − λ2 b22 . . . bn2
. . . . . . . . . . . .

b1n − λn b2n . . . bnn

 = 0. (11)

He obtained (11) from (10) by simple transformations of the equations

λx1 = a11x1 + a21x2 + . . .+ an1xn,

λx2 = a12x1 + a22x2 + . . .+ an2xn,

. . .

λxn = a1nx1 + a2nx2 + . . .+ annxn.

The first step is multiplication of the first equation by λ and replacing λx1, . . ., λxn with the right-hand sides of the
original equations. The second step is multiplication of the new equation by λ and the substitution as previously, and so
on. Denote by b1, . . ., bn the column vectors composed of the coefficients of the rows of the final equations

λ x1 = b11x1 + b21x2 + . . .+ bn1xn,

λ2x1 = b12x1 + b22x2 + . . .+ bn2xn,

. . .

λnx1 = b1nx1 + b2nx2 + . . .+ bnnxn.

Let A be a matrix with the entries aij . Then, it is not difficult to see that

b1 = Ar0, b2 = A2r0, . . . , bn = Anr0, where r0 = [1, 0, . . . , 0]>.

For any r0, the vectors r0, Ar0, . . . , A
kr0 are now called the Krylov vectors and their linear spans for different k are

known as the Krylov subspaces generated by r0 and A.
The equation (10) is equivalent to (11) if the Krylov vectors r0, Ar0, . . . , A

n−1r0 are linearly independent. If they are
not, the method seems to fail. However, let

Lk := span(r0, Ar0, . . . , A
k−1r0)

and suppose that
dimLk = dimLk+1 = k.

Then Lk is an invariant subspace with respect to A, and the method allows one to obtain the coefficients of a polynomial
which is a divisor of the characteristic polynomial. In particular, one can find the minimal polynomial for A considered
on Lk, and with an appropriate choice of r0 it is always possible to get the minimal polynomial for A in the whole space.
It is interesting that Nickolai Nickolaevich Luzin (the founder of the Moscow school of theory of functions with many
outstanding pupils including P. Alexandrov, A. Kolmogorov, S. Sobolev and many others) published a paper with further
analysis of the Krylov method. Several subsequent papers by other authors were also devoted to a better understanding
of Krylov’s method.
In modern analysis of iterative methods, the names of Chebyshev and Krylov are both essential and naturally meet,
because the Krylov vectors are intrinsically linked with polynomials. Consider a linear algebraic system Ax = b with
a symmetric positive definite matrix A. Then the CG method begins with an initial guess x0, constructs the Krylov
subspaces Lk with r0 := b−Ax0, and defines the kth iterate xk so that it solves the minimization problem

||b−Axk||A−1 = min
x∈x0+Lk

||b−Ax||A−1 ,

with
||x||A−1 :=

√
(A−1x, x).

Obviously, for any xk ∈ x0 + Lk we have rk = fk(A)r0 with fk ∈ Fk, where Fk is the set of all polynomials of degree
bounded by k and with the constant term equal to 1, i.e. fk(0) = 1. From the above minimization property, we get

||b−Axk||A−1 ≤ min
fk∈Fk

||fk(A)r0||A−1 ≤ min
fk∈Fk

max
m≤λ≤M

|fk(λ)| ||r0||A−1 ,

where m and M are the minimal and maximal eigenvalues of A. The Chebyshev polynomials help to minimize the
right-hand side. It is the standard way to yield the classical convergence estimates for the CG and other Krylov-space
methods.
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Another Russian that struck deep roots in linear algebra is Semyon Aronovich Geršhgorin (1901-1933). He had a vibrant
mathematical talent, wrote several brilliant works in applied mathematics, and unfortunately died a rather young man in
Leningrad. He chiefly worked on numerical and mechanical solution of PDEs. One of his works contains a careful proof
of convergence for a finite-difference scheme for solving the Laplace equation. And at the same time, his localization
theorems for the eigenvalues via the Geršhgorin discs belong directly to the gold reserves of linear algebra. The first
Geršhgorin circle theorem states that the eigenvalues of A = [aij ]n×n lie in the union of the Geršhgorin discs

Di := {z ∈ C : |z − aii| ≤
∑
j 6=i
|aij |}.

The second Geršhgorin circle theorem adds that if a union of k discs does not intersect with the other discs then it
contains exactly k eigenvalues of A. These results were published in German in 1931, and Ludwig Elsner especially
stresses the importance of the language for wider dissemination of good results: “It is safe to guess that this was one of
the reasons that certain people outside the Soviet Union, such as Olga Taussky and Alfred Brauer, studied it and made
it known in the West during the 1940s. Other important papers written in the Soviet Union in the 1930s became known
in the West only much later” [L. Elsner, Review: Geršgorin and His Circles by Richard S. Varga, Amer. Math. Monthly,
113 (4) (2006), 379–381].
The whole picture of linear algebra, matrix theory and numerical linear algebra in the 20th century cannot be complete
without at least two famous encyclopedic monographs originally written in Russian, namely Matrix Theory by Felix
Ruvimovich Gantmacher (1908-1964) and Computational Methods of Linear Algebra by Dmitry Konstantinovich Faddeev
(1907-1989) and Vera Nickolaevna Faddeeva (1906-1983).
Felix Gantmacher was born and started his mathematical career in Odessa, a city which now belongs to Ukraine. He
moved to Moscow in 1934 and worked at the Steklov Institute of Mathematics. He read lectures at the Moscow Institute
of Physics and Technology since 1947, the very year of organization of this technical university, first on the base of the
Lomonosov Moscow State University and then as an independent unit. This university is known for its unique system
of education known as the “system of PhysTech.” It is characterized by intrinsic and direct links with the research
institutes of the Russian Academy of Sciences. One of founders and visionaries of PhysTech was the Nobel Laureate and
physicist, Pyotr Leonidovich Kapitsa. In its rich history, PhysTech became home to eight Nobel Laureates, and due to
Felix Gantmacher, PhysTech became a center for linear algebra in Russia.
Note that PhysTech was also home for Victor Borisovich Lidskii (1924-2008), who enriched linear algebra by developing his
inequalities for the eigenvalues of Hermitian matrices and their sums. These are wonderful topics related to majorization
theory and to the remarkably intricate theorems by Lidskii, Wieland and Mirsky. From historical remarks of G.W.
Stewart and J. Sun in Matrix Perturbation Theory, one can learn that “Wieland proved his theorem because he was
unable to succeed in completing the interesting sketch of proof given by Lidskii” in 1950. Lidskii was evidently loved by
his students, and vice versa, as is witnessed in the myths and legends of PhysTech. Students liked his lectures although
they did not feel safe when attending them, because he used to ask them questions concerning the topics at study and
did not like it if he got no answer. In one of the PhysTech stories, he was at an exam taking place at the assembly hall
of PhysTech with a grand piano on stage, and being extremely disappointed by the answer of a student, he ran to the
piano and expressed himself by playing a very wrathful melody.
Felix Gantmacher is also mentioned in the myths and legends of PhysTech. When he was seriously ill in the beginning of
a semester, he convinced his doctors to allow him to leave the hospital for a few hours so that he could deliver the first
introductory lecture to his students at PhysTech. He wanted to demonstrate the greatness and splendor of his favourite
science in at least one lecture. He arrived by ambulance and read this lecture sitting in a chair. Of course, this was an
impressive act of the spirit showing devotion to the science, and welcoming the new generation to it. Matrix Theory by
Gantmacher has had several editions on several languages and is truly recognized by experts and novices as a bible of
matrix theory.
We should mention at least one more well-cited book: Oscillation matrices and kernels and small vibrations of mechanical
systems. Written by Gantmacher and Mark Grigorievich Krein (1907-1989), the first edition appeared in 1941. Note that
the so-called semiseparable structure of the inverses to tridiagonal matrices was one of many findings of Gantmacher and
Krein. Far-reaching generalizations of this type of structure are one of hot topics in modern linear algebra of structured
matrices.
Another bible of linear algebra in Russia was devoted to numerical linear algebra and appeared in print in 1950. Com-
putational Methods of Linear Algebra was written by Vera Nickolaevna Faddeeva and then, in 1960 it was transformed
into a joint book co-authored by D.K. Faddeev and V.N. Faddeeva. The two comprised an algebraic family in the direct
sense. D.K. Faddeev was a prominent Russian algebraist and founder of the algebraic school of Saint-Petersburg, named
Leningrad in the Soviet Union. His father, Konstantin Tikhonovich Faddeev, was noticed by A.N. Krylov, the author of
the Krylov spaces, as especially talented among other maritime engineers. The son had a perfect ear and was very much
inclined to pour his life into music. However, when he was a conservatory student of composition, he decided to study
mathematics in parallel at Saint-Petersburg University, where his professors were I.M. Vinogradov and B.N. Delone. As
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a third year student, he had to make his choice between music and mathematics. As we know, mathematics won. His
passion for music still accounts for the name Ludwig selected for the son of D.K. Faddeev and V.N. Faddeeva. Note that
Ludwig Dmitrievich Faddeev became a distinguished mathematician and a full member of Russian Academy of Sciences,
where his father was honored the status of corresponding member of the Academy.
From the historical point of view, by the claim of S.V. Vostokov and I.R. Shafarevich, the role of D.K. Faddeev in
algebra and mathematics in the whole is somewhat underestimated. He worked at a time when mathematics in the
West and inside Russia were separated, and mathematicians in both regions became aware of the achievements of the
other with a good delay. As a result, a lot of effort was given to some fundamental things which in the end would
be merely rediscovered. With his encyclopedic knowledge of mathematics and his utmost generosity and benevolence,
Dmitry Konstantinovich Faddeev easily shared his ideas with others without seeking recognition for what he did. In
linear algebra, he suggested his modification of the Le Verrier method for calculation of the characteristic polynomial of
a matrix. The method is based on Newton sums and their recurrence relations. Later, this method was used by Csanky
as a base of the best matrix inversion algorithm on a hypothetical computer with infinitely many processors and the
instant communication among them. This method requires O(log2

2n) parallel steps, and it is still not known whether it
is the fastest parallel algorithm. D.K. Faddev left a nice textbook Lectures in Algebra and together with I.S. Sominsky
he published a few popular editions of their Collection of Problems in Higher Algebra. Nevertheless, his most influential
contribution to linear algebra was probably the book written by him together with his wife Vera.
Vera Nickolaevna Faddeeva was certainly an outstanding personality. The Russian writer V.V. Veresaev devoted a short
narrative to her entitled In Passing. It is a story about young people who planned to make a club from a desolate
building and began with long discussions how to do this. In contrast to the long talks, Vera Nickolaevna just took a mop
and other necessary instruments and began to put this building to rights. It was a vivid manifestation of the maxim
“The less said, the more done.”
I knew Vera Nickolaevna in person when I was a young researcher. The first memory is the couple of Vera Nickolaevna
and Dmitry Konstantinovich sitting in the first row at the conference on numerical methods of linear algebra and never
missing a single talk, unlike other much younger participants. Moreover, they were always eager to say a word of
encouragement to younger people and colleagues, although it did not mean that their blessing was simple to obtain.
Later, I remember Vera Nicholaevna doing a titanic work of collecting a bibliography on numerical linear algebra in the
time before the advent of personal computers. Her other enterprise was a collection of the test matrices for numerical
problems of linear algebra. She and her husband had a unique and infallible feeling of the new. When other researchers
around them were only thinking about whether it is worthy or not to engage themselves in parallel computations, they
simply started to study this topic and, in accordance with their encyclopedic approach to anything they do, published a
short but rather comprehensive survey on parallel computations in linear algebra.
Here is one more snapshot of the personality of Vera Nickolaevna Faddeeva: “She inherited ebullient vitality, firmness
of purpose and keen concern about all matters related to the Steklov Institute of Mathematics, her second home, and to
her colleagues. Vera Nikolaevna also took trouble about people with whom she was not personally acquainted. She had
a talent for enjoying life. Theatre, classical music, travels, and tours were only some of the many passions of this richly
endowed person” [V. N. Kublanovskaya and L. Yu. Kolotilina, On the occasion of the centenary of the birthday of Vera
Nikolaevna Faddeeva, J. Math. Sci. (N.Y.) 141 (6) (2007), 1573–1575].
In part, Faddeeva started her career at the Leningrad Institute of Constructions in 1935. For three years she belonged
to the team headed by Boris Grigorievich Galerkin. Later, after the War with Hitler, she joined the Leningrad Division
of Steklov Institute of Mathematics and became the head of the Laboratory of Numerical Computations. In Leningrad
University, she worked with Mark Konstantinovich Gavurin and was associated with the computational mathematics
unit set up by Leonid Vitalievich Kantorovich. At the Steklov Institute, together with Sergei Grigorievich Mikhlin, she
headed the scientific seminar which was visited at different times by J.H. Wilkinson, G.E. Forsithe, R.S. Varga, G.H.
Golub, M. Fiedler and others. The book by D.K. Faddeev and V. N. Faddeeva was kind of a bible at its time. Alston
Housholder writes, “Each edition was, at the time of its appearance, by far the most comprehensive and up-to-date
treatment of the subject in print.”
One of the famous colleagues of Faddeeva was Vera Nickolaevna Kublanovskaya (1920-2012). Her role is best expressed
by the citation from the obituary written by Bo Kågström, Vladimir Khazanov, Frank Uhlig and Axel Ruhe: “She
was the last surviving member of the generation that shaped modern numerical linear algebra, a group that included
George Forsythe, Alston Householder, Heinz Rutishauser, and James Wilkinson” [SIAM News, July 17, 2012]. She
began her career by working on a secret nuclear engineering project. In 1955, she joined the group of Leonid Vitalievich
Kantorovich (1912-1986), having responsibility for the classification of matrix operations in numerical linear algebra from
the viewpoint of a universal computer language that was the target set for the group. For most of her life, she worked
at the Leningrad Division of the Steklov Institute of Mathematics.
Vera Kublanovskaya is most well-known as one of the inventors of the QR algorithm. Her milestone paper “On Some
Algorithms for the Solution of the Complete Eigenvalue Problem” was published in 1961, in the same year as, and
independently of, the two striking papers by G.F. Francis. These works together form the basis of the QR algorithm
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for the computation of all eigenvalues of an unsymmetric matrix. Vera Kublanovskaya suggested a quite sophisticated
convergence proof using determinant theory. Later a much more transparent proof was proposed by J.H. Wilkinson.
Another celebrated paper by Vera Kublanovskaya was published in 1966. Entitled “On a Method for Solving the
Complete Eigenvalue Problem for a Degenerate Matrix,” it contained the basis for the staircase algorithm for the Jordan
structure of a multiple eigenvalue. All forthcoming works on algorithms for the Jordan and Kronecker canonical forms
of matrix pencils seem to use the findings of this paper. Vera Kublanovskaya continued working on canonical forms for
polynomial and rational matrices, and published a survey titled “Methods and Algorithms of Solving Spectral Problems
for Polynomial and Rational Matrices.” It was first published in Zapiski Nauchnykh Seminarov POMI in 1997, with the
English translation appearing in 2005.
Linear algebra and especially numerical linear algebra in Russia has everything to do with another great name: Valentin
Vasilievich Voevodin (1934-2007). I am particularly pleased to write about him, because my first impression of linear
algebra is impossible to separate from his personality. He had an amazing talent to inspire people with what he worked
on and planned to do. I fell in love with linear algebra literally after the very first lecture delivered by Voevodin at
the Lomonosov Moscow State University. Then he was my teacher and inspired me in every respect of science and life.
His book Computational Foundations of Linear Algebra, published in 1977, contains a lot of his personal achievements
in the analysis of round-off errors in linear algebra algorithms. In the preface, he asks whether linear algebra is a
complicated science or not, and then paints the picture of the 1950s when he was among the first generation of computer
scientists graduated from the Faculty of Mechanics and Mathematics at Lomonosov Moscow State University. They were
encouraged to work on software for linear algebra, and from the outset that did not create much enthusiasm. The way
linear algebra was taught left no doubt how everything in this branch of mathematics was supposed to be done. However,
it was soon understood that linear algebra on computers differs dramatically from what the students were taught because
of peculiarities of the machine arithmetic. This made it a challenging and rather young science.
All his life, Voevodin had a permanent bond with Lomonosov Moscow State University. Under the supervision of Professor
Shura-Bura, he defended his 1962 candidate dissertation (analog of Ph.D.) on the topic Solution of the algebraic eigenvalue
problem by power methods. Incidently, Wilkinson’s proof for the QR algorithm reveals clearly a deep link between the
QR and the power method. Seven years later, Voevodin was awarded a second doctoral degree, perhaps like habilitation
in Germany, for the work Rounding errors and stability in the direct methods of linear algebra. The novelty of Voevodin’s
analysis focuses on a priori assumptions about rounding errors in two respects. First, he points out that individual
arithmetic operations have small relative errors only when the result is not the machine zero. Second, in the derivation
of probability estimates, he did not impose any assumption about the error distributions. He proved that rounding
errors are asymptotically independent and uniformly distributed random quantities. For most operations, the limiting
distribution turns out to be continuous; however, for addition and subtraction, it is discrete. If the numerical notation
has an even base, e.g. binary, then an unremovable displacement takes place. Voevodin’s rounding analysis is a uniquely
subtle, laborious, and highly ingenious work.
It is important to mention at least two more of Voevodin’s significant contributions to numerical linear algebra. First,
he proposed various extensions of the Jacobi method with quadratic convergence, and also for unsymmetric matrices.
Second, he constructed efficient block methods of linear algebra. Early on, the computers possessed a very small operative
memory. However, the block methods of Voevodin allowed one to solve fairly large linear algebraic systems in a way that
was at most twice longer than the time that would have been observed on an imaginary computer with the same rate
of performance but with sufficiently large operative memory. Of course, this claim depended on the concrete technical
characteristics of the computers in use. However, the claim is impressive, and the method can be seen behind modern
approaches for the construction of algorithms using a hierarchical structure of memory.
During his work at the Lomonosov Moscow State University, Voevodin was chiefly engaged with matrices and computa-
tions. From 1956 until 1980, Voevodin worked at the Scientific Research Computer Center of the Lomonosov Moscow
State University, and was the director from 1969 to 1978. From 1970 until 1981, he occupied a part-time professor posi-
tion at the Faculty of Computational Mathematics and Cybernetics. His direct pupils, Khakim Dododjanovich Ikramov
and Galina Dinkhovna Kim, still work at this faculty. Numerical linear algebra for grid equations was also among the
interests of Alexander Andreevich Samarskii and his colleagues in the laboratory headed by Evgeny Sergeevich Nickolaev.
In the 1980s, this laboratory housed a rather strong group, including Igor Evgenievich Kaporin and Andrei Borisovich
Kucherov. In the 1990s, the former moved to the Computer Center of the Russian Academy of Sciences and the latter
moved to the USA.
In 1981, Voevodin moved to the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM), which
was organized in 1980 by Guri Ivanovich Marchuk (1925-2013). Since that time, Voevodin was engaged with the analysis
of parallel structures in numerical algorithms and the problem of mapping algorithms onto computational systems. And
since that time, INM became one of the basic centers of numerical linear algebra in Russia. This was also because G.I.
Marchuk especially appreciated the language of matrix theory in computational mathematics, which, unfortunately, is
still not very typical for many others working in this area, at least in Russia.
Besides Voevodin, INM was home for Nickolai Sergeevich Bakhvalov (1934-2005). Bakhvalov had a series of outstanding
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results in computational mathematics, in particular the first rigorous proof for the multigrid method suggested by
Radii Petrovich Fedorenko (1930-2010). Also at INM, Vyacheslav Ivanovich Lebedev (1930-2010) worked on, among
other things, grid methods for PDEs and optimization of iterative algorithms developing the ideas of Chebyshev and
Zolotarev. Among his pupils and younger colleagues, Andrew Knyazev now works in the USA and is known in the
numerical linear algebra community by his block iterative algorithms for the minimization of the Raleigh quotient in the
symmetric eigenvalue problem. Another pupil and younger colleague, Andrei Bogatyrev, works at INM and recently solved
the so-called “Chebyshev program” resulting in low-parametric parametrizations of extremal polynomials and superfast
algorithms for their construction. INM was home to Yu. A. Kuznetsov, who established a strong group working on fast
grid solvers, partial solutions, iterations within subspaces, domain decomposition and fictitious domain technologies. In
the end of 1990s, he moved to the University of Houston. His group at INM is now transformed into a group headed by
his pupil Yu. V. Vassilevski.
I am personally happy to work at INM with my group which includes S.A. Goreinov, N.L. Zamarashkin, V.A. Chugunov,
S.L. Stavtsev, D.A. Savostyanov and I.V. Oseledets. We accomplished a notable series of works on Toeplitz-like matrices
and asymptotic distribution of eigenvalues and singular values for matrices generated by a multivariate Fourier series.
These results generalize the classical theorems of Gábor Szegö and Seymour Parter. Other findings include the maximal
volume concept for the low-rank approximation of matrices, cross interpolation algorithm and its application in the
related mosaic-skeleton method deeply linked with the H-matrices of Hackbusch and the so-called multipole algorithms.
One of the recent achievements of this INM group is the Tensor-Train decompositions for multi-index array, and fast,
reliable algorithms using tensor structures of data. A d-index array a(i1, . . . , id) of size n× . . .× n contains nd entries.
That many entries cannot be stored on any computer, hence the main problem with d-index arrays is how to represent
them. The Tensor-Train parametrization is expressed as

a(i1, . . . , id) =
∑

α0,...,αd

d∏
k=1

g(αk−1, ik, αk), 1 ≤ αk ≤ r.

It is crucial that the right-hand side is defined by dnr2 parameters instead of nd, and equally important, that the
complexity of basic algorithms using Tensor-Trains depends on d linearly, and on n and r polynomially. The leading
contributions in this research belong to I.V. Oseledets, who proposed the SVD-based rounding procedure in the Tensor-
Train format. It is this finding that made fast arithmetic for tensors numerically viable. The progress in this field is
terrific.
Fortunately, political obstacles for international cooperation no longer exist and have been left far in the past. We
established a very fruitful collaboration between INM and the group of W. Hackbusch at the Max-Planck Institute in
Leipzig. During the 2000s, INM hosted several international conferences on matrix methods and operator equations.
For such events, it was crucial to have the enthusiastic support from Gene Golub and Gil Strang, which I acknowledge
with sincere gratitude. A recent enterprise is the Rome-Moscow school on Matrix Methods and Applied Linear Algebra,
organized on the base of INM at Lomonosov Moscow State University and the University of Rome Tor Vergata. The
school has already held three editions since 2010.
The picture of numerical linear algebra in Russia would be incomplete without Siberian scientists. In this regard, a very
great name is Sergei Konstantinovich Godunov. Of course, he belongs to computational mathematics more broadly. In
linear algebra, he revisited the rounding error analysis of its algorithms and constructed theory and algorithms evoked
by the fact of the instability of the eigenvalue problem for unsymmetric matrices. He always emphasized that one should
avoid using unstable quantities and reconsider the setting. As it may apply to the Jordan structure, he is sometimes
rather extreme, and I personally heard in one of his lectures how he once said that “the Jordan structure should be an
illegal subject in teaching our students.” I think we should not take this claim too literally, yet it might be pertinent as
a means to attract attention to the important problem of instability.
Of course, the list of important names should be continued. It must include A.A. Abramov, P. Chebotarev, A.E. Guter-
man, V.P. Il’in, I.S. Iokhvidov, L.A. Knizhnerman, Yu. I. Kuznetsov, L. Yu. Kolotilina, Yu. M. Nechepurenko, S.V.
Savchenko and very many others. We should mention with pride the name of Israel Gohberg who started his outstanding
career in the Soviet Union; cf. [IMAGE, 48 (2012) p.3]. The fundamental Gohberg-Sementsul formula for the inverses
to Toeplitz matrices was obtained in that period of his life, and has inspired many researchers in Russia and all over the
world.
I realize that many important names of Russian scientists who essentially contributed to linear algebra were not mentioned
in this essay. A comprehensive survey was certainly beyond my purpose, and time constraints, for this work. Instead, I
tried to show a few separate glimpses of brilliance according to my personal taste. Linear algebra in Russia is perhaps
not a mainstream of mathematical sciences in this country, but is still remarkably versatile, profound, rich by results,
and replenished by the younger generation. I rejoice in the latter, in particular as it promises a long life for this beautiful
science in Russia as a part of a more and more closely connected world.
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UPCOMING CONFERENCES AND WORKSHOPS
18th ILAS Meeting

Providence, Rhode Island, United States, June 3–7, 2013

The 18th Conference of the International Linear Algebra Society (ILAS) will be held in Providence, Rhode Island, U.S.A.
on June 3–7, 2013. Confirmed plenary speakers include: Alan Edelman, Maryam Fazel, Anne Greenbaum, Ravi Kannan,
Jean Bernard Lassere, Thomas Laffey, Dianne O’Leary, Ivan Oseledets, Leiba Rodman, Dan Spielman, Gilbert Strang,
Raymond Sze, and Fuzhen Zhang,
The scientific organizing committee consists of Vadim Olshevsky (chair), Tom Bella (chair), Ljiljana Cvetković, Heike
Faßbender, Chen Greif, J. William Helton, Olga Holtz, Steve Kirkland, Victor Pan, Panayiotis Psarrakos, Tin-Yau Tam,
Paul Van Dooren and Hugo Woerdeman. The local organizers are Vadim Olshevsky (chair), Tom Bella (chair), Misha
Kilmer and Steven Leon.
Invited minisymposia include: Linear Algebra Problems in Quantum Computation, Matrices and Graph Theory, Ran-
domized Matrix Algorithms, Symbolic Matrix Algorithms, Krylov Subspace Methods for Linear Systems, Matrices and
Orthogonal Polynomials, Matrix Methods for Polynomial Root-Finding, Multilinear Algebra and Tensor Decomposi-
tions, Nonlinear Eigenvalue Problems, Abstract Interpolation and Linear Algebra, Structured Matrix Functions and
their Applications, and Linear Algebra Education Issues.
Contributed minisymposia include: Matrices over Idempotent Rings, Applications of Tropical Mathematics, Matrix
Methods in Computational Systems Biology and Medicine, Advances in Combinatorial Matrix Theory and its Appli-
cations, Structure and Randomization in Matrix Computations, Generalized Inverses and Applications, Linear Least
Squares Methods, Matrix Inequalities, Linear and Nonlinear Perron-Frobenius Theory, Matrices and Total Positivity,
Linear Complementarity Problems and Beyond, Control and Optimization, and Sign Pattern Matrices.
The journal Linear Algebra and its Applications will post a special issue devoted to papers presented at the 18th ILAS
Conference. For further details, please visit the conference website at http://www.ilas2013.com/.

Numerical Analysis and Scientific Computation with Applications (NASCA13)
Calais, France, June 24–26, 2013

The conference is organized by the “Laboratory of Pure and Applied Mathematics” (LMPA) and the Engineering School
EIL Côte d’Opale. The aim of this conference is to bring together researchers working in numerical analysis, scientific
computation and applications. Participants will present and discuss their latest results in this area.
The conference will take place at the Université du Littoral Côte d’Opale in Calais, France, June 24–26, 2013. The main
topics include: large linear systems and preconditioning, eigenvalue problems; high-performance and parallel computation;
linear algebra and control, model reduction; multigrid and multilevel methods; numerical methods for PDEs – finite
element, finite volume, meshless methods; approximation, radial basis functions, scattered data approximation, splines;
optimization; and applications – image processing, financial computation, and machine learning.
The plenary speakers are: Peter Benner (Max Planck Institute, Germany), François Desbouvries (Telecom SudParis,
France), Paul Van Dooren (Catholic University of Louvain, Belgium), Gérard Meurant (CEA, France), Lothar Reichel
(Kent State University, USA), Yousef Saad (University of Minnesota, USA), Roger Temam (Indiana University, USA),
and Ronny Ramlau (Johann Radon Institute for Computational and Applied Mathematics, Austria).
For further details, please see the web page of the conference: http://www-lmpa.univ-littoral.fr/NASCA13/ or
contact the organizers at nasca13@lmpa.univ-littoral.fr.

Advanced School and Workshop on Matrix Geometries and Applications
ICTP, Trieste, Italy, July 1–12, 2013

The Advanced School and Workshop on Matrix Geometries and Applications will be held at the International Centre
for Theoretical Physics (ICTP) in Trieste, Italy, July 1–12, 2013. ICTP was founded by Nobel Laureate Abdus Salam.
Today, it operates under a tripartite agreement among the Italian government and two United Nations agencies, UNESCO
and IAEA. Its mission is to support the best possible science with special attention to the needs of developing countries.
At ICTP, high-level training courses, workshops and conferences are organized throughout the year. The participation
of scientists from developing countries is supported by ICTP.
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This event will be organized by R. Bhatia and P. Šemrl with the help of F.R. Villegas (who works full time at ICTP). The
first week will be devoted to short introductory courses given by F. Barbaresco, R. Bhatia, D. Bini, J. Holbrook, L.-H.
Lim, and P. Šemrl. Four one-hour lectures will be followed by problem/tutorial sessions each day. The main theme is the
use of ideas from geometry to solve several problems in matrix theory. Computational aspects and diverse applications
(image processing, quantum mechanics, quantum information, etc.) will be presented. The workshop will take place in
the second week. Talks on more advanced topics will be given by invited speakers. There will be no contributed talks in
this workshop.
It is expected that besides lecturers and tutors at the Advanced School, and speakers at the Workshop, around sixty
participants will attend this activity, approximately half from developed, and half from developing countries. For further
details, visit http://cdsagenda5.ictp.trieste.it/full_display.php?ida=a12193.

The 4th International Conference on Matrix Analysis and Applications
Konya, Turkey, July 2–5, 2013

The 4th International Conference on Matrix Analysis and Applications will be held in Konya, Turkey, July 2–5, 2013.
Online registration is ongoing: see the conference website at http://icmaa2013.selcuk.edu.tr/.
The main goal of the conference is to gather experts, researchers and students together to present recent developments
in this dynamic and important field. The conference also aims to stimulate research and support interactions between
mathematicians and scientists by creating an environment for participants to exchange ideas and to initiate collaborations
or professional partnerships. The first three meetings were held in China and the USA.
The conference features keynote speaker Steve Kirkland (Stokes Professor at Hamilton Institute, National University of
Ireland) and ILAS Lecturer Alexander A. Klyachko (Bilkent University, Ankara, Turkey).
Invited speakers include Delin Chu (National University of Singapore, Singapore), Carlos Martins da Fonseca (University
of Coimbra, Portugal), Fuad Kittaneh (Jordan University, Jordan), Stephan Garcia (Pomona College, California, USA),
Chi-Kwong Li (College of William and Mary, USA), Mohammad Sal Moslehian (Ferdowsi University of Mashhad, Iran),
Tom Pate (Auburn University, USA), Yiu-Tung Poon (Iowa State University, USA), Nung-Sing Sze (The Hong Kong
Polytechnic University, China), Hugo J. Woerdeman (Drexel University, Philadelphia, USA), Pei-Yuan Wu (National
Chiao Tung University, Taiwan, R.O. China), and Xiao-Dong Zhang (Shanghai Jiaotong University, China).
The scientific organizing committee consists of Peter Šemrl, Tin-Yau Tam, Qingwen Wang, and Fuzhen Zhang. The local
organizing committee consists of Vildan Bacak, Durmus Bozkurt, Serife Burcu Bozkurt,Ahmet Sinan Çevik,Yildiray
Keskin, Hasan Köse, Ayse Dilek Maden, Galip Oturanç, Vehbi Paksoy, Necati Taskara, Ramazan Turkmen, Zübeyde
Ulukök, and Fatih Yilmaz.
This conference is sponsored by ILAS. For more information and updates, visit http://icmaa2013.selcuk.edu.tr/.

SIAM Conference on Control and Its Applications (CT13)
San Diego, California, July 8–10, 2013

This meeting is being held jointly with the 2013 SIAM Annual Meeting (http://www.siam.org/meetings/an13/), July
8–12, 2013, and is co-located with the SIAM Workshop on Network Science (NS13), July 7–8, 2013. The meetings will
be held at the Town and Country Resort & Convention Center, San Diego, California.
The organizing committee co-chairs are: Fariba Fahro (Air Force Office of Scientific Research, USA) and Wei Kang
(Naval Postgraduate School, USA). The organizing committee members are: Murat Arcak (University of California at
Berkeley, USA), Francesco Bullo (University of California at Santa Barbara, USA), Tryphon Georgiou (University of
Minnesota, USA), Qi Gong (University of California at Santa Cruz, USA), Daniel Hernández - Hernández (Centro de
Investigación en Matemáticas, A.C. (CIMAT), Mexico), Naira Hovakimyan (University of Illinois at Urbana-Champaign,
USA), Matthew James (Australian National University, Australia), William M. McEneaney (University of California,
San Diego, USA (AN13 liaison)), Bozenna Pasik-Duncan (University of Kansas, USA), Maurice Robin (Digiteo, France),
Shanjian Tang (Fudan University, China), Antonio Vicino (University of Siena, Italy), and Lizette Zietsman (Virginia
Polytechnic Institute and State University, USA).
The invited speakers are: Nazareth Bedrossian (Halliburton, USA), John A. Burns (Virginia Tech, USA and Joint speaker
with the 2013 SIAM Annual Meeting), Jean-Michel Coron (Université Pierre et Marie Curie, France), Arthur Krener
(Naval Postgraduate School and University of California at Davis, USA) and Asu Ozdaglar (Massachusetts Institute of
Technology, USA).
Registration and the conference program are posted at http://www.siam.org/meetings/ct13/.

Graduate Student Modeling Workshop (IMSM 2013)
Raleigh, North Carolina, USA, July 15–23, 2013

The 19th Industrial Mathematical & Statistical Modeling (IMSM) Workshop for Graduate Students will take place at
North Carolina State University, 15–23 July 2013. The workshop is sponsored by the Statistical and Applied Mathe-
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matical Science Institute (SAMSI) together with the Center for Research in Scientific Computation (CRSC) and the
Department of Mathematics at North Carolina State University.
The IMSM workshop exposes graduate students in mathematics, engineering, and statistics to exciting real-world prob-
lems from industry and government. The workshop will provide students with experience in a research team environment
and exposure to possible career opportunities. Local expenses and travel expenses will be covered for students at US insti-
tutions. Information is available at http://www.samsi.info/IMSM13, and questions can be directed to grad@samsi.info.

Workshop on Numerical Linear Algebra and Optimization
University of British Columbia, Vancouver, Canada, August 8–10, 2013

The scope of the workshop is fairly broad, involving the interplay between numerical linear algebra and optimization,
with special attention to optimization problems concerning eigenvalues and singular values. The workshop will honor
Michael Overton on the occasion of his 60th birthday. It is organized by Ioana Dumitriu, University of Washington; Chen
Greif, University of British Columbia; and Emre Mengi, Koc University.
Please see the conference website http://www.pims.math.ca/scientific-event/130808-wnlao for further details. The
conference is hosted by PIMS (Pacific Institute for the Mathematical Sciences).

22nd International Workshop on Matrices and Statistics
Fields Institute, Toronto, Canada, August 12–15, 2013

The 22nd International Workshop on Matrices and Statistics, hosted at the University of Toronto by the Fields Institute,
Toronto, Ontario, Canada, will be held 12–15 August 2013.
The purpose of the workshop is to bring together researchers sharing an interest in a variety of aspects of statistics
and its applications as well as matrix analysis and its applications to statistics, and offer them a possibility to discuss
current developments in these subjects. The workshop will bridge the gap among statisticians, computer scientists and
mathematicians in understanding each other’s tools. We anticipate that the workshop will stimulate research in an
informal setting and foster the interaction of researchers in the interface between matrix theory and statistics. Some
emphasis will be put on related numerical linear algebra issues and numerical solution methods, relevant to problems
arising in statistics. The workshop will include invited talks and a special session with talks and posters by graduate
students.
The international organizing committee consists of: S. Ejaz Ahmed, Chair (Canada), Augustyn Markiewicz (Poland),
George P. H. Styan, Honorary Chair (Canada), Götz Trenkler (Germany), Jeffrey J. Hunter (New Zealand), Simo Punta-
nen, Vice Chair (Finland), Dietrich von Rosen (Sweden), Julia Volaufova (USA) and Hans Joachim Werner (Germany).
Further details can be found at http://www.fields.utoronto.ca/programs/scientific/13-14/IWMS/. See also the
website for the IWMS series: http://www.sis.uta.fi/tilasto/iwms/ and http://www.sis.uta.fi/tilasto/iwms/
IWMS-history.pdf.
Note that the Joint Statistical Meetings will be held in Montreal, August 3–8, 2013: http://www.amstat.org/meetings/
jsm/2013/index.cfm.

Frank Uhlig Retirement Colloquium
Auburn University, Alabama, USA, August 23, 2013

Frank Uhlig is retiring from Auburn University in the Fall of 2013 where he has been teaching since 1982, after teaching
for ten years in Germany. Several colleagues will gather to celebrate Frank’s contribution to mathematics at Auburn
University on August 23, 2013. All are welcome to join. Please contact Tin-Yau Tam at tamtiny@auburn.edu if you plan
to do so. The titles of the invited talks will be available in July or early August.

MatTriad 2013 – Conference on Matrix Analysis and its Applications
Herceg Novi, Montenegro, September 16–20, 2013

The Conference will be held in Herceg Novi (Montenegro), September 16–20, 2013. Up-to-date information is available
at http://mattriad2013.pmf.uns.ac.rs. The aim is to bring together researchers sharing an interest in a variety of
aspects of matrix analysis and its applications in other fields of mathematics, and offer a possibility to discuss current
developments in these subjects.
Researchers and graduate students in the area of linear algebra, statistical models and computation are particularly
encouraged to attend the workshop. The format of this meeting will involve plenary talks and sessions with contributed
talks. The list of invited speakers includes winners of Young Scientists Awards of MatTriad 2011 promoted by the
conference. Works of young scientists continue to hold a special position at MatTriad 2013. The best poster, as well as
the best talk, from graduate students or scientists with recently completed Ph.D.s will be awarded. Prize-winning works
will be widely publicized and promoted by the conference.
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The invited speakers are Richard A. Brualdi (USA), Stephen Kirkland (Ireland), and the winners of Young Scientists
Awards of MatTriad 2011: Olivia Walch (USA) and Paulo Canas Rodrigues (Portugal). Lectures will also be given by
Siegfried M. Rump (Germany) and Adi Ben-Israel (USA).
The scientific committee consists of Tomasz Szulc (Poland) – Chair, Natália Bebiano (Portugal), Ljiljana Cvetković
(Serbia), Heike Faßbender (Germany) and Simo Puntanen (Finland). The organizing committee consists of Ljiljana
Cvetković (Serbia) – Chair, Francisco Carvalho (Portugal), Ksenija Doroslovački (Serbia), and Vladimir Kostić (Serbia).

International Workshop on Operator Theory and its Applications (IWOTA 2013)
Bangalore, India, December 16–20, 2013

The XXIVth edition of the International Workshop on Operator Theory and Its Applications (IWOTA) will be held at
the Indian Institute of Sciences, Bangalore, December 16–20, 2013. There is a rudimentary website at http://math.
iisc.ernet.in/~iwota2013. There are plenary and semi-plenary talks. In addition, there will be special sessions at
IWOTA 2013. Proposals should be submitted to iwota2013@gmail.com and should contain a brief description of the
session and a preliminary list of speakers, and tentative lecture titles. There will be at least eight special sessions and
each session will have between six to eight hours of time. The contact details are: Tirthankar Bhattacharyya (Main
Organizer). Phone: +91 80 2293 2710. Fax: +1 509 561 1264. Email: iwota2013@gmail.com. For more details and
registration, see http://math.iisc.ernet.in/~iwota2013.

Householder Symposium XIX on Numerical Linear Algebra
Spa, Belgium, June 8–13, 2014

The Householder Symposium XIX on Numerical Linear Algebra will be held in Spa, Belgium, June 8–13, 2014. The
conference website is http://sites.uclouvain.be/HHXIX/. This symposium is the nineteenth in a series, previously
called the Gatlinburg Symposia, and will be hosted by the Université catholique de Louvain and the Katholieke Univer-
siteit Leuven. The symposium is very informal, giving priority to the intermingling of young and established researchers.
Participants are expected to attend the entire meeting. The fifteenth Householder Award for the best thesis in numerical
linear algebra since January 1, 2011 will be presented.
Attendance at the meeting is by invitation only. Applications will be solicited from researchers in numerical linear
algebra, matrix theory, and related areas such as optimization, differential equations, signal processing, and control.
Each attendee will be given the opportunity to present a talk or a poster. Some talks will be plenary lectures, while
others will be shorter presentations arranged in parallel sessions. The application deadline will be some time in the Fall
2013. It is expected that partial support will be available for some students, early career participants, and participants
from countries with limited resources.
The Householder Symposium takes place in cooperation with the Society for Industrial and Applied Mathematics (SIAM)
and the SIAM Activity Group on Linear Algebra.

19th ILAS Conference
Suwon, South Korea, August 6–9, 2014

The 19th ILAS conference is scheduled for August 6–9, 2014, to be held at Sungkyunkwan University, Suwon, South
Korea. The ILAS conference will end less than a week before the 2014 ICM (International Congress of Mathematicians)
which will be held in Seoul, Korea, August 13–21, 2014.
The ILAS organizing committee consists of: Nair Abreu, Tom Bella, Rajendra Bhatia, Richard A. Brualdi, Man-Duen
Choi, Nick Higham, Leslie Hogben, Suk-Geun Hwang (chair), Steve Kirkland, Sang-Gu Lee, Helena Šmigoc, Fuzhen
Zhang.
Themes selected include: Numerical Linear Algebra, Total Positivity, Approximation Algorithms, Matrix Polynomials,
Quantum Computation, Matrices and Graph Theory, Random Matrix, Symbolic Matrix Algorithms, Matrices and Or-
thogonal Polynomials, Multilinear Algebra and Tensor Decompositions, Eigenvalue Problems, Structured Matrix, etc.
There will also be the usual special lectures.

CONFERENCE REPORTS
Haifa Matrix Theory Conference

Haifa, Israel, November 12–15, 2012
Report by Avi Berman

The 2012 Haifa Matrix Theory Conference was held November 12–15, 2012 at the Technion - Israel Institute of Technology,
Haifa, Israel. It was the 16th Haifa matrix conference in a series that started in 1984. The conference was organized by
Avi Berman, Raphi Loewy and Naomi Shaked-Monderer, and included two special sessions in memory of Miki Neumann
and Uri Rothblum. The ILAS speaker, Tom Laffey, presented The characteristic polynomials of nonnegative matrices.
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Participants of the 16th Haifa Matrix Theory Conference

More than 100 mathematicians from 19 countries
participated in the Haifa conference, including
many of the founders of modern matrix theory,
as well as quite a few young researchers. As in
the previous Haifa conferences, the talks covered
core linear algebra, numerical linear algebra, ap-
plications of matrix theory and teaching linear
algebra. In spite of a condensed program, the
participants had the opportunity to enjoy recep-
tions hosted by the Technion Center for Mathe-
matical Sciences and by the Mayor of Haifa, as
well as a banquet dinner. The reception by the
mayor, held in Madatech - The Israeli National
Science Museum, was followed by a short tour of
Haifa. The banquet talk, entitled From Matrices
to Space was given by Danny Hershkowitz, who

was at that time Israel’s Minister of Science and Technology. It is not yet known when the next Haifa Matrix Conference
will be held.

Matrices and Operators – Conference in honor of the 60th birthday of R. Bhatia
Bangalore, India, December 27–30, 2012

Report by Tirthankar Bhattacharyya

The conference was held at the Indian Institute of Science, Bangalore, India in honor of Rajendra Bhatia. It served as
a meeting place for top matrix analysts and operator theorists from all over the world. The quality of talks was very
high. All purposes of a good conference were fulfilled, viz., good talks, good interaction between listeners and speakers
and good benefit to local participants. There was a large number of participants from Korea, Japan, Iran and Italy, but
apart from these countries, there were speakers from all over the world. There were twenty-eight talks in all, each of forty
minutes duration. Most speakers were collaborators of Bhatia. There was a series of three lectures by Rien Kaashoek.
A large community of functional analysts from all over India came, listened to the talks, and in some cases, initiated
discussion with the speakers. Some of these discussions will mature into full-scale collaborations.
The organizers (B.V.R. Bhat, T. Bhattacharyya, G. Misra and T.S.S.R.K. Rao) would like to thank ICTP and the
Indian government for their support. For further information about the conference see http://math.iisc.ernet.in/
~bhatia60.

Participants of Matrices and Operators Conference in Honor of Rajendra Bhatia

6th de Brún Workshop: Linear Algebra and Matrix Theory
NUI Galway, Ireland, December 3–7, 2012

Report by Rachel Quinlan

The 6th de Brún Workshop on Linear Algebra and Matrix Theory took place in the first week of December 2012 at the
National University of Ireland, Galway, in the west of Ireland. It was followed on December 8 by the first Irish Meeting for
Linear Algebra Research. The workshop featured five short lecture courses and a programme of 18 contributed talks. The
short courses were given by Peter Brooksbank (Bucknell University), Richard A. Brualdi (University of Wisconsin), Iain
Duff (Rutherford Appleton Laboratory and CERFACS), Carlos Fonseca (Universidade de Coimbra) and Charles Johnson
(College of William and Mary). Their respective topics were Linear Methods in Computational Algebra, Combinatorial
Matrix Theory, Sparse Matrices, Spectral Graph Theory, and Totally Positive Matrices. The 60 participants hailed from
at least ten countries. The organisers are grateful to the main speakers and to all the participants for contributing to
the success of the event. The workshop was the most recent in a series of conferences hosted by the de Brún Centre for
Computational Algebra at NUI Galway. Funding was generously provided by Science Foundation Ireland (Mathematics
Initiative 07/MI/007). For further details, please see http://www.maths.nuigalway.ie/deBrun6/IrishLA.shtml.
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International Conference on Numerical Linear Algebra
and its Applications (NLAA 2013)

Guwahati, India, January 15–18, 2013
Report by Shreemayee Bora

An International Conference on Numerical Linear Algebra and its Applications (NLAA 2013) was organized by the
Department of Mathematics, IIT Guwahati, January 15–18, 2013. This ILAS-endorsed event saw a healthy intermingling
of young and experienced researchers from ten different countries. The talks delivered in the conference were mostly
by invitation, with some contributed talks given by young researchers and faculty. The plenary and invited talks were
delivered by some of the world’s leading experts and these highlighted state of the art research in numerical linear algebra
and its many applications. In addition, the young researchers got a valuable opportunity to present their work to a very
eminent audience.
The conference was preceded by a workshop on numerical linear algebra at the same venue January 7–12, 2013. The
workshop was fully sponsored by the National Centre for Mathematics, which is a joint initiative of IIT Bombay and TIFR
Mumbai. The local organizing committee of the conference was chaired by Prof. Rafikul Alam, with Dr. Shreemayee
Bora as the organizing secretary.

Participants of the International Conference on Numerical Linear Algebra and its Applications (NLAA 2013)

Special Sessions at the AMS Spring Central Section Meeting
Ames, Iowa, April 26–28, 2013

The Spring Central Section Meeting of the American Mathematical Society was held April 26–28, 2013, at Iowa State
University in Ames, Iowa. Two special sessions at the meeting focused on linear algebra. Pauline van den Driesshe and
Bryan Shader gave ISU Keynote talks for these sessions.

Pauline van den Driessche
giving her ISU Keynote talk

The special session “Generalizations of Nonnegative Matrices and their Sign Pat-
terns” was organized by Minnie Catral, Shaun Fallat and Pauline van den Driessche.
There were 14 scheduled talks for the session but some of those speakers were un-
able to make it to the meeting. The talks were on topics related to various notions
and generalizations of positivity/non-negativity, sign pattern classes of matrices, ma-
trix factorizations and max-algebra. The session speakers were: In-Jae Kim, Pietro
Paparella, Craig Erickson, Kevin Vander Meulen, Juan Manuel Peña, Olga Kushel,
Chi-Kwong Li, Pablo Tarazaga and Hans Schneider. Pauline van den Driessche gave
the keynote talk for this session entitled Refined Inertia of Sign Pattern Matrices and
Applications to Dynamical Systems.
The special session “Zero Forcing, Maximum Nullity/Minimum Rank, and Colin de
Verdière Graph Parameters” was organized by Leslie Hogben and Bryan Shader. The
session speakers were: Wayne Barrett, John Sinkovic, Keivan Monfared, Jason Grout,
Tracy Hall, Michael Young, Seth Meyer, Adam Berliner, Nathaniel Dean, Nathan
Warnberg, Luz DeAlba, Louis Deaett, Hein van der Holst and Shaun Fallat. Bryan
Shader gave the keynote talk for this session entitled Getting something for nothing
(using transversality, linear algebra and combinatorics).
Conference details and the full program can be found at http://www.math.iastate.edu/Events/2013AMS/index.html.

http://www.math.iastate.edu/Events/2013AMS/index.html
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HONOURS AND AWARDS
ILAS member becomes SIAM Fellow and receives career award

Submitted by Stephen Kirkland

The Society for Industrial and Applied Mathematics (SIAM) has recently announced its SIAM Fellows for 2013, and
long-time ILAS member Pauline van den Driessche is among those named as a class of 2013 Fellow. Professor van den
Driessche was cited for her contributions to linear algebra and mathematical biology.

In addition, Professor van den Driessche is the 2013 recipient of the University of Victoria’s Craigdarroch Gold Medal
for Career Achievement. The Craigdarroch Gold Medal honours lifetime achievement and is awarded for a distinguished
record of research which has substantially advanced the recipient’s discipline.
On behalf of ILAS, I congratulate Pauline for these well-deserved acknowledgements of her mathematical accomplish-
ments.

ANNOUNCEMENTS
LAA Special Issue on Matrix Functions: Call for Papers

Matrix functions can be broadly defined as matrices understood as changing quantities rather than given and constant.
As such, the study of matrix functions encompasses a large part of linear algebra and its applications. This special
issue is devoted to theoretical studies and applications of matrix functions in all their aspects. It will be open to all
papers with significant new results where matrix functions play an important role and problems of linear algebraic nature
are presented. Survey papers that illustrate several interconnected aspects of the theme of matrix functions and their
applications are highly encouraged, as are research problems articles.
Areas and topics of interest for this special issue include, but are not limited to, the following two areas: (1) Methods
and theory for: matrix polynomials, rational matrix functions, analytic and meromorphic matrix functions, matrix ex-
ponential, logarithm, square root, and others, functions of structured matrices, functions of large and sparse matrices,
functions of matrices times a vector, conditioning and perturbations, interpolation. (2) Applications in: linear dynam-
ical systems and ODE solvers, operator theory, singular systems, canonical systems of differential equations, integral
equations, network analysis, control theory, model reduction, domain decomposition, mathematical physics.
The deadline for submission is July 31, 2013, and the special issue is expected to be published at the end of 2013. Papers
should be submitted to the responsible Editor-in-Chief, V. Mehrmann, choosing the special issue “Matrix Functions,”
through the electronic submission system at http://ees.elsevier.com/laa. Submissions must meet the publication
standards of Linear Algebra and its Applications and will be refereed in the usual way.
The editors of the special issue are: O. Ernst (TU Bergakademie Freiberg, Germany) ernst@math.tu-freiberg.de; C.-
H. Guo (University of Regina, Canada) Chun-Hua.Guo@uregina.ca; J. Liesen (TU Berlin, Germany) liesen@math.tu-
berlin.de; and L. Rodman (College of William and Mary, USA) lxrodm@math.wm.edu lxrodm@gmail.com. The respon-
sible Editor-in-Chief for the special issue is V. Mehrmann (TU Berlin, Germany) mehrmann@math.tu-berlin.de.

Special Issues of Annals of Functional Analysis Dedicated to Professor Tsuyoshi Ando
A special volume consisting of two issues (2014) of Annals of Functional Analysis (AFA) is being dedicated to Professor
Tsuyoshi Ando in celebration of his distinguished achievements in Matrix Analysis and Operator Theory. Contributors
are invited by the Editor-in-Chief of AFA but a number of research articles related to the works of T. Ando by other
mathematicians are also welcome. The deadline for submission to special issue is July 15, 2013. The instructions for
authors can be found in the journal website http://www.emis.de/journals/AFA/.

LAA Special Issue in Honor of Leiba Rodman
Linear Algebra and its Applications (LAA) is pleased to announce a special issue in honor of Professor Leiba Rodman in
recognition of his many important contributions in research and books to matrix theory, operator theory and applications,
and on the occasion of his 65th birthday in 2014. LAA solicits papers for the special issue within the entire scope of
LAA or the research interests of Leiba Rodman. The deadline for submission of papers is April 1, 2014. Papers for
submission will be subject to normal refereeing procedures according to the usual standards of LAA. They should be
submitted via the Elsevier Editorial System (http://ees.elsevier.com/laa/), choosing the special issue “In Honor of
Leiba Rodman” and the responsible Editor-in-Chief Richard A. Brualdi.
Authors will have the opportunity to suggest one of the following special editors for this issue to handle their submission:
Joseph Ball, Virginia Polytechnic Institute and State University (USA), joball@math.vt.edu; Jussi Behrndt, Technical
University Graz (Austria), behrndt@tugraz.at; Christian Mehl, Technical University Berlin (Germany), mehl@math.tu-
berlin.de; Ilya Spitkovsky, College of William and Mary (USA), imspitkovsky@gmail.com.
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LAA Special Issue on Statistics
Linear Algebra and Its Applications will publish a special issue on statistics devoted to both applications of linear algebra
in statistics, as well as, statistical and probabilistic techniques being applied back to linear algebra. Papers should
be submitted by September 30, 2013 via the Elsevier Editorial System (http://ees.elsevier.com/laa/), choosing
the special issue called “Statistics.” The responsible Editor-in-Chief is Peter Šemrl and he should be chosen as the
handling Editor-in-Chief. Authors will have the opportunity to suggest one of the following guest editors to handle their
submission: Mathias Drton, Lek-Heng Lim, Wei Biao Wu.

ETNA Special Volume for Lothar Reichel’s 60th Birthday
The Electronic Transactions on Numerical Analysis (ETNA) announces a special volume dedicated to Lothar Reichel
on the occasion of his sixtieth birthday. Papers will undergo the standard refereeing process. Submissions are being
accepted starting immediately and should be sent directly to either Ronny Ramlau (ronny.ramlau@jku.at) or Daniel Szyld
(szyld@temple.edu). Deadline for submissions is October 1, 2013. Inquires should be addressed to the same editors. The
special volume will be published starting in January 2014. Papers will be published as soon as production of individual
papers is completed.

BOOK REVIEW
Inequalities: Theory of Majorization and Its Applications,
by A.W. Marshall, I. Olkin, and B.C. Arnold, Second edition

Springer Series in Statistics. Springer, New York, 2011, xxvii + 909 pages, ISBN 978-0-387-40087-7.
Reviewed by Martin Argerami, University of Regina, argerami@math.uregina.ca

Given two vectors x, y ∈ Rn, we say that x is majorized by y (denoted x ≺ y) if
k∑
j=1

x↓j ≤
k∑
j=1

y↓j , k = 1, . . . , n− 1, and
n∑
j=1

xj =
n∑
j=1

yj .

Here (x↓1, . . . , x↓n) denotes the non-increasing rearrangement of (x1, . . . , xn). The book uses the notation x[j] instead,
which is not a widespread standard. The minimal elements for the order ≺ are those vectors with all entries equal to
each other, while the maximal are those with only one non-zero entry.
Majorization made its first appearance in the work of Lorenz on income inequality. Mathematically, I. Schur proved in
1923 that the diagonal of a matrix is majorized by the vector of its eigenvalues (together with the converse proven by A.
Horn in 1954, this result makes the celebrated Schur-Horn theorem). Hardy, Littlewood, and Pólya recognized in 1929
that x ≺ y if and only if g(x) ≺ g(y) for every convex function g.
Since those early beginnings, many other characterizations of majorization are known. Here is a short list of equivalent
statements for two vectors x, y ∈ Rn:

1. x ≺ y;

2.
∑k
j=1 x

↓
j ≤

∑k
j=1 y

↓
j ,
∑k
j=1 x

↑
j ≥

∑k
j=1 y

↑
j for all k = 1, . . . , n;

3.
∑
j |xj − t| ≤

∑
j |yj − t| for all t ∈ R;

4. x ∈ conv{Sy : S ∈ Sn};

5. x = Ay, where A is a doubly stochastic matrix;

6.
∑
j φ(xj) ≤

∑
j φ(yj) for all convex functions φ : R→ R.

All these and others, together with further facts about majorization and related notions, are considered in the first six
chapters condensed in Part I. The rest of the book (14 chapters) is devoted to applications, grouped under Mathematical
Applications, Stochastic Applications, and Generalizations.
The original edition of this book appeared in 1979. Since then, it has been the most complete source on majorization
available, well beyond the authors’ interest in statistics. Actually, only 136 of 520 pages in the first edition are explicitly
dedicated to statistics (192 of 744 in the second edition). This second edition clearly looks like it has been typeset in
LATEX, although we could not find acknowledgement of such fact anywhere in the book.
The main structure and text of the original book has been preserved, with the majority of changes consisting in additional
sections at the end of each chapter (the text is organized in the same 20 chapters from the original edition). In a few
cases, some sections have been shuffled, and in others, titles have changed. Several of the old sections also contain some
new material. The chapter “Matrix Theory” has additional sections (5), while “Stochastic Ordering” is a chapter which
includes more material (43 pages, in three new sections, mostly about Lorenz Order). The “Biographies” chapter at the
end of the book has been re-shuffled and slightly enlarged with the new biographies of Karamata and Jensen.
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To get a glimpse of the variety of applications of majorization that appear in the book, let us mention some titles
among the sections comprising the new material: Physical Interpretations of Inequalities, Top Wage Earners, Partitions,
Graph Theory, Inequalities for Polygons and Simplexes, Hadamard Product, Totally Positive and M -matrices, Zeros
of Polynomials, Stochastic Schur Convexity, Combining Random Variables, Concentration Inequalities for Multivariate
Distributions, Optimal Experimental Design.
This is a book that should obviously appeal to matrix theorists, but it would also make an interesting addition to
the libraries of statisticians and mathematicians of the most varied flavours, like those in combinatorics, inequalities,
numerical analysis, probability, functional analysis, and mathematical physics. It is hard to imagine a mathematics
department that could not benefit from owning this book.

ILAS AND OTHER LINEAR ALGEBRA NEWS
ILAS President/Vice President Annual Report: 2 May, 2013

Respectfully submitted by Steve Kirkland, ILAS President, stephen.kirkland@nuim.ie
and Bryan Shader, ILAS Vice-President, bshader@uwyo.edu

1. The ILAS election in the fall/winter of 2012 proceeded once again via electronic voting. The following were elected in
the ILAS 2012 elections to offices with terms that began on 1 March, 2013:
• Board of Directors: Avi Berman and Volker Mehrmann (term ends 29 February, 2016)
• Vice President: Bryan Shader (term ends 29 February, 2016)

The following continue in the ILAS offices to which they were previously elected:
• President: Steve Kirkland (term ends 28 February 2014)
• Secretary/Treasurer: Leslie Hogben (term ends 28 February, 2015)
• Board of Directors:

– Dale Olesky (term ends 28 February, 2015)
– Peter Šemrl (term ends 28 February, 2015)
– Françoise Tisseur (term ends 28 February, 2014)
– David Watkins (term ends 28 February, 2014)

On 28 February 2013, Chi-Kwong Li completed two consecutive terms as ILAS Vice-President, for a total of six years
on the ILAS Executive Board. Chi-Kwong will now serve a one year term on the Board of Directors until 28 February,
2014. We extend sincere thanks to Chi-Kwong for his dedicated service to the society.
Christian Mehl and Tin-Yau Tam completed their three-year terms on the ILAS Board of Directors on 28 February,
2013. We thank Christian and Tin-Yau for their valuable contributions as Board members; their service to ILAS is most
appreciated.
We also thank the members of the Nominating Committee - Roger Horn, Helena Šmigoc (chair), Naomi Shaked-Monderer,
Pauline van den Driessche and Xiao-Dong Zhang - for their work on behalf of ILAS, and to all of the candidates that
agreed to have their names stand for election.

2. The following ILAS-endorsed meetings have taken place since our last report:
• SIAM/ALA 2012 Conference, València, Spain, June 18–22, 2012
• ALAMA 2012 (3rd Biennial Meeting of the Spanish Thematic Network on Linear Algebra, Matrix Analysis and

Applications), Universidad Carlos III de Madrid, Leganés (Madrid), Spain, June 27–29, 2012
• Workshop on Parallel Matrix Algorithms and Applications (PMAA 2012), Birkbeck University, London, England,

June 28–30, 2012
• The Eleventh Workshop on Numerical Ranges and Numerical Radii, National Sun Yat-sen University, Kaohsiung,

Taiwan, July 9–12, 2012
• 2012 Workshop on Matrices and Operators, Harbin Engineering University, July 13–16, 2012
• International Workshop on Matrices and Statistics, Bȩdlewo, Poland, July 16–20, 2012
• Workshop on Combinatorics, University of Lisbon, Portugal, September 3–5, 2012
• Haifa Matrix Theory Conference, Technion University, Haifa, Israel, November 12–15, 2012
• International Conference on Numerical Linear Algebra and its Application, Indian Institute of Technology Guwa-

hati, India, January 15–18, 2013
3. ILAS has endorsed the following conference of interest to ILAS members: 4th International Conference on Matrix
Analysis and Applications, Selcuk University, Konya, Turkey, July 2–5, 2013.
4. The following ILAS Lectures at non-ILAS conferences have been delivered since the last report.
• Françoise Tisseur, SIAM/ALA Meeting, Universitat Politècnica de València, València, Spain, 18-22 June, 2012.
• Michael Tsatsomeros, SIAM/ALA Meeting, Universitat Politècnica de València, València, Spain, 18-22 June, 2012.
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5. The following ILAS conferences are scheduled:
• 18th ILAS Conference, 3–7 June, 2013, Providence, USA. The organising committee consists of: Tom Bella (co-
chair), Paul Van Dooren, Heike Faßbender, Bill Helton, Olga Holtz, Steve Kirkland, Vadim Olshevsky (co-chair),
Victor Pan, Panos Psarrakos, Hugo Woerdeman, Lilliana Cvetković, Chen Greif, Tin-Yau Tam.

• 19th ILAS Conference, 6–9 August, 2014, Suwon, Korea. The organising committee consists of: Nair Abreu, Tom
Bella, Rajendra Bhatia, Richard A. Brualdi, Man-Duen Choi, Nick Higham, Leslie Hogben, Suk-Geun Hwang
(chair), Steve Kirkland, Sang-Gu Lee, Helena Šmigoc, Fuzhen Zhang.

6. The Electronic Journal of Linear Algebra (ELA) is now in its 26th volume. The Editor-in-Chief is Bryan Shader.
Submissions to ELA have significantly increased, growing from 182 submissions in 210 to 244 submissions in 2012. The
acceptance rate for ELA over the last 2.5 years is about 30%, which is slight lower than the historic average of about
35%.
• ELA Volume 23 (2012) is complete and contains 72 papers (1059 pages).
• ELA Volume 24 (2012) is a special volume devoted to the 2011 Directions in Matrix Theory Conference with special

editors Oskar Maria Baksalary, Carlos M. Fonseca and Shmuel Friedland is complete and contains 17 paper (254
pages)

• ELA Volume 25 (2012), a special volume for the Mat Triad 2011 with special editors Oskar Maria Baksalary,
Natália Bebiano, Ljiljana Cvetković and Simo Puntanen is complete and contains 10 papers (118 pages)

• ELA Volume 26 (2013) is in progress and currently has 13 papers.
ELA is indexed by MathSciNet and the Science Citation Index-Expanded, and ELA papers are reviewed in MathReviews
and Zentralblatt. ELA is currently working on moving to a more friendly, robust publication platform.
7. IMAGE is the semi-annual bulletin for ILAS, and the Editor-in-Chief is Kevin N. Vander Meulen, supported by
contributing editors Minerva Catral, Michael Cavers, Carlos Fonseca, Bojan Kuzma, Steven Leon, Peter Šemrl, and Amy
Wehe, along with advisory editor Jane Day.
As of the Fall 2013, there will be a small change in the editorial staff: regarding the contributing editor for education,
Steven Leon will have completed his term and we welcome David M. Strong of Pepperdine University, USA, in this role.
Steven Leon has been involved with IMAGE since 1998 and will continue on as an Advisory Editor.
ILAS has just reached a milestone of sorts, having now published its 50th issue of IMAGE (as of June 1, 2013). Please
note that all issues of IMAGE are available online at http://www.ilasic.math.uregina.ca/iic/IMAGE/. (The mirror
sites do not have the current issues of IMAGE available.)
8. ILAS-NET is a moderated newsletter for mathematicians worldwide, with a focus on linear algebra; it is managed by
Sarah Carnochan Naqvi. As of April 2013, there are 859 subscribers to ILAS-NET. To subscribe, unsubscribe or change
your email address, please use the website: http://leeor4.math.technion.ac.il/mailman/listinfo/ilas-net.
Changes to ILAS-NET will be coming in 2013/2014 and information will be sent to subscribers as it becomes available.
9. The ILAS Information Centre (IIC) is at the University of Regina. All mirror sites for ILAS-IC have been discontinued
and the only current site is: http://www.ilasic.math.uregina.ca/iic/. In 2013, we will be moving to http://www.
ilasic.org. When the change is complete, a notice will be sent to ILAS-Net subscribers.
Respectfully submitted,

Steve Kirkland, ILAS President, stephen.kirkland@nuim.ie; and
Bryan Shader, ILAS Vice-President, bshader@uwyo.edu

Send News for IMAGE Issue 51

IMAGE Issue 51 is due to appear online on December 1, 2013. Send your news for this issue to the appropriate editor
by October 2, 2013. IMAGE seeks to publish all news of interest to the linear algebra community. Photos are always
welcome, as well as suggestions for improving the newsletter. Send your items directly to the appropriate person:

• Problems and Solutions to Bojan Kuzma (bojan.kuzma@upr.si)
• Feature Articles to Michael Cavers (mscavers@gmail.com)
• History of Linear Algebra to Peter Šemrl (peter.semrl@fmf.uni-lj.si)
• Book Reviews to Douglas Farenick (Doug.Farenick@uregina.ca)
• Linear Algebra Education news to David Strong (David.Strong@pepperdine.edu)
• Announcements and Reports of Conferences, Workshops and Journals to Minerva Catral (catralm@xavier.edu)
• Interviews of Senior Linear Algebraists to Carlos Fonseca (cmf@mat.uc.pt)
• Advertisements to Amy Wehe (awehe@fitchburgstate.edu)

Send all other correspondence to Kevin N. Vander Meulen (kvanderm@redeemer.ca).
For past issues of IMAGE, please visit http://www.ilasic.math.uregina.ca/iic/IMAGE/.
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ILAS 2012–2013 Treasurer’s Report
April 1, 2012 – March 31, 2013

By Leslie Hogben

Net Account Balance on March 31, 2012
Vanguard (ST Fed Bond Fund Admiral 7548.536 Shares) $ 81,599.66
Checking Account - First Federal $ 35,311.19
Certificate of Deposit $ 20,331.40
Account’s Payable $ (700.00)

$ 136,542.25

General Fund $ 74,854.62
Conference Fund $ 9,617.01
ILAS/LAA Fund $ 12,840.57
Olga Taussky Todd/John Todd Fund $ 11,212.14
Frank Uhlig Education Fund $ 4,949.34
Hans Schneider Prize Fund $ 23,068.57

$ 136,542.25
INCOME:

Dues $ 9,240.00
Corporate Sponsorship $ 200.00
General Fund $ 393.42
Conference Fund $ 121.00
LAMA for Speaker $ -
Taussky-Todd Fund $ 306.00
Uhlig Education Fund $ 36.00
Schneider Prize Fund $ 161.00
Interest - First Federal / Great Western $ 64.10
Loan at Conference (approx)
Interest on First Federal Certificate of Deposit $ 150.59
Vanguard - Dividend Income $ 670.95
- Short Term Capital Gains $ 740.95
- Long Term Capital Gains $ 302.86
Variances in the Market $ (630.50)
Misc Income
Total Income $ 11,756.37

EXPENSES:
Citi Bank - Credit Card Service Charges $ 422.80
American Express - Credit Card Service Charges $ 52.85
First Data - Deposit on credit card terminal $ 175.69
Speaker Fees $ 2,286.45
Treasurer’s Report Preparation $ 412.00
Treasurer’s Assistant $ 180.00
Conference Expenses $ -
Student/PostDoc Travel Support $ 3,000.00
Business License $ -
IMAGE Costs $ 1,111.41
Wire Transfer Fees $ 21.20
Misc Expenses $ 246.37
Ballot Costs $ -
Total Expenses $ 7,908.77

Net Account Balance on March 31, 2013
Vanguard (ST Fed Bond Fund Admiral 7648.001 Shares) $ 82,683.93
Checking Account - First Federal $ 37,078.92
Certificate of Deposit $ 20,481.99
Account’s Payable $ (700.00)

$ 139,544.84
General Fund $ 77,233.20
Conference Fund $ 9,738.01
ILAS/LAA Fund $ 12,840.57
Olga Taussky Todd/John Todd Fund $ 11,518.14
Frank Uhlig Education Fund $ 4,985.34
Hans Schneider Prize Fund $ 23,229.57

$ 139,544.83
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IMAGE PROBLEM CORNER: OLD PROBLEMS WITH SOLUTIONS
We present solutions to Problems 49-1 through 49-6 except Problem 49-3, for which we still seek solutions. Six new
problems are on the last page; solutions are invited.
Editorial note: Dalton Couto Silva reported a typographical inaccuracy in IMAGE 48, p. 33, line 13. Instead of “Then
for all j with k + 1 ≤ j ≤ r” it should read “Then for all j with 1 ≤ j ≤ k.”
We were informed by Edward Poon that solution 48-7.1 in IMAGE 49 was incorrect. A correction communicated by
Eugene A. Herman follows.
Corrigendum to Solution 48-7.1 by Eugene A. Herman, Grinnell College, Grinnell, Iowa, U.S.A., eaherman@gmail.com
For any real a and pure imaginary c with |a|2 + |c|2 = 1, the 4–by–4 matrix consisting of 2–by–2 blocks

A =
(
A11 A12
A21 A22

)
=


a −1 −c 1
1 −a 1 c
c 1 −a −1
1 −c 1 a

 ,

has the property that Aij 6= cI2 for any c ∈ C, however a 2–by–2 matrix Ux defined by (Ux)ij = x∗Aijx is unitary for
each unit vector x ∈ C2. This is a consequence of

Ux = |x1|2B11 + x1x2B12 + x1x2B21 + |x2|2B22,

where (x1, x2) = x and the (p, q) entry of Bij is the (i, j) entry of Apq, 1 ≤ i, j, p, q ≤ 2. It follows that UxU∗x = I2 for
each unit vector x ∈ C2 if and only if

B11B
∗
11 = B22B

∗
22 = I, B11B

∗
22 +B12B

∗
12 +B21B

∗
21 +B22B

∗
11 = 2I,

B11B
∗
12 +B21B

∗
11 = B12B

∗
22 +B22B

∗
21 = 0, B21B

∗
12 = 0.

Problem 49-1: Generalized Eigenvalues of a Pair of Orthogonal Projectors
Proposed by Oskar Maria Baksalary, Adam Mickiewicz University, Poznań, Poland, obaksalary@gmail.com
and Götz Trenkler, Dortmund University of Technology, Dortmund, Germany, trenkler@statistik.tu-dortmund.de
Let P,Q ∈Mn(C) be orthogonal projectors (i.e., Hermitian idempotent matrices of size n) such that Im(P ) + Im(Q) = Cn.
For λ ∈ C, show that if Q−λP is singular then λ = 0 or λ = 1. Furthermore, prove that λ = 1 is a zero of the polynomial
λ 7→ det(Q− λP ) with multiplicity dim[Im(P ) ∩ Im(Q)].

Solution 49-1.1 by Johanns de Andrade Bezerra, Natal, RN, Brazil, pav.animal@hotmail.com
Since P and Q are orthogonal projectors and Im(Q) + Im(P ) = Cn it follows that (Cn)⊥ = [Im(Q) + Im(P )]⊥ =
[Im(Q)]⊥ ∩ [Im(P )]⊥ = Ker(Q) ∩Ker(P ) = {0}.
If Q − λP is singular with λ ∈ C, then there exists v ∈ Cn \ {0} so that (Q − λP )v = 0, that is, Qv = λPv. If
v ∈ Ker(Q), then Qv = λPv = 0 and as Pv 6= 0 since Ker(Q) ∩ Ker(P ) = {0} we conclude that λ = 0. If v ∈ Im(Q),
then Qv = v = λPv and so λ = 1 since P is an orthogonal projector.
Now, suppose that v = x+y ∈ Ker(Q−λP ) where x ∈ Ker(Q), y ∈ Im(Q), and x, y 6= 0. Thus, Q(x+y) = y = λPx+λPy.
Hence, Py = λP 2x + λP 2y = λPx + λPy = y and so y ∈ Im(P ). Then y = λPx + λPy = λPx + λy, which implies
(1− λ)y = λPx. Next, 〈y, x〉 = 0 since [Im(Q)]⊥ = Ker(Q), so 〈(1− λ)y, x〉 = λ〈Px, x〉 = λ〈P ∗Px, x〉 = λ〈Px, Px〉 = 0,
and as λ 6= 0 we deduce Px = 0. Thus, x ∈ Ker(Q)∩Ker(P ) = {0}, a contradiction. We conclude that if v ∈ Ker(Q−λP ),
then v ∈ Ker(Q) and λ = 0, or v ∈ Im(Q) and λ = 1. By symmetry, if λ = 1, then v ∈ Ker(Q− P ) = Ker(P −Q) also
gives v ∈ Im(P ). Hence,

Ker(Q− P ) = Im(P ) ∩ Im(Q). (∗)

Furthermore, det(Q− λP ) = 0 if and only if Q− λP is singular and therefore λ = 0 or λ = 1. Hence we conclude that
det(Q− λP ) = ±λk0(λ− 1)k1 for some k0, k1 ∈ N.
Let {v1, . . . , vk, vk+1, . . . , vr, vr+1, . . . , vn} be an orthonormal basis in Cn such that {v1, . . . , vk} is a basis in Im(P )∩Im(Q),
{vk+1, . . . , vr} is a basis in Im(P ) and {vr+1, . . . , vn} is a basis in Ker(P ). Then, with respect to this basis,

(Q− λP ) =
(
Ik 0 0
0 A B
0 B∗ C

)
−
(
λIk 0 0

0 λIr−k 0
0 0 0

)
.
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It follows from (∗) that dim(Ker(Q − P )) = dim(Im(Q) ∩ Im(P )) = k. Hence,
(
A−Ir−k B
B∗ C

)
is nonsingular, and as

det(Q−λP ) = ±λk0(λ− 1)k1 , we conclude that det
(
A−λIr−k B

B∗ C

)
= ±λk0 , and therefore k1 = k, finishing our proof.

Solution 49-1.2 by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria, om-
ran_kouba@hiast.edu.sy
Suppose that λ /∈ {0, 1}. We will show that

Ker(Q− λP ) = Ker(P ) ∩Ker(Q). (1)

Indeed, consider x ∈ Ker(Q−λP ), that is Qx = λPx. Since x−Qx and Qx are orthogonal we have 〈x− λPx, λPx〉 = 0,
or equivalently λ(1− λ)‖Px‖2 = 0. Thus Px = 0 and Qx = λPx = 0. This means that x belongs to Ker(P ) ∩Ker(Q),
and proves (1) since the reverse inclusion is trivial.
Now, noting that by orthogonality we have

Im(P ) + Im(Q) = Cn ⇐⇒ Ker(P ) ∩Ker(Q) = {0} (2)

we see that if λ /∈ {0, 1} then Ker(Q− λP ) = {0} and Q− λP is invertible. This proves the first statement.
Next, we will show that det(Q− λP ) = a(1− λ)r(−λ)q, where r = dim(Im(P )∩ Im(Q)), q = dim Ker(Q), and a is some
nonzero constant. Clearly, we only need to prove this for λ ∈ R.
For λ ∈ R, let Aλ = Q − λP , and define F = Im(P ) ∩ Im(Q). Then, F⊥ = Ker(P ) + Ker(Q), and the sum is direct
by (2). For x ∈ F we have Qx = x and Px = x so Aλx = (1 − λ)x. In particular, Aλ(F ) ⊂ F . But, since λ is real,
Aλ is hermitian and we have also Aλ(F⊥) ⊂ F⊥. So, let us consider a (possibly nonorthogonal) basis (e1, . . . , en) of Cn
consisting of a basis (e1, . . . , er) of F , a basis (er+1, . . . , er+q) of Ker(Q) and a basis (er+q+1, . . . , en) of Ker(P ). Since
Aλ(ej) = (1−λ)ej for 1 ≤ j ≤ r, Aλ(ej) = −λP (ej) ∈ F⊥ for r < j ≤ r+ q, and Aλ(ej) = Q(ej) ∈ F⊥ for r+ q < j ≤ n,
we conclude that

det(Aλ) = (1− λ)r(−λ)q det(e1, . . . , er, P (er+1), . . . , P (er+q), Q(er+q+1), . . . , Q(en)) = (1− λ)r(−λ)q det(R)

where R : F⊥ −→ F⊥, Rx = Qx + Px. Now, R is invertible since if x ∈ Ker(R) then y := Px = Q(−x) belongs
to Im(P ) ∩ Im(Q) = F , so x and y must be orthogonal, that is ‖Px‖2 = 〈x, Px〉 = 0. Thus, Px = Qx = 0 and
consequently x ∈ Ker(P ) ∩ Ker(Q) = {0}. It follows that det(R) 6= 0. So, there is a nonzero constant a = det(R) such
that det(Q− λP ) = a(1− λ)r(−λ)q where r = dim[Im(P ) ∩ Im(Q)] and q = dim Ker(Q).

Solution 49-1.3 by Edward L. Pekarev, Odessa Regional Institute of Public Administration of the National Academy
of Public Administration, Office of the President of Ukraine, Ukraine, edpekarev@yandex.ru
Given orthogonal projectors P,Q ∈ Mn(C) such that Im(P ) + Im(Q) = Cn, or equivalently Ker(P ) ∩ Ker(Q) = {0},
let Q − λP be singular for some λ ∈ C, i.e., there exists a vector x ∈ Cn, x 6= 0, such that Qx = λPx. Then
λPx,Qx ∈ Im(P )∩ Im(Q) and Px 6= 0. Denoting L = Im(P )∩ Im(Q) andM = Im(P )	L, the orthogonal complement
of L ⊆ Im(P ), one can find w.r.t. the decomposition Cn = L ⊕M⊕Ker(P ):

P =

Id 0 0
0 Im 0
0 0 0

 , Q =

Id 0 0
0 A B
0 B∗ C

 , (∗)

where Id, Im are identities and A,B,C certain matrices of appropriate sizes. It is clear that λ = 1 is a zero of the

polynomial λ 7→ det(Q − λP ) = det
(

(1−λ)Id 0 0
0 A−λIm B
0 B∗ C

)
with multiplicity r not less then d = dimL. To prove the

equality r = d we show that det
(
A−Im B
B∗ C

)
6= 0. In fact, if for some f ∈ M, g ∈ Ker(P ) we have

(
A−Im B
B∗ C

)
(f ⊕ g) = 0

then f = Q(f ⊕ g) ∈ Im(Q) and in view of f ∈ M ⊂ Im(P ) we find that f ∈ L and so f ∈ M ∩ L = {0}. But as
g ∈ Ker(P ) and Qg = 0 we have g ∈ Ker(P ) ∩Ker(Q) = {0}, hence also g = 0.
To end, (∗) implies that for any y ∈ Cn the projections of Py and Qy on L are equal. So, if λ 6= 0 then Qx = λPx( 6= 0)
implies Qx,Px ∈ L, L 6= {0} and hence Qx = Px. This gives λ = 1.
Remark. For an infinite-dimensional Hilbert space H and orthogonal projectors P,Q in H such that Im(P ) + Im(Q) = H
and Im(P )∩Im(Q) = {0}, [T. Ando, Unbounded or bounded idempotent operators in Hilbert space, Linear Algebra Appl.
438 (2013) 3769–3775] proved the invertibility of operator (P +λQ) for any λ 6= 0 and established that F = P (P +λQ)−1

is an idempotent in H with Im(F ) = Im(P ) and Ker(F ) = Im(Q).

mailto:omran_kouba@hiast.edu.sy
mailto:omran_kouba@hiast.edu.sy
mailto:edpekarev@yandex.ru


Page 38 of 44 Spring 2013: IMAGE 50

Solution 49-1.4 by Hans Joachim Werner, University of Bonn, Bonn, Germany, hjw.de@uni-bonn.de
Let W = (W1 W2 W3) be a unitary matrix such that Im(W1) = Im(P ) ∩ Im(Q), Im(W2) = Ker(P ), and Im(W3) =
([Im(P )∩Im(Q)]⊕Ker(P ))⊥ (we omit the blockWi if the corresponding subspace is zero). Put d := dim(Im(P )∩Im(Q)),
s := n− rank(Q), and t := n− rank(P ). Then

W ∗(Q− λP )W =
(
W∗1
W∗2
W∗3

)
(Q− λP ) (W1 W2 W3 ) =

( (1−λ)Id 0 0
0 W∗2 QW2 W∗2 QW3
0 W∗3 QW2 W

∗
3 QW3−λIs

)
.

By hypothesis, Im(P ) + Im(Q) = Cn; so taking orthogonal complement gives Ker(P ) ∩ Ker(Q) = {0}. Therefore,
W ∗2QW2 is invertible. Observe that

(
W∗2 QW2 W∗2 QW3
W∗3 QW2 W

∗
3 QW3−λIs

)(
It −(W∗2 QW2)−1W∗2 QW3
0 Is

)
=
(
W∗2 QW2 0
W∗3 QW2 −λIs

)
where in the

(2, 2) entry we use −W ∗3QW2(W ∗2QW2)−1W ∗2QW3 + W ∗3QW3 = W ∗3Q[In − QW2(W ∗2QW2)−1W ∗2Q]QW3 and the fact
that QW2(W ∗2QW2)−1W ∗2Q is the orthogonal projector onto Im(QW2). Therefore,

p(λ) := det(Q− λP ) = det(W ∗(Q− λP )W ) = (−1)sλs(1− λ)ddet(W ∗2QW2),

thus showing that λ = 0 and λ = 1 are the zeros of polynomial p(λ) with algebraic multiplicities s = n − rank(Q) and
d = dim(Im(P ) ∩ Im(Q)), respectively.

Also solved by Eugene A. Herman and the proposers.

Problem 49-2: Matrix Diagonal Entries
Proposed by Roger A. Horn, University of Utah, Salt Lake City, Utah, U.S.A., rhorn@math.utah.edu
and Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, Florida, U.S.A., zhang@nova.edu
For A = (Aij) ∈Mn(C), let A∗ be its conjugate transpose, and let |A| = (A∗A)1/2 (the positive semidefinite square root).
(a) Show that |Aij |2 ≤ |A∗|ii|A|jj for all i, j. Is |Aij |2 ≤ |A|ii|A∗|jj?
(b) Show that

∏n
i=1 |Aii|2 =

∏n
i=1 |A∗|ii|A|ii if and only if (i) A has a zero row or column or (ii) A = D|A| for some

diagonal matrix D.
(c) Show that |det(A ◦ C)|2 ≤

∏n
i=1 |A∗|ii|A|ii for any n × n contraction C, where A ◦ C is the Hadamard (Schur,

entrywise) product of A and C. (Note: A matrix is a contraction if its spectral norm is no more than 1.)
(d) Is |Aii| ≤ |A|ii for all i = 1, 2, . . . , n?

Editorial note: The “only if” part in (b) of the original problem is false, as shown by Eugene A. Herman in his solution
below. The current (b) is a revision of the previous one.

Solution 49-2.1 by Eugene A. Herman, Grinnell College, Grinnell, Iowa, U.S.A., eaherman@gmail.com
Parts (a), (b), and (d) only. The answer to the questions in parts (a) and (d) is “no,” as is shown by the example

A =
(

1 1
0 0

)
⇒ |A| = 1√

2

(
1 1
1 1

)
, |A∗| =

(√
2 0

0 0

)
.

For the question in (a), let (i, j) = (1, 2); for (d), let i = 1.
(a). We use the singular value decomposition A = WΣV ∗, where W = (Wij) and V = (Vij) are unitary and Σ =
diag(σ1, . . . , σn) with σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0. Then |A| = V ΣV ∗ and |A∗| = WΣW ∗, and so

Aij =
n∑
k=1

WikσkV jk, |A|jj =
n∑
k=1
|Vjk|2σk, |A∗|ii =

n∑
k=1
|Wik|2σk.

We use the identities

|β − α|2 = (|β|2 + |α|2)− (αβ + βα); (α, β ∈ C),

n∑
k=1

n∑
m=1

akm =
n∑
k=1

akk +
n−1∑
k=1

n∑
m=k+1

(akm + amk); (akm ∈ C)
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to write

|A∗|ii|A|jj − |Aij |2 =
n∑
k=1

n∑
m=1
|Vjk|2|Wim|2σkσm −

n∑
k=1

n∑
m=1

WikV jkW imVjmσkσm

=
n−1∑
k=1

n∑
m=k+1

(
|Vjk|2|Wim|2 + |Vjm|2|Wik|2

)
σkσm

−
n−1∑
k=1

n∑
m=k+1

(
WikW im V jkVjm +WimW ik V jmVjk

)
σkσm

=
n−1∑
k=1

n∑
m=k+1

|VjmWik − VjkWim|2σkσm ≥ 0. (1)

(b). The “only if” part of the original problem is false. Indeed, let A = ( 1 1
2 2 ). Then, |A| =

√
5
2 ( 1 1

1 1 ) and |A∗| =
√

2
5 ( 1 2

2 4 ),
so
∏2
i=1 |Aii|2 = 4 =

∏2
i=1 |A∗|ii|A|ii. However, if A = DP , whereD is diagonal and unitary and P is positive semidefinite,

then |A|2 = A∗A = PD∗DP = P 2 and so P = |A|. It is easy to see that A 6= D|A| whenever D is diagonal and unitary.
We prove the following instead:
(b’).

∏n
i=1 |Aii|2 =

∏n
i=1 |A∗|ii|A|ii if and only if (i) A has a zero row or column or (ii) A = D|A| for some diagonal

matrix D. Furthermore, if A is nonsingular and A = D|A| for some diagonal matrix D, then D is unitary.
By part (a), |Aii|2 ≤ |A∗|ii|A|ii for i = 1, . . . , n. We may therefore use the fact that

0 ≤ xi ≤ yi, i = 1, . . . , n =⇒
n∏
i=1

xi =
n∏
i=1

yi if and only if xi = yi, i = 1, . . . , n, or yi = 0 for some i. (2)

By formula (1),

|A∗|ii|A|ii − |Aii|2 =
n−1∑
k=1

n∑
m=k+1

|VimWik − VikWim|2σkσm. (3)

Assume
∏n
i=1 |Aii|2 =

∏n
i=1 |A∗|ii|A|ii. Then, by (2), VimWik = VikWim for all i = 1, . . . , n and all k,m = 1, . . . , r or

|A∗|ii|A|ii = 0 for some i. If |A|ii = 0 for some i, then
∑n
k=1 |Vik|2σk = 0 and so Vik = 0 for k = 1, . . . , r. Hence

(ΣV ∗)ki = σkV ik = 0 for all k = 1, . . . , n. That is, column i of ΣV ∗ is zero, and so column i of A = WΣV ∗ is zero.
Similarly, if |A∗|ii = 0 for some i, then row i of A is zero. On the other hand, if VimWik = VikWim for all i = 1, . . . , n
and all k,m = 1, . . . , r, then for each i ∈ {1, . . . , n}, either Vik = 0 for k = 1, . . . , r or there exists di ∈ C such that
Wim = diVim for m = 1, . . . , r. As shown above, the first possibility implies that column i of A is zero. Thus, we may
assume there exist d1, . . . , dn ∈ C such thatWim = diVim for allm = 1, . . . , r and all i = 1, . . . , n. That is, W11 = D1V11
and W21 = D2V21, where

W =
(W11 W12

W21 W22

)
, V =

(V11 V12
V21 V22

)
, D =

(D1 0
0 D2

)
and where D1 = diag(d1, . . . , dr),D2 = diag(dr+1, . . . , dn) and the upper-left corner of each block matrix is r × r. Since
Σ =

(
Σ′ 0
0 0
)
for diagonal r × r matrix Σ′, we have

D|A| = DV ΣV ∗ =
(D1 0

0 D2

) (V11 V12
V21 V22

)
ΣV ∗ =

(W11 W12
W21 W22

)
ΣV ∗ = A.

For the converse implication, if column i of A is zero, then column i of A∗A = |A|2 is zero and so 0 = (|A|2)ii =∑n
k=1 |A|ik|A|ki =

∑n
k=1 |A|ik|A|ik =

∑n
k=1 ||A|ik|

2. In particular, |A|ii = 0. Similarly, if row i of A is zero, then
|A∗|ii = 0. In either case, (2) implies that

∏n
i=1 |Aii|2 =

∏n
i=1 |A∗|ii|A|ii. On the other hand, suppose A = D|A|, where

D is diagonal. Using the singular value decomposition A = WΣV ∗ we deduce WΣ = DV Σ, which we write as(W11 W12
W21 W22

) (
Σ′ 0
0 0
)

=
(D1 0

0 D2

) (V11 V12
V21 V22

) (
Σ′ 0
0 0
)

where Σ′ is nonsingular. Thus, W11Σ′ = D1V11Σ′ and W21Σ′ = D2V21Σ′, and so W11 = D1V11 and W21 = D2V21.
Thus VimWik = VikWim for all i = 1, . . . , n and all k,m = 1, . . . , r, and so (3) yields |Aii|2 = |A∗|ii|A|ii for i = 1, . . . , n.
Finally, if A = D|A| where D is diagonal and A is nonsingular, then |A|2 = A∗A = |A|D∗D|A|. Since |A| is also
nonsingular, we can cancel it on the left and right to produce I = D∗D; that is, D is unitary.
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Solution 49-2.2 by the proposers Roger A. Horn, University of Utah, Salt Lake City, Utah, U.S.A., rhorn@math.utah.edu
and Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, Florida, U.S.A., zhang@nova.edu
(a). Let r be the rank of A and let σ1, . . . , σr be the positive singular values of A. Let A = V ΣW ∗, in which V =
(v1, . . . , vn)∗ and W = (w1, . . . , wn)∗ are n × r partial unitary (isometry) (i.e., V ∗V = Ir and W ∗W = Ir), and
Σ = diag(σ1, . . . , σr) is nonsingular. Thus, |A| = WΣW ∗ and |A∗| = V ΣV ∗. It follows that

Aij = v∗i Σwj , |A|ij = w∗i Σwj , |A∗|ij = v∗i Σvj .

By the Cauchy-Schwarz inequality, we arrive at the inequalities:

|Aij |2 = |(Σ1/2vi)∗(Σ1/2wj)|2 ≤ (v∗i Σvi)(w∗jΣwj) = |A∗|ii|A|jj (∗)

with equality if and only if Σ1/2vi and Σ1/2wj (equivalently, vi and wi) are linearly dependent. Moreover, these inequalities
ensure that |A| or |A∗| has a zero on its main diagonal if and only if A contains a zero column or row.
However, |Aij |2 ≤ |A|ii|A∗|jj is not true in general. Take A =

( 0
0

1
0
)
.

(b). If A has a zero row or column, then |A∗| or |A| has a zero on its main diagonal, and the equality holds. If A = D|A|
and D = diag(d1, . . . , dn), then V ΣW ∗ = DWΣW ∗ which results in V = DW , thus, vi = d̄iwi for i = 1, . . . , n. By (∗),
|Aii|2 = |A∗|ii|A|ii. The product equality in (b) follows immediately.
For the converse, we assume that A contains no zero row or column. Then there is no zero on the main diagonals of |A|
and |A∗|. By (∗), we have |Aii|2 ≤ |A∗|ii|A|ii. If

∏n
i=1 |Aii|2 =

∏n
i=1 |A∗|ii|A|ii, then |Aii|2 = |A∗|ii|A|ii 6= 0 for all i.

Thus, vi and wi are linearly dependent for all i, i.e., V = DW for some nonsingular diagonal matrix D. It follows that
A = V ΣW ∗ = D(WΣW ∗) = D|A|, as desired. Note that if A is nonsingular, then D is unitary.

(c). Notice that
(
|A|
A

A∗

|A∗|

)
≥ 0 and

(
I
C
C∗

I

)
≥ 0, in which C is any n × n contraction. Taking the Hadamard product

(see [1, Theorem 7.5.3]) we have (
|A| ◦ I (A ◦ C)∗
A ◦ C |A∗| ◦ I

)
≥ 0.

By the Hadamard–Fischer inequality (see [1, Exercise on p. 473]) the desired inequality follows.
(d). It is not true in general. Take A =

( 1
0

1
0
)
; |A11| = 1, |A|11 = 1√

2 .

Reference

[1] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, 2012.

Problem 49-4: A Total Perron-Frobenius Theorem for Total Orders
Proposed by Rajesh Pereira, University of Guelph, Guelph, Canada, pereirar@uoguelph.ca
Let A be an n by n real matrix. Show that the following are equivalent:
(a) All the eigenvalues of A are real and nonnegative.
(b) There exists a total order ≥ on Rn (partial order where any two vectors are comparable) which is preserved by A
(i.e., x ∈ Rn and x ≥ 0 implies that Ax ≥ 0) and which makes (Rn,≥) an ordered vector space.

Solution 49-4.1 by Eugene A. Herman, Grinnell College, Grinnell, Iowa, U.S.A., eaherman@gmail.com
This proposition, whose proof is routine, is used in both parts of the proof:
Proposition. Let V and W be vector spaces over the reals and φ : V → W a surjective vector space isomorphism. Let
T be a linear transformation on V and ≥ a total order on V that is preserved by T and makes (V,≥) an ordered vector
space. Define U = φTφ−1 and define a relation � on W by w2 � w1 if and only if φ−1(w2) ≥ φ−1(w1). Then U is a
linear transformation on W and � is a total order on W that is preserved by U and makes (W,�) an ordered vector
space.
(a) ⇒ (b): Let P be a nonsingular matrix such that J = P−1AP is a Jordan form of A. By the Proposition, it suffices
to prove (b) for the matrix J . On Rn, let ≥ be the reverse lexicographic order, which can be defined recursively by

(y1, . . . , yn) ≥ (x1, . . . xn) if and only if yn > xn or yn = xn and (y1, . . . , yn−1) ≥ (x1, . . . , xn−1).

This is a well-known total order on Rn that makes (Rn,≥) an ordered vector space. It is easy to see that x ≥ 0 implies
Jx ≥ 0 if all the diagonal entries of J are positive. If some are zero, we change basis again (proof suggested by Rajesh

mailto:rhorn@math.utah.edu
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Page 41 of 44 Spring 2013: IMAGE 50

Pereira). We may assume that J =
(
J0 0
0 J′

)
, where J0 consists of the nilpotent blocks of J arranged in decreasing order

of size. Let d be the size of J0 and d− k be the number of ones in J0. Claim: There exists a permutation matrix P such
that (P−1J0P )(x1, . . . , xd)T is a d-tuple in which each component is either a zero or one of the variables xk+1, . . . , xd,
and these variables occur in that order, each one exactly once. Hence, a matrix(

P−1 0
0 I

) (
J0 0
0 J′

)
( P 0

0 I ) =
(
P−1J0P 0

0 J′

)
preserves the reverse lexicographic order. To prove the claim, choose P to be the permutation matrix such that J0P
has all the zero columns of J0 as its initial columns in their given order, then has the first nonzero column from each
block of J0 arranged in the order of the blocks until all these columns are used, then has the second nonzero column
from each block arranged in the order of the blocks until all these columns are used, and so on. For example, if J0 has
blocks of size 3, 2, 2 then its columns are permuted according to (4, 2)(6, 3, 7). It suffices to show that the position of 1
in nonzero rows of P−1J0P increases with the index of nonzero row. Let σ be the corresponding permutation from P
and write P−1J0P = (bi,j)i,j=1,...,d and J0 = (ai,j)i,j=1,...,d. Then ai,j = bσ(i),σ(j) ∈ {0, 1}, i, j = 1, . . . , d. If ai,i+1 is the
entry 1 from the first nonzero column of the jth block of J0, then 1 = bσ(i),σ(i+1) lies in row σ(i) = j since P permutes
column i of J0 (which is a zero column) to the jth column. Thus, these entries of P−1J0P are consecutive ones lying on
a superdiagonal starting at row 1. Now consider two ones, ai,i+1 and aj,j+1, i < j that lie in the kth nonzero column
(k > 0) of two different Jordan blocks. Then σ(i) < σ(j), since columns i and j are (k − 1)th nonzero columns that are
permuted by P in that order. Thus bσ(i),σ(i+1) lies in an earlier row than bσ(j),σ(j+1). Finally, consider two ones, ai,i+1
and aj,j+1 where the first lies in a kth column and the second in an mth column with k < m. Again, σ(i) < σ(j), since
either column i is zero and column j is not or both columns are nonzero with column i being a (k − 1)th column and
column j being a (m− 1)th column.
(b) ⇒ (a): If λ is a real eigenvalue of A with associated eigenvector x, we may assume x ≥ 0 since otherwise we can
replace x by −x. Hence λx = Ax ≥ 0, which implies λ ≥ 0. It remains to show that A cannot have an eigenvalue
λ = a + bi with a, b real and b 6= 0. Suppose A has such an eigenvalue and that an associated eigenvector is x = y + iz
with y, z real. Then Ax = λx may be written as

Ay = ay − bz, Az = by + az. (∗)

We may assume y ≥ 0 and z ≥ 0 for the following reason: If y < 0 and z < 0, replace x by −x; if y ≥ 0 and z < 0,
replace x by ix; and if y < 0 and z ≥ 0, replace x by −ix. Note that {y, z} is linearly independent, since otherwise x
would be a multiple of a real eigenvector and so λ would be real. Let φ be the isomorphism from V = Span{y, z} onto
R2 such that φ(y) = e1 and φ(z) = e2 (the standard unit vectors). The matrix A maps V into V , and the restriction of
≥ to V is a total order on V preserved by the restriction of A to V . We can therefore apply the Proposition and denote
the induced linear transformation and induced total order on R2 again by A and ≥. Then, equations (∗) imply

A =
(
a b
−b a

)
=
(
r cos θ −r sin θ
r sin θ r cos θ

)
for some r > 0 and θ ∈ (0, 2π), and so

Ak = rk
( cos kθ − sin kθ

sin kθ cos kθ
)
, k = 0, 1, 2, . . . .

Since y ≥ 0 and z ≥ 0, we have e1 ≥ 0 and e2 ≥ 0 and so

uk =
(

cos kθ
sin kθ

)
= 1

rkA
ke1 > 0 and vk =

(− sin kθ
cos kθ

)
= 1

rkA
ke2 > 0, k = 0, 1, 2, . . . .

We get a contradiction from these sequences of positive vectors as follows. Suppose, for some k, vk is in the 3rd quadrant.
Then uk is in the 2nd quadrant and so −e1 = αuk+βvk for some nonnegative scalars α, β. We get a similar contradiction
if, for some k, vk is in the 4th quadrant. To see that at least one of these circumstances occurs, we divide the values of
θ into cases: If 0 < θ ≤ π/2, then vk passes through every quadrant on each counterclockwise rotation about the origin;
if π/2 < θ ≤ π, then v1 is in the 3rd quadrant; if π < θ ≤ 3π/2, then v1 is in the 4th quadrant; and if 3π/2 < θ < 2π,
we have a clockwise rotation of 2π − θ ∈ (0, π/2), which returns us to the first case.

Also solved by the proposer.

Problem 49-5: A Property of the Electro-Magnetic Field in the Born–Infeld Model
Proposed by Denis Serre, École Normale Supérieure de Lyon, France, denis.serre@ens-lyon.fr
In the canonical Euclidian space Rn (n ≥ 3), we give ourselves two vectors E and B, satisfying ‖E‖2+(E ·B)2 ≤ 1+‖B‖2.
Prove the following inequality between symmetric matrices EET +BBT ≤ (1 + ‖B‖2)In.

mailto:denis.serre@ens-lyon.fr
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Solution 49-5.1 by Eugene A. Herman, Grinnell College, Grinnell, Iowa, U.S.A., eaherman@gmail.com
The assumption n ≥ 3 is not needed. Since the result is trivial for n = 1, we may assume n ≥ 2. It suffices to show that
λ ≤ 1 + ‖B‖2 for all eigenvalues λ of EET +BBT . There is an orthogonal matrix Q such that

QE = (e, 0, . . . , 0)T , QB = (b1, b2, 0, . . . , 0)T .

Then (QE) · (QB) = E ·B and similarly for all the other relevant expressions. Hence ‖E‖2 +(E ·B)2 ≤ 1+‖B‖2 becomes

e2 + e2b2
1 ≤ 1 + b2

1 + b2
2 (∗)

and

EET +BBT =

 e2 0
0 0 O

O O

+

 b2
1 b1b2

b1b2 b2
2

O

O O

 =

 e2 + b2
1 b1b2

b1b2 b2
2

O

O O

 .

It therefore suffices to show that λ ≤ 1 + b2
1 + b2

2 for all eigenvalues λ of
(
e2+b2

1 b1b2

b1b2 b2
2

)
. The characteristic polynomial of

this 2× 2 matrix is λ2 − (e2 + b2
1 + b2

2)λ+ e2b2
2 = 0 and so

λ = 1
2

(
e2 + b2

1 + b2
2 ±

√
(e2 + b2

1 + b2
2)2 − 4e2b2

2

)
.

Since inequality (∗) implies b2
1 + b2

2 + 2− e2 = 1 + e2b2
1 ≥ 0 we therefore have

λ ≤ 1 + b2
1 + b2

2 ⇔ (e2 + b2
1 + b2

2)2 − 4e2b2
2 ≤ (b2

1 + b2
2 + 2− e2)2

⇔ e4 + 2e2(b2
1 + b2

2)− 4e2b2
2 ≤ 2(b2

1 + b2
2)(2− e2) + (2− e2)2

⇔ 4e2b2
1 ≤ 4(b2

1 + b2
2) + 4− 4e2

⇔ e2 + e2b2
1 ≤ 1 + b2

1 + b2
2

which is inequality (∗). Thus, the inequality ‖E‖2 + (E ·B)2 ≤ 1 + ‖B‖2 is not just sufficient but necessary.

Solution 49-5.2 by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria, om-
ran_kouba@hiast.edu.sy
Lemma. For m ≥ 2, let Rm be equipped with the canonical scalar product “·” and norm ‖·‖2, and let the space Mm(R) of
m×m matrices be equipped with the corresponding operator norm. Consider m vectors e1, e2, . . . , em from a real scalar
product space, (H, 〈, 〉). Then, for every x ∈ H, we have

m∑
k=1
〈ek, x〉2 ≤ ‖G‖‖x‖2

H

where G = Gram(e1, . . . , em) is the Gram matrix of (e1, e2, . . . , em).

Proof of Lemma. If Φ : H −→ Rm is defined by Φ(x) = (〈ek, x〉)1≤k≤m, then ΦT : Rm −→ H is given by Φ(a1, . . . , am) =
a1e1 + · · ·+ amem and G is the standard matrix of Φ ΦT with respect to the canonical basis of Rm. It is well-known that
‖Φ‖ = ‖ΦT ‖ =

√
‖Φ ΦT ‖ =

√
‖G‖, so the considered inequality is just expressing the fact that ‖Φ(x)‖2 ≤ ‖Φ‖‖x‖H for

every x ∈ H.
We will apply the Lemma to the case H = Rn and m = 2 with e1 = E and e2 = B. If x ∈ Rn then

(E · x)2 + (B · x)2 ≤
∥∥∥( ‖E‖2 E·B

E·B ‖B‖2

)∥∥∥ ‖x‖2.

But, the operator norm of a positive semi-definite real matrix is its largest eigenvalue. So∥∥∥( ‖E‖2 E·B
E·B ‖B‖2

)∥∥∥ = 1
2

(
‖B‖2 + ‖E‖2 +

√
(‖B‖2 − ‖E‖2)2 + 4(E ·B)2

)
.

Now, using the assumption 0 ≤ (E ·B)2 ≤ 1 + ‖B‖2 − ‖E‖2 we see that∥∥∥( ‖E‖2 E·B
E·B ‖B‖2

)∥∥∥ ≤ 1
2

(
‖B‖2 + ‖E‖2 +

√
(‖B‖2 − ‖E‖2 + 2)2

)
= 1 + ‖B‖2.
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So, xT (EET +BBT )x ≤ (1 + ‖B‖2)xTx for every x ∈ Rn, which is equivalent to the desired inequality.

Solution 49-5.3 by Minghua Lin, University of Waterloo, Ontario, Canada, mlin87@ymail.com
Without loss of generality, we assume B 6= 0. We can write E = αB/‖B‖ + βC. Here α, β ∈ R and C ∈ Rn is a unit
vector such that BTC = 0. Then ‖E‖2 + (ETB)2 ≤ 1 + ‖B‖2 implies

β2 + α2(1 + ‖B‖2) ≤ 1 + ‖B‖2. (∗)

Our goal is to show that the eigenvalues of EET + BBT are no larger than 1 + ‖B‖2. Since the nonzero eigenvalues of
EET + BBT = [E B][E B]T coincide with those of [E B]T [E B] =

(
α2+β2 α‖B‖
α‖B‖ ‖B‖2

)
:= H we need to show that the

largest eigenvalue of H is no larger than 1 + ‖B‖2.
The characteristic polynomial of H is p(t) = t2− (α2 +β2 + ‖B‖2)t+β2‖B‖2. From (∗) we know α2 ≤ 1 so α2 + ‖B‖2 ≤
1 + ‖B‖2. Also from (∗) it is obvious β2 ≤ 1 + ‖B‖2. That is, max{α2 + ‖B‖2, β2} ≤ 1 + ‖B‖2. Hence, the parabola
given by p(t) attains its minimum at 1

2 (α2 + β2 + ‖B‖2) ≤ 1 + ‖B‖2. So it remains to show p(1 + ‖B‖2) ≥ 0. A little
calculation gives p(1 + ‖B‖2) = 1 + ‖B‖2 − α2 − β2 − α2‖B‖2 ≥ 0.

Also solved by Roger A. Horn and the proposer.

Problem 49-6: Determinant Power Monotonicity
Proposed by Suvrit Sra, Max Planck Institute for Intelligent Systems, Tübingen, Germany, suvrit@tuebingen.mpg.de

Let A,B > 0 (positive definite); let 1 ≤ t ≤ u. Prove that det
(
At+Bt

2
)1/t ≤ det

(
Au+Bu

2
)1/u.

Solution 49-6.1 by the proposer Suvrit Sra, Max Planck Institute for Intelligent Systems, Tübingen, Germany, su-
vrit@tuebingen.mpg.de

Note that det
(
At+Bt

2
)1/t =

(
det(A

t+Bt

2 )
)1/t = (detAt)1/t · (det(I +A−tBt))1/t = (detA) · (det(I +A−tBt))1/t. Hence,

using P = A−1 we must show that

n∏
j=1

(
1 + λj(PTBt)

2

)1/t

≤
n∏
j=1

(
1 + λj(PuBu)

2

)1/u
.

We know that (see for example the proof of Theorem IX.2.9 in [1]):

λ1/t(P tBt) ≺log λ
1/u(PuBu).

Then t 7→ ln(1 + eut) is a convex and monotone increasing function, therefore (see Theorem A.1 on p. 165 of [2]):

k∏
j=1

(
1 + λ

u/t
j (P tBt)

2

)1/u

≤
k∏
j=1

(
1 + λj(PuBu)

2

)1/u
, 1 ≤ k ≤ n.

But, for u ≥ t, the map x 7→ xu/t is convex, whereby we have

k∏
j=1

(
1 + λ

u/t
j (P tBt)

2

)1/u

≥
k∏
j=1

((
1 + λj(P tBt)

2

)u/t)1/u

=
k∏
j=1

(
1 + λj(P tBt)

2

)1/t

.
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Editorial note: Minghua Lin informed us that [K.V. Bhagwat and R. Subramanian, Inequalities between means of
positive operators, Math. Proc. Camb. Phil. Soc. 83 (1978) 393–401] contains a more general result for which the

assumptions of the problem imply
(
At+Bt

2

)1/t
≤
(
Au+Bu

2
)1/u whenever 1 ≤ t ≤ u.
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IMAGE PROBLEM CORNER: NEW PROBLEMS
Problems: We introduce 6 new problems in this issue and invite readers to submit solutions for publication in IMAGE. Solutions: We present
solutions to all problems in the previous issue [IMAGE 49 (Fall 2012), p. 52] except problem 49.3, for which we still seek solutions. Submissions:
Please submit proposed problems and solutions in macro-free LATEX along with the PDF file by e-mail to IMAGE Problem Corner editor
Bojan Kuzma (bojan.kuzma@famnit.upr.si). The working team of the Problem Corner consists of Gregor Dolinar, Shaun Fallat, Alexander
Guterman, Nung-Sing Sze, and Rajesh Pereira.

New Problems:

Problem 50-1: An Adjugate Identity
Proposed by Khaled Aljanaideh, University of Michigan, Ann Arbor, MI, USA, khaledfj@umich.edu
and Dennis S. Bernstein, University of Michigan, Ann Arbor, MI, USA, dsbaero@umich.edu
Let adjA ∈ Mn(C) denote the adjugate (transposed matrix of cofactors) of A ∈ Mn(C), let A[i,j] ∈ Mn−1(C) denote A
with the i-th row and j-th column removed, and let A[i,·] ∈M(n−1)×n(C) denote A with the i-th row removed. If ei ∈ Cn
is the i-th column vector of the standard basis, show that[

(adjA)[i,·] + (adjA[i,i])A[i,·]
]
ei = 0(n−1)×1; i ∈ {1, . . . , n}.

Problem 50-2: Range-Hermitianness of Certain Functions of Projectors
Proposed by Oskar Maria Baksalary, Adam Mickiewicz University, Poznań, Poland, obaksalary@gmail.com
and Götz Trenkler, Dortmund University of Technology, Dortmund, Germany, trenkler@statistik.tu-dortmund.de
(i) Let P,Q ∈Mn(C) be Hermitian idempotent matrices of order n. Show that P +Q− PQ is range-Hermitian.
(ii) Let R ∈ Mn(C) be an idempotent matrix of order n and let R† be its Moore-Penrose inverse. Show that In − R† is
range-Hermitian, where In is the identity matrix of order n.
Recall that a matrix is range-Hermitian (also called EP) if its range, and the range of its conjugate transpose, coincide.

Problem 50-3: Trace Inequality for Positive Block Matrices
Proposed by Ádám Besenyei, Department of Applied Analysis, Eötvös Loránd University, Hungary, badam@cs.elte.hu
Let A,B,C ∈Mn(C) be such that the block matrix

(
A B
B∗ C

)
∈M2n(C) is positive-semidefinite. Show that

Tr(AC)− Tr(B∗B) ≤ Tr(A) Tr(C)− Tr(B∗) Tr(B).

Problem 50-4: Matrix Power Coefficients
Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France, ommou@yahoo.com
Find all real matrices A such that Ar = (arij) for any integer r (Ar is the usual product of A r-times). What is the
answer for matrices over commutative fields?

Problem 50-5: A Matrix of Divided Differences
Proposed by Rajesh Pereira, University of Guelph, Guelph, Canada, pereirar@uoguelph.ca
Let p(z) = zn+a1z

n−1+· · ·+an−1z+an be an n-th degree monic polynomial with complex coefficients and let {xk}nk=1 be
a set of n pairwise distinct real numbers. Let M be the n–by–n matrix of first divided differences of p (so for 1 ≤ i, j ≤ n
we have mi,j = (p(xi)− p(xj))/(xi−xj) and mii = p′(xi)). Show that the determinant of M is positive if n is congruent
to 0 or 1 mod 4 and negative if n is congruent to 2 or 3 mod 4.

Problem 50-6: Diagonalizable Matrices Over Fp
Proposed by Denis Serre, École Normale Supérieure de Lyon, France, denis.serre@ens-lyon.fr
Let p ≥ 2 be a prime number and let Fp denote the field Z/pZ. Prove that A ∈Mn(Fp) is diagonalizable within Mn(Fp)
if and only if Ap = A.

Solutions to Problems 49-1 through 49-6, except 49-3, are on pp. 36–43.
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