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FEATURE INTERVIEW
“Never a dull moment”

Beresford N. Parlett interviewed by Ming Gu1

Beresford Parlett contemplating the source of the
Columbia River (British Columbia)

M.G. - How did you come to study
math?

B.P. - We were at war with Germany
(World War II), and my little prep school
which took boys from 7 to 13 was evacu-
ated from its regular place on the South
Coast (Brighton) to a city called Litchfield
more or less in the middle of England. We
were trying to prepare for invasion from
across the channel. My prep school was
owned and run by a Mr. Burr, who loved
mathematics. He was a gifted, if eccentric,
teacher. In addition to running the school,
he wrote a witty play every year to be acted
by the boys. In math his way was that we
had no textbooks and we were not allowed
to take any notes. All the math had to be
in our heads. A few of the boys found we
could do that. We just worked problems in

class under his guidance. Occasionally, while we were working hard on a problem, he would shoot a rabbit from the
classroom window. Never a dull moment.

With his methods, by the age of 12 I knew well the various ways to write down the equation for a tangent at a point
on a curve. This was made easier because the only functions we ever dealt with were polynomials, no objects from
trigonometry or analysis. We would write down the equation for a secant and then let one point of intersection approach
the other. Things worked out fine. I got very good at that. We all did. And the word “calculus” was never mentioned.
I could handle derivatives to polynomials very well. He got us very advanced in what’s called synthetic geometry (plane
geometry). So I knew a lot about circles associated with triangles and so on.

At age 13, I managed to win a competitive exam to get a scholarship to my public school (taking boys from 13 to 18).
Only there did I realize how advanced I was compared to all my peers. After a year, at age 14 (nearly 15) I passed
the national exams (O-levels) and I had to choose a focus and that was to either be in the classics or in mathematics.
Although I liked Latin as much as math, I had only one year of Greek and with that handicap mathematics would be a
better bet. So that’s how I ended up doing nothing but math and physics after the age of 15. I am so grateful now that
I did focus on mathematics, but I did not appreciate it at the time.

Next, I was very lucky that a young maths master arrived, fresh from Cambridge, for my last year. Thanks to his
coaching I won a competitive exam and got a scholarship to New College, Oxford. That was in 1950. This was the first
scholarship to an Oxford or Cambridge college that the school had won since the war ended and the headmaster was so
excited that he gave a half holiday for the whole school of about 400 boys.

I must add one more item. A week after leaving school, I was in my basic training for the Army. There they found out
that I was severely myopic (nearsighted) and discharged me on that account. Then one week after coming out of the
Army I was up at Oxford. I was not pleased, because I was two years younger than my peers and I had expected to
come up to Oxford two years later in 1953.

At Oxford I had an active social life. I was in the first rowing crew for my college (in the off-season) and we won our
oars. I then turned my attention to acting, but despite all this frivolity managed to get my B.A. in 1955. So that’s really
the end of my school days.

1Department of Mathematics, University of California, Berkeley, USA; mgu@berkeley.edu

mailto:mgu@berkeley.edu
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M.G. - Where would you have gone if you had not been discharged?

B.P. - I had a choice of going to either Korea or Kenya (to fight the Mau Mau). Both of those places were quite exciting.
I’d actually signed up for either of them. And I had a full expectation to be an officer. I wanted adventure, not theorems.

M.G. - You could have gone to Korea.

B.P. - Yes, yes. Some people think I was lucky to be discharged.

M.G. - I think so.

B.P. - Um. I would like to carry on about Stanford.

M.G. - Okay, yes. Could you tell me more about your experience there?

B.P. - I’d like to. I started in a Ph.D. program in September of 1958. I mention that because the previous three years
were spent by me either in manual labor in sawmills or as a lumber salesman based in London. When I arrived and was
told that there was a placement exam in about a week’s time, I was scared stiff. To my great surprise, having done no
mathematics at all for three years. I placed second in order of the 23 of us in the program. But I was a long way behind
Jimmy Ax, who was first, and he’s now a celebrated number theorist. (Actually, he left our Ph.D. program at the end
of that first year in order to get his Ph.D. at UC Berkeley.)

I quickly adapted to the American system of university education and I liked it very much. Many of the faculty at
Stanford in math were fugitives from Hitler’s Europe. I was also a teaching assistant in the Math department and
what was really nice at Stanford, compared to Berkeley, was that I had complete control over one section (of first-year
Calculus) out of nine that Stanford offered its freshmen, and this gave me the right to an office, which I shared with
another graduate student who was a year ahead of me. This was a man called Jim Cochran who, when he got his Ph.D.,
went to Bell Labs for a while, and ended up being a dean at Washington State University in Pullman, WA. He was a
great help to me.

I can’t resist the temptation of talking about my first summer at Stanford. That was in 1959. The American Rhodes
scholar friend who persuaded me to come to the USA paid for my first year in the graduate dormitory on campus called
Crothers Memorial. I learned, early in June 1959, that I had to vacate my room there. What should I do? I moved my
clothes to my office desk and I moved my math papers onto the open shelves in the office. Also I found that I could
store a breakfast yogurt and also luncheon meats in the International House refrigerator, which I did. My routine was to
make a sandwich for myself at breakfast time. I took that sandwich to the swimming pool at lunchtime every day, and
after swimming a few laps I ate my sandwich and sunbathed. In the evening I walked off campus to the nearest mall and
enjoyed the one hot meal of the day. A pleasant and healthy routine. At all other moments I studied.

The extra benefit was that I found that the key to my office in the math building fitted the lock of the door to the ladies’
restroom, which happened to be just opposite the office I shared with Jim Cochran. After a little experimentation, I
developed a routine. Every night, the campus police came through the math building at about a quarter to midnight,
and they found me studying diligently. As soon as they left the building, I opened the window to my office and then
I wedged open the door and then I opened the door to the ladies’ restroom and spread my sleeping bag on the sofa
that was always there in those days. I put on my pajamas and slept well until about six or 6:30 in the morning. The
department secretary came in to work punctually at 7:45, by which time the ladies’ restroom was back in proper order.

M.G. - What you are saying means that you slept less than eight hours every night.

B.P. - Yes, but they were comfortable and I felt well-rested. The reason I did all this was that I was very keen to spend
as much time as possible preparing for the Ph.D. qualifying exams, which were coming up in April of 1960, and I felt I
was behind hand through having prepared to be a businessman for three years prior to 1958 and I had a lot to catch up.
I did indeed do very little else but study, but I did take a quarter-time job in the computing center, which was mainly
handling punched cards for the IBM 650 Stanford had at that time. And I’m extremely glad that I did study so hard,
because 23 of us took the written exams and only seven of us passed. A week later, those seven had orals, and five of us
passed. Luckily, I was one of the five. So I was extremely pleased with the way I spent the summer of 1959.



Page 5 of 41 Fall 2020: IMAGE 65

M.G. - So what happened to the rest of the cohort?

B.P. - Good question. Everyone was allowed two shots at the exams. So all the people who had not passed could take
the quals the next year. However some decided to go elsewhere for a Ph.D., including a powerful researcher in numerical
linear algebra named Bill Gragg who wrote his dissertation under Peter Henrici at UCLA.

There is another twist to my story. Three days before my oral exam, I was in the changing rooms at the swimming
pool and there I met my brilliant friend Al Novikov who ended up as a professor of mathematics at NYU. I said to him,
“Al, I’ve got an oral coming up in three days. One of the special subjects I’ve chosen is group representations and I feel
I know all the basic material very well, but I just don’t have a feel for the subject as a whole, I don’t really see why
anyone would study group representations. Can you help me?” There, on the spot in the changing rooms, Al gave me a
beautiful five-minute talk on why one would want to study group representations, using very simple examples like sines
and cosines and so on. I was, of course, both impressed and delighted. I was even more delighted when the first question
I was asked on my oral, three days later, was: Why would you study group representations? Al’s five-minute lecture
was very fresh in my head and I reproduced it pretty well. And I could tell that the members of the committee were
impressed. That got me off to a wonderful start and I think the confidence that ensued carried me through the rest of
the exam. I did well just because I got the right question at the start. Nine bows to Al Novikov.

M.G. - Changing topics, let me ask what are your favorite research results so far.

B.P. - I would like to talk about the Mismatch Theorem. This concerns the Lanczos algorithm which was presented
in a paper, way back in 1950, by Cornelius Lanczos. Most attention has been paid to the symmetric case. However I
was interested in the reduction to tridiagonal form of large unsymmetric matrices. At each step, the wanted tridiagonal
grows by one row and one column, just three new entries. It was quite well known, not just to me, that the algorithm can
break down in the unsymmetric case. Breakdown means that a crucial new entry of the tridiagonal vanishes. Usually
that breakdown can be circumvented if one is willing to go to a block version of the tridiagonal. Nevertheless, what
was known, but not well, was that increasing block size does not cure all the bad cases that can occur. One can have
‘incurable’ breakdown. By the way, I am assuming exact arithmetic for the whole discussion. No roundoff effects.

Let me just say a word about the unsymmetric algorithm. The main difference from the symmetric case is that you build
up two, not one, sets of Lanczos vectors, which I call the left and the right. Each starts from an (arbitrary) starting
vector. And of course, at each step the tridiagonal Lanczos matrix grows by one row and column. And one vital property
is that the left and right Lanczos vectors are what is often called bi-orthogonal. I don’t really like that word. I think
it’s much better to use a more old fashioned phrase which is that the two sets of vectors are self-dual. What that means
in practice is: If the procedure goes to the full number of steps, those two matrices, Left and Right, will be inverses of
each other. In addition, at each step you still have a diagonal matrix from their product, Left times Right. I think it
was early in the 1970s, perhaps 1971, that I set one of my Ph.D. students, Derek Taylor, to study incurable breakdown.

He came into my office one day somewhat later and said: At incurable breakdown every eigenvalue of the tridiagonal
Lanczos matrix is an exact eigenvalue of the big matrix. I said: Oh, that’s impossible. It’s ridiculous and no invariant
subspaces are in sight. Nevertheless, he was correct. When I grasped it, I said: Explain that and you have a thesis.
Well, Derek Taylor chose to expand each of the two starting vectors, left and right, in the basis of eigenvectors of the big
matrix. And what he found was that if the eigenvectors that supported the left initial vector and the set of eigenvectors
that supported the right starting vector were mismatched (i.e., the sets were not the same) then incurable breakdown
was certain, before the final step. Several years later I found a more geometric proof, quite complicated, only to learn
from Jim Demmel that I had rediscovered the Kalman Gilbert Canonical Structure Theorem from linear systems theory.
Not original, but perhaps the deepest result I have discovered for myself.

M.G. - So what are your favorite results in numerical linear algebra?

B.P. - I think my most significant work has all been joint with others. And the first one I should mention came in 1993
when K. V. Fernando was visiting Berkeley, and he and I produced the dqds algorithm. That acronym is pronounced “the
differential qd algorithm with shifts” and its function is the accurate calculation of the singular values of a bi-diagonal
matrix, however small they may be. This daunting goal was not even attempted in earlier days and is not always, or
even often, possible. Demmel and Kahan had recently shown that the bi-diagonal QR algorithm could also give high
relative accuracy, but only if no shifts were used.
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I do want to say something about this funny word “differential”. dqd is a little-known variant of the qd algorithm that
Rutishauser introduced, in 1954 I think. Historically, the qd algorithm gave rise to the LR algorithm for tridiagonals
and then for full matrices. Then the LR algorithm was replaced by the QR algorithm. Next, Demmel and Kahan used
the bidiagonal QR algorithm, without shifts, to compute singular values of bidiagonals. Finally, Fernando saw that what
they were doing was equivalent in exact arithmetic to Rutishauser’s original qd but in a variant form which uses an extra
variable. Rutishauser’s notes reveal that he knew this variant, gave it the name differential, but showed little interest
and never published it. He did not use shifts, but it is not difficult to bring them in. I felt that it was rather nice to
circle back to qd after the detour via LR and QR. I was pleased to find a special error analysis for our dqds algorithm.
The result can be expressed as follows. If you execute one dqds transform and there is no overflow or underflow, and if
there are no NaN’s (Not a Number), then, in fact, tiny special perturbations in the last two bits of each number in the
input array and the output array yield an exact dqds transform, which of course preserves the singular values exactly.
This holds whether or not there is any element growth. It is a little bit hard to know what to make of that result. But
it has been vital in subsequent work on the MRRR algorithm. It is called the “high mixed relative accuracy” of dqds.
Here, “mixed” refers to the need to perturb the output as well as the input.

My collaboration with my last Ph.D. student at UC Berkeley, Inderjit Dhillon, uses the dqds transform in various ways,
which I will not go into since it is rather technical, to produce a procedure that can compute k eigenpairs of a symmetric
tridiagonal matrix in O(nk) operations. That was a very pleasing result, but much too technical to try to talk about
here. No Gram-Schmidt orthogonalization is needed.

The algorithm has been realized in LAPACK. That is all I want to say about MRRR.

M.G. - That’s really nice. And so now do you want to tell me some stories about your book The
Symmetric Eigenvalue Problem?

B.P. - Yes, I think the story to tell is that, with a bit of encouragement from George Forsythe, I wrote a whole book
on the unsymmetric eigenvalue problem. I put together everything I knew and had discovered in my dissertation. By
the time I’d finished the book, my advisor, George Forsythe, had died from stomach cancer. Cleve Moler had taken
his place as consulting editor at Prentice Hall, and he reviewed my book. He said, “I don’t really think we want to
publish it. It’s just a bag of tricks. But if you add a chapter on the symmetric case, then maybe we will publish it.” I
accepted his criticisms and went to work and started to develop that chapter on the symmetric case. The timing was
such that there were several recent results in the symmetric case that I was very pleased to put in the book. One was
that I found a simple way of presenting Chris Paige’s wonderful surprising results on the Lanczos algorithm run in finite
precision without stopping. He showed that, despite departing substantially from what it would give in exact arithmetic,
the procedure does not lose any information on the true eigenvalues however long the algorithm runs, perhaps many
more than n steps, with n the order of the big matrix. The eigenvalues of the original big matrix appear as multiple
eigenvalues of the Lanczos matrix. My simplification of his analysis was to assume that all arithmetic is exact except for
the multiplication of the most recent Lanczos vector by the big matrix. It is that roundoff error that drives the finite
precision output. So I wanted to put that in that extra chapter. Then Walter Hoffman and I had found an elegant proof
of the global, not just local, convergence of the QR algorithm on a tridiagonal symmetric matrix using Wilkinson’s shift.

M.G. - This is not in finite precision.

B.P. - Indeed, we are back to the comfort of exact arithmetic. Wilkinson had recently proved that, with Wilkinson’s
shift, global convergence is assured, but he couldn’t say how fast initially. His key observation was that the product of
the last two off-diagonal entries always converges to zero. But it could initially be slow. What Hoffman and I found
was that if you look at a slightly different function, namely the product of the second from last off-diagonal entry by the
square of the last off-diagonal entry, then that function goes to zero geometrically with ratio 1/

√
2 right from the start.

Our proof is more elementary than Wilkinson’s. I was sad that this result has been ignored. It is clearly the “right”
proof.

And thirdly I wanted to include unpublished work by my friend, colleague, and mentor Velvel Kahan who had some
powerful but complicated error bounds on eigenvalue approximations from eigenvalues of submatrices.

So anyway, my chapter grew rather large and I published it as a whole book. My original version on the unsymmetric
eigenvalue problem was just a rather painful learning experience (and, of course, is hopelessly out of date now).
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Beresford Parlett at home with his
late wife Fredrica and cat Lily

M.G. - It never got published?

B.P. - It never got published. My book on the symmetric
case has been well received and I think I was wise to include
code only at a high level, and that sparingly. Two things
I neglected were sparsity and parallel computation.

M.G. - Yeah, that was not the right time.

B.P. - I actually had finished the symmetric book by 1978.

M.G. - Okay, so do you want to tell me some stories
about your collaboration with the other people in
your field?

B.P. - I cannot think of any good stories. I have been a
minor author on software projects with Jim Demmel and
Osni Marques. I enjoyed working with John Reid during
my sabbatical leave at Harwell in England and enjoyed
collaborating with Martin Gutknecht, Osni Marques, and
Carla Ferreira on different projects. No more stories.
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FEATURE ARTICLE

The Eigenvalues of Random Matrices
Elizabeth Meckes1, Case Western Reserve University, Cleveland, Ohio, USA,

elizabeth.meckes@case.edu

1. Introduction. Although one can see earlier glimmers (e.g., [29]), the study of random matrices as such originated in
statistics in Wishart’s 1928 consideration of random sample covariance matrices [54], in numerical analysis in von Neu-
mann and collaborators’ work in the 1940s on numerical methods for solving linear systems [49, 23], and in nuclear
physics in Wigner’s 1955 introduction of random matrices as models for atoms with heavy nucleii [52, 53]. Since then,
random matrix theory has found countless applications both within mathematics and in science and engineering. While
using random matrices as statistical models in the presence of uncertainty is perhaps the most obvious way to go, there is
a more fundamental reason for those who study and use matrices to know something about random matrices: recognizing
what’s typical. First mathematical questions tend to be about what is possible: How large or small can the eigenvalues
be? How long might the algorithm take? How many edges can a graph have and still contain no triangles? But for some
purposes, what is possible is less relevant than what is typical: How large or small do the eigenvalues tend to be? How
long does the algorithm usually take? For what size graphs is it fairly common to have no triangles?

The single problem in randommatrix theory which has received the most attention is that of understanding the eigenvalues
of random matrices. Of course, this is not actually a single problem, but a huge class of problems: There are many ways
to build a random matrix (leading to many drastically different eigenvalue distributions), and there are many different
things to understand about any given random matrix model. In this note, I will give a broad overview of some random
matrix models and some of what is known about their eigenvalues.

2. Random eigenvalues. A random matrix is a measurable function from a probability space into a set of matrices.
Perhaps more concretely, a random matrix is a matrix whose entries are random variables with some joint distribution.
If M is an n × n random matrix, the eigenvalues of M are a collection of n random points (not necessarily distinct,
although in most of the cases we’ll discuss, they are distinct with probability one).

In many cases, there is an explicit density formula for the eigenvalues of a particular random matrix. For example,
the (complex) Ginibre ensemble consists of random matrices with independent, identically distributed standard complex
Gaussian entries (i.e., entries distributed as 1√

2Z1 + i√
2Z2 for Z1 and Z2 i.i.d. standard Gaussian variables). In this case,

there is an explicit formula for the density of the eigenvalues, given by

ϕn(z1, . . . , zn) = 1
πn
∏n
k=1 k! exp

(
−

n∑
k=1
|zk|2

) ∏
1≤j<k≤n

|zj − zk|2.

In a sense, then, we know everything about the eigenvalues of the Ginibre ensemble: We know the rules which determine
where the eigenvalues are and with what probabilities. And having such an explicit eigenvalue density is indeed a
powerful tool. But just as knowing the rules of chess is a far cry from being ready to play a Grandmaster, knowing this
explicit formula still leaves a lot to discover. In fact, the eigenvalue density for the Ginibre ensemble is one of the simpler
eigenvalue density formulae one sees, but it is complicated enough that even relatively simple questions about the typical
behavior of the eigenvalues are not immediately accessible.

Most early applications of random matrix theory were about the limiting behavior of the spectra as the size of the
matrix tends to infinity, either to develop a statistical understanding of “very large” matrices, or to use large matrices
to approximate infinite-dimensional operators. An important tool for encoding the eigenvalues of a random matrix is
the empirical spectral measure: If M has eigenvalues λ1, . . . , λn, then its empirical spectral measure µM is the random
probability measure putting equal mass at each of the eigenvalues:

µM = 1
n

n∑
j=1

δλj .

1Supported by ERC Advanced Grant 740900 (LogCorRM) and Simons Fellowship 678148

mailto:elizabeth.meckes@case.edu
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A key reason for considering the empirical spectral measure is that it does provide a natural framework in which to talk
about limiting behavior, as the size of the matrix tends to infinity. Consider the following collections of eigenvalues from
random matrices of increasing size:

Visually, it is clear what is happening: Whatever random procedure we are using to generate these matrices, as we
generate larger and larger random matrices, the eigenvalues seem to be filling out the disc. In other words, the empirical
spectral measures seem to be converging to the uniform probability measure on the disc, in a phenomenon known as the
circular law (see Section 5 below).

Of course, since the empirical spectral measures are random probability measures, there are various senses of convergence.
The simplest is convergence in expectation. Given a random matrix M , we define the expectation EµM of its empirical
spectral measure (a non-random probability measure) as follows: For a test function f (defined on whatever space the
eigenvalues of M lie in), ∫

fd(EµM ) := E
(∫

fdµM

)
,

assuming that the right-hand side is defined. That is, to integrate with respect to the expected spectral measure, we
integrate with respect to the (random) empirical spectral measure to get a random variable, and then take its expectation.
If we have a sequence {Mn} of random matrices, we say that their spectral measures converge in expectation to a limiting
measure µ if the sequence {EµMn

} converges weakly to µ; i.e., if∫
fd (EµMn

) n→∞−−−−→
∫
fdµ

for bounded continuous test functions f . Roughly, convergence in expectation means that, on average, the distribution
of the eigenvalues resembles the mass distribution of the limiting measure, for large n.

Stronger notions of convergence include convergence weakly in probability and weakly almost surely. For a sequence
{Mn} of random matrices, we say that their spectral measures converge weakly in probability to µ if for each bounded
continuous test function f , the random variables

{∫
fdµMn

}
converge to

∫
fdµ in probability; i.e., for each f and each

ε > 0,
P
[∣∣∣∣∫ fdµMn −

∫
fdµ

∣∣∣∣ > ε

]
n→∞−−−−→ 0.

We say that the sequence {µMn
} converges weakly almost surely to µ if for each test function f , the random variables{∫

fdµMn

}
converge to

∫
fdµ with probability one. Convergence weakly almost surely is stronger than convergence

weakly in probability, but both can be thought of as saying that, using any fixed test function f to compare measures, for
large n one will typically not be able to see much difference between the random spectral measure µMn and the reference
measure µ. Thought of in terms of simulation, the notions of convergence weakly in probability and convergence weakly
almost surely both justify the idea that a single simulation of the eigenvalues of Mn for large n is likely to produce
a collection of dots whose spatial distribution resembles the mass distribution described by µ, whereas convergence in
expectation only means that if you do such a simulation many times and look at the results in aggregate, you will see a
spatial distribution of dots which resembles µ.

While the notions of convergence discussed above have been formulated in terms of bounded, continuous test functions,
there are also other classes of functions that are frequently used. One possibility is indicator functions of measurable
sets: If M is a random matrix whose eigenvalues λ1, . . . , λn necessarily lie in some set S ⊆ C, and A is a measurable
subset of S, we define

NM (A) := #{j : λj ∈ A}.
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The set function NM (or just N if this creates no confusion) is called the eigenvalue counting function and the notions
of convergence above can also be formulated in terms of this function; e.g., {µMn} converges weakly almost surely to µ
if for all measurable A for which µ(∂A) = 0,

NMn
(A) n→∞−−−−→ µ(A)

with probability one.

Beyond considering fixed sets A, one can also consider families of sets An which are, e.g., shrinking with n. This is what
is meant by local laws. Within the realm of local laws, there are two qualitatively distinct regimes, which are thought
of as observing eigenvalues on either microscopic or mesoscopic scales. When we consider eigenvalues on a microscopic
scale, we are identifying limits of the eigenvalue counting function on sets shrinking quickly enough that we expect to
see a bounded number of eigenvalues. The mesoscopic scale refers to the broad range of sets shrinking with n quickly
enough that we only expect to see a negligible percentage of the total number of eigenvalues, but that still the expected
number of eigenvalues tends to infinity; these are perhaps only semi-local laws. The circular law illustrated above holds
at all scales: the microscopic, mesoscopic, and macroscopic (sets independent of n). That is, an approximation of the
counting function by the appropriately scaled uniform measure of the same set is valid for discs whose radius is as small
as n− 1

2 +ε for any ε, so that the expected number of eigenvalues in such a disc is of the order n2ε; see [9].

Another natural class of test functions is polynomials, for which it suffices to consider monomials. Note that if M is a
random matrix with eigenvalues λ1, . . . , λn, then∫

zkdµM = 1
n

n∑
j=1

λkj = 1
n

Tr(Mk).

This observation underlies the moment method in random matrix theory and is the reason that many important results
on the eigenvalue distributions of random matrices are formulated as convergence of traces of powers.

As with non-random measures, the empirical spectral measure can be studied via transform methods. One transform
which has proved to be particularly valuable in random matrix theory is the Stieltjes transform: If µ is a probability
measure on the real line, its Stieltjes transform Sµ(z) is the function

Sµ(z) =
∫ 1
x− z

dµ(x)

defined for z ∈ C\R. IfM is a Hermitian matrix and R(z) = (M−zI)−1 is the resolvent ofM , then, for µM the spectral
measure of M ,

SµM
(z) = 1

n
Tr(R(z)).

Stieltjes transforms can be inverted; that is, one can recover the measure from its Stieltjes transform. Moreover, there
are continuity results relating the convergence of (deterministic or random) Stieltjes transforms to convergence of the
corresponding measures. See, e.g., [3].

A drawback of the empirical spectral measure and the various spectral statistics that can be formulated in terms of
it is that it puts all the eigenvalues on equal footing. This means that it is well-suited to studying the collection of
eigenvalues as a whole, but less well-suited to studying very fine properties of the spectrum. For example, consider a
basic model of a random Hermitian matrix, using independent Gaussian entries subject to the Hermitian requirement.
(With appropriate normalization, this is called the GUE; see Section 3 below.) Since the eigenvalues are necessarily real,
they can be ordered, e.g., as λ1 ≤ λ2 ≤ · · · ≤ λn. The limiting spectral measure is known, and from it, one can identify
a predicted location for, say, λn

2
. Gustavsson [27] showed that the fluctuations of a single eigenvalue (as long as it is not

too close to the edge of the spectrum) about this predicted location are Gaussian. Studying this kind of fine property
of the spectrum really necessitates looking at the n-dimensional random vector of eigenvalues, rather than encoding the
collection as a single random measure.

3. Wigner matrices. One of the most thoroughly studied ensembles of random matrices are Wigner matrices, first in-
troduced in [52, 53] in the context of nuclear physics. From the perspective of a specialist in probabilty and linear algebra,
Wigner matrices are some of the most natural random matrices, because they combine a natural probabilistic assumption
(independence) with a natural linear algebraic assumption (symmetry). An n × n random matrix X = [xij ]1≤i,j≤n is a
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(real or complex) Wigner matrix if

• Exij = 0 for all i, j,
• {xij}1≤i≤j≤n are independent, and
• either xji = xij for all i < j (the real case) or xij = xji for all i < j (the complex case).

Important special cases are the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble (GUE): A
GOE matrix is a real Wigner matrix in which the entries above the diagonal are i.i.d. standard Gaussian variables and
the diagonal entries are i.i.d. centered Gaussians with variance 2. With these normalizations, the distribution of a GOE
matrix is invariant under conjugation by a fixed orthogonal matrix: If A ∈ O(n) and X is a GOE matrix, then AXAT is
also a GOE matrix. Similarly, a GUE matrix is a complex Wigner matrix in which the entries above the diagonal are i.i.d.
standard complex Gaussian variables (i.e., of the form Z1 + iZ2 for Z1, Z2 real centered Gaussians with variance 1

2 ) and
the diagonal entries are i.i.d. standard (real) Gaussians. A GUE matrix is distributionally invariant under conjugation
by a fixed unitary matrix.

In his seminal paper [53], Wigner showed that the empirical spectral measure of a (suitably normalized) random symmetric
matrix with i.i.d. entries on and above the diagonal converges in expectation to the semi-circular distribution σ, with
density

dσ(x) = 1
2π
√

4− x21[−2,2](x)dx.

The following improvement to almost sure convergence is due to Arnold [1].

Theorem 1 (The strong semi-circle law). Let {xij}1≤i≤j be an infinite collection of independent real random variables
such that {xij}1≤i<j are i.i.d. with variance 1 and finite fourth moment, and {xii}1≤i are i.i.d. Let Xn be the n× n real
Wigner matrix formed from {xij}1≤i≤j≤n, and let µn denote the empirical spectral measure of 1√

n
Xn. Then as n tends

to infinity, µn tends weakly almost surely to the semi-circular distribution σ.

Histogram of the eigenvalues of a 1000 × 1000 real Wigner matrix

The semi-circle law is an example of universality in random matrix theory: A large Wigner matrix has eigenvalues
distributed approximately according to the semi-circle law, independent of the distribution of the entries. Proving
universality for various aspects of random matrices dominated much of random matrix theory in the beginning of the
21st century, culminating in such results as the Tao–Vu Four Moment Theorem (discussed below). Aside from the
intrinsic interest, the practical value of the universality phenomenon is that computations can be done using explicit
formulas available for, e.g., the GOE or GUE, and then the conclusions are known by universality to hold very broadly,
including in cases in which no explicit formulas exist.

Results like the semi-circle law are about the bulk of the eigenvalues of a random matrix; they describe the macroscopic
behavior of the entire spectrum, and are not sensitive to behaviors involving only a vanishing proportion of the eigenvalues.
In particular, it would be consistent with the semi-circle law for Wigner matrices to frequently have a small number of
very large eigenvalues, as long as that number was negligible compared to the total number of eigenvalues. This is,
however, not the case: With probability one, the largest eigenvalue tends to 2 and the smallest to −2, as the size of the
matrix tends to infinity. Necessary and sufficient conditions on the distribution of the entries in order to obtain this
convergence were found by Bai and Yin [5], and are as follows.
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Theorem 2 (Bai–Yin). Let {xij}1≤i≤j be an infinite collection of independent real random variables such that

• {xij}1≤i<j are i.i.d.,
• Ex12 ≤ 0, Ex2

12 = 1, Ex4
12 <∞,

• {xii}1≤i are i.i.d., and
• E(x+

11)2 <∞.

Let Xn be the n×n real Wigner matrix formed from {xij}1≤i≤j≤n with eigenvalues λ1 ≤ · · · ≤ λn. Then with probability
one,

lim
n→∞

λn√
n

= 2.

Knowing that the largest eigenvalue of a large Wigner matrix is about 2, the next natural question is to consider the
fluctuations of the largest eigenvalue about 2: both their size and shape. The semi-circle law itself predicts that the
size of the fluctuations should be of the order n−2/3: the area under the semi-circular density from 2 − ε to 2 is of the
order 1

n when ε ∼ n−2/3. This turns out to be correct. The exact shape of the fluctuations was first identified for the
GUE (and then the GOE and GSE – Gaussian Symplectic Ensemble) by Tracy and Widom [47, 48] to be governed by
the probability distributions now known as the Tracy–Widom laws. These distributions are not so straightforward to
characterize: e.g., in the unitary case, the limiting eigenvalue distribution has cumulative distribution function

F2(t) = exp
(
−
∫ ∞
t

(x− t)q(x)2dx

)
,

where q solves the differential equation

q′′(x) = xq(x) + 2q(x)3 q(x) ∼ Ai(x) asx→∞,

and Ai(x) is the Airy function (which is itself defined implicitly by a contour integral). The result in the GUE case is
then as follows.

Theorem 3 (Tracy–Widom). For each n, let Xn be an n × n GUE random matrix, and let λn denote its largest
eigenvalue. Then for all t ∈ R,

lim
n→∞

P
[
n2/3

(
λn√
n
− 2
)
≤ t
]

= F2(t).

As in the case of the semi-circle law, the Tracy–Widom fluctuations of the largest eigenvalue are universal; they do not
really depend on the distribution of the entries of the Wigner matrix, just on the basic Wigner-type structure. Such
universality was first proved (under moment and symmetry assumptions) by Soshnikov in [43].

Considerable effort was spent in the early part of the 21st century on universality in general, and in particular as it
applied to local statistics. Many papers were written, in particular by Tao and Vu (e.g., [45, 44, 46]), Erdős, Yao, and
collaborators (e.g., [17, 14, 9, 18]) and the two groups together [15]. One of the crowning achievements of this line of
research is the Tao–Vu Four Moment Theorem. The statement involves a matching condition on moments; two complex
random variables X and Y are said to have matching moments up to order k if

E<(X)a=(X)b = E<(Y )a=(Y )b

for all integers a, b ≥ 0 such that a+ b ≤ k.

A random variable X satisfies condition C0 if there are constants C,C ′ such that for all t ≥ C ′,

P[|X| ≥ tC ] ≤ e−t.

Theorem 4 (Tao–Vu Four Moment Theorem). There is a constant c0 > 0 such that the following holds. Let Xn =
[xij ]1≤i,j≤n and X ′n = [x′ij ]1≤i,j≤n be Wigner matrices, all of whose entries satisfy condition CO (with the same con-
stants). Assume that for all i < j, xij and x′ij match to order 4 and for all i, xii and x′ii match to order 2. Let
k ∈ {1, . . . , nc0} and let G : Rk → R be a smooth function such that

sup
x∈Rk

|∇jG(x)| ≤ nc0

for all 0 ≤ j ≤ 5.
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Denote the eigenvalues of
√
nXn and

√
nX ′n by

λ1 ≤ · · · ≤ λn and λ′1 ≤ · · · ≤ λ′n,

respectively. Then for any 1 ≤ i1 ≤ · · · ≤ ik ≤ n and n large enough,∣∣EG(λi1 , . . . , λik )− EG(λ′i1 , . . . , λ
′
ik

)
∣∣ ≤ n−c0 .

The theorem says that, even at this very fine scale (we are looking at intervals of fixed width when the eigenvalues have
been blown up to be spread over an interval of size approximately 4n), the joint distributions of collections of individual
eigenvalues of Wigner matrices are all about the same, as long as the moments of the off-diagonal entries match to order
4 and the moments of the diagonal entries match to order 2.

Having gone so far to describe the very fine structure of the eigenvalue distributions of Wigner matrices, much attention
has shifted to the eigenvectors. Very vaguely, one would expect the frame of orthonormal eigenvectors of a Wigner
matrix to behave as though it were distributed according to the orthogonally invariant probability measure on the set
of all orthonormal frames of n vectors in Rn (what is called Haar measure on the Stiefel manifold). Such a conjecture is
essentially another universality conjecture, since it is known to be true for the GOE/GUE because of invariance properties
of those ensembles. There are a few results pointing in this direction, chiefly results on eigenvector delocalization (see
[17, 16]), which say that the size of the components of unit eigenvectors of Wigner matrices are about 1√

n
with high

probability, a fact which is also true of random vectors chosen uniformly on the unit sphere. The recent paper [36]
surveys the general state of the art on eigenvectors of random matrices.

4. Wishart matrices. Wishart random matrices were introduced and studied in [54] as a model for random sample
covariance matrices. Let Σ be a symmetric positive definite p× p matrix and let X1, . . . , Xn be independent, identically
distributed centered Gaussian random vectors with covariance matrix Σ. Let X denote the matrix whose columns are
given by the Xj . The random matrix

XXT =
n∑
j=1

XjX
T
j

is said to be a p×pWishart random matrix with scale matrix Σ and n degrees of freedom; this distribution is abbreviated
W (p, n; Σ), with the Σ often ommitted when Σ = Ip. In the case that the Xj are i.i.d. draws from an unknown underlying
multivariate Gaussian distribution, the matrix 1

nXX
T is the maximum likelihood estimator for Σ.

There are multiple limiting regimes determined by the relationship between p and n. If the Xj are i.i.d. samples (i.e.,
p-dimensional data vectors), then the most classical regime is n� p; i.e., lots of samples of low- or moderate-dimensional
data. A more modern context is to consider p and n of similar size; i.e., the context of either a rather limited number
of samples or high-dimensional data. In this regime, there is a further distinction between p ≤ n (at least as many data
points as the dimension) and p > n.

In terms of the study of eigenvalues, the interest has been largely in the context of p
n tending to some limiting value in

(0,∞). In [31], Marčenko and Pastur found the limiting distribution of the eigenvalues in this context, in what is now
known as the Marčenko–Pastur law. The most straightforward (and best-known) version treats Wishart matrices with
identity scale matrix, as follows.

Theorem 5 (Marčenko–Pastur law for Wishart matrices). Suppose that p = p(n) is such that

lim
n→∞

p(n)
n

= α ∈ (0,∞).

For each p, let µp be the empirical spectral measure of the random matrix Wp := 1
nXpX

T
p , where Xp is a p× n random

matrix of i.i.d. standard Gaussian random variables. Then the sequence {µp} converges weakly almost surely to the
Marčenko–Pastur law µα, defined by

dµα(x) =
(

1− 1
α

)
+
δ0 + 1

α2πx
√

(b− x)(x− a)1[a,b](x)dx,

where a = (1−
√
α)2 and b = (1 +

√
α)2.
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Histograms of the eigenvalues of 1000 × 1000 Wishart matrices with α = 1
4 , α = 1, and α = 2, with corresponding

Marčenko–Pastur densities

When α = 1, then 1
nXpX

T
p is asymptotically square with eigenvalues supported in [0, 4]; a change of variables argument

then gives the convergence of the empirical spectral measure of
√

1
nXpXT

p , which can be thought of as the empirical
singular value measure of 1√

n
Xp. This is the Marčenko–Pastur quarter-circle law:

Theorem 6 (Quarter-circle law). Suppose that p = p(n) is such that

lim
n→∞

p(n)
n

= 1.

For each p, let σp be the empirical spectral measure of the random matrix Yp :=
√

1
nXpXT

p , where Xp is a p× n random
matrix of i.i.d. standard Gaussian random variables. Then the sequence {σp} converges weakly almost surely to the
quarter-circle law q on [0, 2], given by

dq(x) = 1
π

√
4− x21[0,2](x)dx.

Marčenko and Pastur actually considered a rather more general context than the one described above: They found
the limiting eigenvalue distribution for random matrices of the form A + XTX∗, where X is a p × n matrix of i.i.d.
random variables (subject to some moment assumptions), T is a diagonal matrix with (possibly random) real entries,
and A is a Hermitian (possibly random) matrix; in the case that A and T are random, it is assumed that (X,A, T ) are
independent. They considered the limiting eigenvalue distribution of A+XTX∗ in the case that A and T themselves had
limiting eigenvalue distributions. This setting includes in particular a limiting version of the motivating case described
above, taking T to be the matrix of eigenvalues of Σ and assuming that those eigenvalues are approximately distributed
according to some fixed reference distribution. Their approach in [31] was via the Stieltjes transform, and the limiting
eigenvalue distribution for general random matrices of the form A+XTX∗ was characterized in terms of this transform,
with the direct characterization as in Theorem 5 above available only when T = I.

As mentioned above, random covariance matrices are another context of universality in random matrix theory, in that
if the entries of the matrix X are independent, the results are the same as in the Gaussian case. The original paper [31]
already required only independence of the entries of X and moment assumptions, and through the work of a series of
authors (see [38, 50, 55]), the conditions were ultimately weakened to require only that the entries of X be independent
with mean 0 and variance 1.

The more classical context from the statistical point of view, namely p� n, has also been studied; the limiting spectral
distribution in this case is governed by the semi-circle law:

Theorem 7 (Bai–Yin [4]). Let n ∈ N and p = p(n) be such that limn→∞ p(n) =∞ and limn→∞
p(n)
n = 0. Let {Xij}i,j≥1

be a collection of i.i.d. random variables with mean 0, variance 1, and finite fourth moment. For each pair (n, p), let Xp

denote the p× n matrix with entries {Xij}1≤i≤p
1≤j≤n

, and let µp be the empirical spectral measure of the matrix

Ap = 1
2√np (XpX

T
p − nIp).

Then as n→∞, the sequence {µp} tends weakly almost surely to the semi-circle law σ on [−1, 1], with density

dσ(x) = 2
π

√
1− x21[−1,1](x).

The Marčenko–Pastur law and the semi-circle law for Wishart matrices are results about the bulk of the spectrum, but
as in the case of Wigner matrices, there is also significant interest in the edge of the spectrum. Note that there is a
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difference in behavior between the cases α < 1, α = 1, and α > 1 in Theorem 5. Most obviously, if α > 1 (i.e., p � n),
then the p× p matrix XpX

T
p is singular, hence the presence of the mass at 0 in the limiting spectral measure. For all p,

XpX
T
p is nonnegative definite, and for p ≤ n, XpX

T
p is positive definite with probability one. If p = n, the spectrum of

the random matrix Wp = 1
nXpX

T
p is said to have a hard left edge: The support of the limiting measure of Wp in that

case is [0, 4], and it is impossible for Wp to have eigenvalues below the lower limit of this limiting support. If α 6= 1, this
is no longer the case, and a given random matrix may have eigenvalues smaller than the left endpoint of the limiting
support. This raises the immediate question of how likely one is to see such behavior (at either edge of the limiting
support): It would be consistent with the Marčenko–Pastur law that there are typically some eigenvalues of Wp between
0 and a = (1 −

√
α)2, as long as it were a negligible fraction of the total collection of eigenvalues. However, this turns

out not to be the case:

Theorem 8 (Bai–Yin [6], Yin–Bai–Krishnaiah [56]). Let n ∈ N and p = p(n) be such that limn→∞
p(n)
n = α > 0. Let

{Xij}i,j≥1 be a collection of i.i.d. random variables with mean 0, variance 1, and finite fourth moment. For each pair
(n, p), let Xp denote the p×n matrix with entries {Xij}1≤i≤p

1≤j≤n
, and let Wp := 1

nXpX
T
p . Denote the eigenvalues of Wp by

0 ≤ λ1 ≤ · · · ≤ λp.

Then with probability one, as n tends to infinity,

λmax{1,p−n+1} → (1−
√
α)2 and λp → (1 +

√
α)2.

As in the Wigner case, the next step is to consider the fluctuations of the extreme eigenvalues about their limits, and
once again, they are governed by the Tracy–Widom laws; see [39]. There are also local laws and universality results in
the Wishart case, analogous to those in the Wigner case; see, e.g., [46].

5. The Ginibre ensemble. The Ginibre ensembles are in a sense the most naive of the random matrix ensembles: They
are formed by filling square matrices with i.i.d. Gaussian variables: The real Ginibre ensemble has i.i.d. standard Gaussian
entries and the complex Ginibre ensemble has i.i.d. standard complex Gaussian entries; i.e., the real and imaginary parts
are i.i.d. real Gaussians with variance 1

2 . From a technical standpoint, the complex Ginibre ensemble is considerably
easier to study than its real counterpart; for example, in the real case, there is a nonzero probability that all of the
eigenvalues are real, and so there is no eigenvalue density formula. A common difficulty with both ensembles, though, is
that the matrices are nonnormal with probability one. While they are almost surely diagonalizable, the eigenvalues are
not such nice functions of the matrix in the nonnormal case.

As discussed in Section 2, the limiting eigenvalue distribution of the (suitably normalized) Ginibre ensemble is known
to be the uniform measure on the unit disc; this was first proved in expectation by Mehta [34] and almost surely by
Silverstein (then unpublished but subsequently appearing in [30]) in the complex case and by Edelman [13] in the real
case.

Theorem 9 (The strong circular law for the Ginibre ensemble). Let µn be the empirical spectral measure of 1√
n
Gn,

where Gn is a (real or complex) n×n Ginibre random matrix. Then {µn} converges weakly almost surely to the uniform
probability measure on {|z| ≤ 1} ⊆ C.

It is interesting to note that the Marchenko–Pastur quarter-circle law for Wishart matrices can be reinterpreted as a
limiting distribution for the singular values of a Ginibre matrix. Indeed, the singular values of 1√

n
Gn are the eigenvalues

of
√

1
nGnG

∗
n, which is a (normalized) Wishart W (n, n; In) matrix. Theorem 6 can thus be reinterpreted as follows.

Theorem 10. Let Gn be an n× n (real or complex) Ginibre matrix with singular values s1, . . . , sn, and let

νn := 1
n

n∑
j=1

δ sj√
n

be the empirical singular value measure of 1√
n
Gn. Then the measures νn converge weakly almost surely to the quarter-

circle law on [0, 2], with density
ρqc(x) = 1

π

√
4− x21[0,2](x).
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As in the case of Wigner and Wishart matrices, there is a distinction between bulk and edge eigenvalues of the Ginibre
ensemble, although in this case, the edge is that of the unit disc. Let Gn be an n × n Ginibre random matrix with
eigenvalues λ1, . . . , λn, and let

ρ(Gn) := max
1≤j≤n

|λj |

denote the spectral radius of G. The asymptotic behavior of the spectral edge of Gn is characterized in the following
theorem.

Theorem 11 (Rider [40]). For Gn and ρ(Gn) as above, with probability one,

lim
n→∞

1√
n
ρ(Gn) = 1.

Moreover, if γn = log
(
n

2π
)
− 2 log(log(n)) and

Yn :=
√

4nγn
(

1√
n
ρ(Gn)− 1−

√
γn
4n

)
,

then Yn converges in distribution to the Gumbel law, i.e., the probability measure on R with cumulative distribution
function FGum(x) = e−e

−x .

That is, the eigenvalues of 1√
n
Gn almost surely lie in the unit disc, and the spectral radius of 1√

n
Gn fluctuates about

1−
√

γn

4n on a scale of 1√
4nγn

according to the Gumbel law.

The results above again hold in a universal way. The following definitive result on the spectral measures of random
matrices with i.i.d. complex entries is due to Tao and Vu [44], concluding a line of research with many contributions;
e.g., [20, 2, 24, 37].

Theorem 12 (The strong circular law). Let {Xn} be a sequence of n × n random matrices with i.i.d. entries having
mean zero and variance one, and for each n, let µn denote the empirical spectral measure of 1√

n
Xn. Then {µn} converges

weakly almost surely to the uniform probability measure on {|z| ≤ 1} ⊆ C.

A different direction of generalization from the Ginibre ensemble involves considering random matrices in which the
entries are not independent. Beginning in the work of Girko (see [21, 22]), various researchers have considered extensions
of the i.i.d. case to cases in which the pairs (xij , xji) may be correlated (distinct such pairs are still assumed to be
independent of each other and to have a common distribution in C2). In this setting, one obtains not the circular law,
but an “elliptical law,” in which the limiting eigenvalue distribution is uniform on an ellipse whose major and minor axes
are related to the correlation between xij and xji. The following theorem describes the real case.

Theorem 13 (Nguyen–O’Rourke [35]). Let (ξ1, ξ2) be a random vector in R2 with mean zero, variance one components,
such that Eξ1ξ2 = ρ ∈ (−1, 1). Suppose that {xij}i,j≥1 is a collection of random variables such that

1. {xii}i≥1 ∪ {(xij , xji)}1≤i<j are independent;

2. for each i < j, (xij , xji) has the same distribution as (ξ1, ξ2); and

3. {xii}i≥1 are i.i.d. with mean zero and finite variance.

If Xn is the random matrix with entries {xij}1≤i,j≤n and µn denotes the empirical spectral measure of 1√
n
Xn, then the

sequence µn converges weakly almost surely to the uniform probability measure on the ellipse

Eρ =
{
z ∈ C : (<(z))2

(1 + ρ)2 + (=(z))2

(1− ρ)2 ≤ 1
}
.

In [35], the authors prove a corresponding result in the complex case which allows for limited types of correlations between
the complex entries xij and xji. They conjecture that these restrictions can be dropped to obtain the full complex analog
of Theorem 13.
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6. Random unitary matrices. On the classical compact matrix groups O(n) (the orthogonal group), SO(n) (the
special orthogonal group), U(n) (the unitary group), SU(n) (the special unitary group), and Sp(2n) (the symplectic
group), there is a natural way to choose a random element; the corresponding probability measure is called Haar measure.
The defining property of Haar measure is its translation invariance: If U is a random element distributed according to
Haar measure on one of the matrix groups above, and A is a fixed matrix in the same group, then AU and UA both
have the same distribution as U itself. Geometrically, Haar measure can be seen as simply the volume measure on each
of these groups, viewed as manifolds embedded in Euclidean space. More computationally, Haar measure on, say, O(n)
is the result of taking a random matrix with i.i.d. Gaussian entries (i.e., a real Ginibre matrix) and performing the
Gram–Schmidt process. See [32] for many other constructions of Haar measure.

The eigenvalues of a matrix in any of the groups above lie on the unit circle in the complex plane. The translation
invariance (sometimes called rotation invariance in this context) of Haar measure on U(n) shows that the set of eigenvalues
{eiθ1 , . . . , eiθn} of a random unitary matrix U has a rotationally-invariant distribution: The distribution of the eigenvalues
of U is the same as the distribution of the eigenvalues of eiθU for any fixed θ, since eiθI is a fixed element of U(n). This
invariance property does not hold for the other groups; e.g., the eigenvalues of a real orthogonal matrix come in complex
conjugate pairs.

The limiting eigenvalue distribution for random matrices on the classical compact groups is the same in all cases: The
uniform measure ν on the unit circle S1 ⊆ C. This was proved first for the unitary group by Diaconis–Shahshahani in
[12] via the moment method and Fourier analysis, with the basic idea as follows. Let µn denote the empirical spectral
measure of a random matrix U ∈ U(n). Then µn is a random measure on the circle, and its Fourier transform is given
by

µ̂n(j) =
∫
S1
zjdµn(z) = 1

n
Tr(U j).

Diaconis and Shahshahani found exact formulae for expected values of products of traces of powers of U , from which one
can show that, with probability one, for each j ∈ Z,

µ̂n(j) n→∞−−−−→ ν̂(j),

and thus µn → ν weakly almost surely.

It is not terribly surprising that the limiting eigenvalue distributions in these cases are the uniform measure on the circle,
but what is less obvious is just how uniform they are. Explicit eigenvalue densities were identified by Hermann Weyl in
the cases of all the classical compact groups, and are known as the Weyl integration formulae. In the case of U(n), the
eigenvalue density is

1
n!(2π)n

∏
1≤j<k≤n

|eiθj − eiθk |2,

with respect to dθ1 · · · dθn on [0, 2π)n. Observe that for any given pair (j, k), |eiθk − eiθj |2 is zero if θj = θk (and small if
they are close), but |eiθk −eiθj |2 is 4 if θj = θk+π. This has the effect that the eigenvalues repel each other and therefore
tend to be very evenly spaced around the circle, in a phenomenon known as “eigenvalue rigidity.” This effect is clearly
visible in simulations, even for relatively small matrices:

In the picture on the right, 80 points were dropped uniformly and independently (thus there is no repulsion); there are
several large clumps of points close together, and some largish gaps. The picture on the left is of the eigenvalues of a
random 80× 80 unitary matrix; one can clearly see that they are more regularly spaced around the circle.

There are various ways one could quantify this phenomenon; one such theorem is the following.
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Theorem 14 (E. Meckes–M. Meckes [33]). Let µn be the empirical spectral measure of a random matrix in U(n) and let
ν denote the uniform measure on the circle. Let

W1(µn, ν) := sup
f :|f(z)−f(w)|≤|z−w|

∣∣∣∣∫ fdµn −
∫
fdν

∣∣∣∣
denote the L1 Wasserstein (or L1 Kantorovich) distance from µn to ν. There is an absolute constant C such that with
probability one, for n large enough,

W1(µn, ν) ≤ C
√

log(n)
n

.

For context, the empirical measure corresponding to n i.i.d. uniform points on the circle is typically at a distance about
1√
n

to uniform, while a measure supported on n points spaced exactly evenly about the circle is a distance π
n from

uniform. The empirical spectral measure of a random unitary matrix is thus much closer to uniform than that of a
collection of i.i.d. random points, and nearly as close as n perfectly spaced points on the circle.

Theorem 14, together with the subsequent comparisons with the case of i.i.d. uniform points and evenly spaced points,
is an example of non-asymptotic random matrix theory; that is, the quantitative theory of random matrices with large
but fixed dimension, as opposed to the more classical limit theory one sees in results like the semi-circle law. There
has been a significant move in this quantitative direction in recent years (see in particular [41]), partly because such
dimension-dependent estimates are crucial in many applications.

It should be noted that the phenomenon of eigenvalue rigidity/repulsion is present in many random matrix ensembles,
including those discussed in the previous sections (see, e.g., [11, 10]), but for simplicity we have discussed it only in the
context of random unitary matrices, where the results are a bit more straightforward to state.

7. Random matrices with prescribed singular values. In [28], Horn raised (and answered) the question of what
the possible eigenvalues of a square matrix were if the singular values were specified. In [51], Weyl had shown that if A
is an n× n matrix with singular values σ1 ≥ · · · ≥ σn and eigenvalues λ1, . . . , λn with |λ1| ≥ · · · ≥ |λn|, then

k∏
j=1
|λj | <

k∏
j=1

σj , ∀k < n and
n∏
j=1
|λj | =

n∏
j=1

σj .

Horn showed that these relationships are necessary and sufficient: Any sequences of real numbers σj and λj satisfying
the above conditions are the singular values and eigenvalues of some n× n matrix.

The natural probabilistic version of Horn’s question is as follows. Suppose that A is an n × n matrix with prescribed
singular values σ1 ≥ · · · ≥ σn, but is “otherwise random.” What are the eigenvalues of A typically like?

More carefully, given σ1 ≥ · · · ≥ σn, let Σ be the diagonal matrix with the σj on the diagonal, and choose U and V
according to Haar measure on the unitary group U(n), as in Section 6. Let A = UΣV ∗. Then A is a random matrix
with singular values σ1, . . . , σn, and this random matrix model is very natural, in that it involves choosing the left- and
right-singular vectors independently, with each set chosen uniformly among orthonormal bases of Cn. (Note: V ∗ could
be replaced with V , which has the same distribution; it is written in this way only to make the connection with the
singular vectors obvious.)

One way to treat the question of the typical behavior of the eigenvalues of A is via the empirical spectral measure. Let

νA := 1
n

n∑
j=1

δσj
and µA := 1

n

n∑
j=1

δλj

denote the empirical singuar value measure and the empirical spectral measure of A, respectively. Suppose that An is
a sequence of random matrices as described above, such that the corresponding singular value measures νAn

converge
weakly to a probability measure ν on R+. A probabilistic analog of the Horn–Weyl theorem would be to show that the
corresponding empirical spectral measures µAn

converge to a determistic limiting measure, and to describe it in terms of
ν. This was the content of the Feinberg–Zee Single Ring Theorem [19]. Their proof glossed over some technicalities, but
a fully rigorous version was subsequently proved by Guionnet, Krishnapur and Zeitouni [25]. The following improvement,
due to Rudelson and Vershynin [42], removes an unpleasant technical condition on the sequence of prescribed singular
values.
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Theorem 15 (The Single Ring Theorem). Let Σn = diag(σ(n)
1 , . . . , σ

(n)
n ), where σ(n)

1 ≥ · · · ≥ σ
(n)
n ≥ 0, and for each n,

let Un and Vn be independent Haar-distributed unitary matrices. Let νn and µn denote the singular value measure and
spectral measure of An, respectively. Suppose that the sequence {νn} of singular value measures converges weakly to a
probability measure ν which is compactly supported on R+. Assume further that

• there exists an M > 0 such that P[σ(n)
1 ≥M ]→ 0 as n→∞; and

• there exist constants κ1, κ2 > 0 such that, for any z ∈ C with =(z) > n−κ1 ,

|=(Sνn(z))| ≤ κ2,

where Sν(z) is the Stieltjes transform of ν.

Then the sequence {µn} of empirical spectral measures converges weakly in probability to a probability measure µ. This
limiting measure has a density which can be explicitly calculated in terms of ν, and has support equal to the single ring
{z ∈ C : a ≤ |z| ≤ b}, where

a =
(∫ ∞

0
x−2dν(x)

)−1/2
and b =

(∫ ∞
0

x2dν(x)
)1/2

.

It is interesting that even if the support of ν consists of disconnected pieces, so that there are some forbidden regions for
the singular values, the support of the eigenvalues is still, in the limit, this single annulus with no gaps.

The eigenvalues of a 1000 × 1000 random matrix of the form UΣV ∗, with U and V independent random
unitary matrices and Σ = diag(σ11, . . . , σnn) with σkk = 1 + 5k

n
.

Work on the Single Ring Theorem has spurred further work on this random matrix model, including results on the
convergence of the largest- and smallest-modulus eigenvalues (see [26, 7]) and a local version of the theorem [8].
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LINEAR ALGEBRA EDUCATION

Outgoing message from David Strong

After seven years of serving as the IMAGE Contributing Editor for Education,
I’ll be “passing the baton” to another ILAS member who will bring to this position
his or her own unique expertise and passion for teaching and mentoring our next
generation of mathematicians. (We are currently in the process of determining who
that will be.) While I will of course remain actively involved in ILAS and actively
involved in teaching and studying and doing linear algebra for many years to come,
this issue of IMAGE will be my last in which to oversee the education column.
Consequently, let me use this final opportunity to share a few parting thoughts.
While the thoughts below may be nothing new, it’s nice to be reminded of them,
especially right now with the tumultuous times we live in.

Keep loving what you do. The world has been immensely blessed in a variety
of ways by our ongoing discovery and development of mathematical ideas and their
applications. Life has been made better for us individually and collectively in so
many ways due to our increased understanding of the world around us. All of us
have experienced the simple yet profound beauties of mathematics, especially those
related to linear algebra. Remember the almost magical feelings you experienced
as a student discovering ideas for the first time, or in later years discovering the
deeper layers of ideas you thought you already fully understood. And transmit that
joy and excitement on to your students. Keep your students at the center of your
teaching. Think back to your own college/university days and the professors that
changed your life, both academically and personally. You have done the same for
many students, and you have made more of a difference than you realize in so many
lives at a time when many of them most need it. In short, keep up the good work.

My best wishes to you all as this semester draws to a close. Here’s to a time
when we can all interact with our students and with each other at mathematics
conferences and elsewhere in more natural and meaningful ways.

David Strong
IMAGE Education Editor
Chair, ILAS Education Committee
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JOURNAL ANNOUNCEMENTS

Special issue of Computational and Mathematical Methods on Linear Algebra, Matrix
Analysis and Applications

Contributed announcement from Fernando De Terán

The journal Computational and Mathematical Methods (CMM) will publish a special issue on on Linear Algebra, Matrix
Analysis and Applications.
From the journal web site (https://onlinelibrary.wiley.com/journal/25777408): “Computational and Mathemat-
ical Methods is an interdisciplinary journal dedicated to publishing the world’s top research in the expanding area of
computational mathematics, science and engineering. The journal connects methods in business, economics, engineering,
mathematics and computer science in both academia and industry.”
The description of this special issue is as follows.

“Mathematical modeling of problems arising in engineering, physics, mechanics, etc., leads in many cases,
directly or after a discretization process, to solving systems of linear equations of finite dimension. Besides,
other problems of numerical analysis, such as approximation, interpolation, nonlinear systems, computation
of eigenvalues, etc., lead to the resolution of large systems. Thus, it is essential to develop efficient numerical
linear algebra methods, in both sequential and parallel environments, to solve them. The main purpose of
this special issue is to collect the most recent methods for solving such problems and applications from a
multidisciplinary approach.”

The guest editors responsible for this special issue are:
• Luca Bergamaschi, Department of Civil Environmental and Architectural Engineering, University of Padua, Italy

(berga@dmsa.unipd.it)
• Fernando de Terán, Departamento de Matemáticas, Universidad Carlos III, Spain (fteran@math.uc3m.es)
• Pedro Alonso, Departamento de Matemáticas, Universidad de Oviedo, Spain (palonso@uniovi.es)

All papers must be submitted via the online system https://mc.manuscriptcentral.com/compandmathmethods. Au-
thors need to make sure that they specify that the paper is a contribution for “Special Issue on Linear Algebra, Matrix
Analysis and Applications” and select the article type, when prompted. All papers will be peer reviewed according to
the high standards of CMM.
The deadline for submissions is June 30, 2021.

ILAS NEWS

Raf Vandebril is the new ILAS Second Vice President for ILAS Conferences

Contributed announcement from Daniel Szyld, ILAS President

Raf Vandebril (KU Leuven) is the new Second Vice President for ILAS Conferences. He replaces Steve Kirkland, who
served in the position for over five years.

ILAS Members Selected as 2021 American Mathematical Society Fellows

The American Mathematical Society (AMS) has recently announced its 2021 AMS Fellows, recognizing individuals
who have made outstanding contributions to the creation, exposition, advancement, communication, and utilization of
mathematics. Among those selected are two ILAS members:
Raymond Chan (City University of Hong Kong) was cited for “contributions to computational mathematics, in particular
to numerical linear algebra and applications to imaging sciences.”
Valeria Simoncini (Università di Bologna) was cited for “contributions to computational mathematics, in particular to
numerical linear algebra.”
For more information and details on the AMS Fellows program, see http://www.ams.org/profession/ams-fellows/
ams-fellows.

https://onlinelibrary.wiley.com/journal/25777408
mailto:berga@dmsa.unipd.it
mailto:fteran@math.uc3m.es
mailto:palonso@uniovi.es
https://mc.manuscriptcentral.com/compandmathmethods
http://www.ams.org/profession/ams-fellows/ams-fellows
http://www.ams.org/profession/ams-fellows/ams-fellows
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ILAS Member Receives London Mathematical Society Fröhlich Prize

The London Mathematical Society (LMS) has awarded the 2020 Fröhlich Prize to Françoise Tisseur for her “important
and highly innovative contributions to the analysis, perturbation theory, and numerical solution of nonlinear eigenvalue
problems.”
Françoise has been a member of ILAS for many years and served on the ILAS Board of Directors from 2011 until 2014.
In memory of Albrecht Fröhlich, the Fröhlich Prize is awarded in even-numbered years for “original and extremely
innovative work in any branch of mathematics.” See https://www.lms.ac.uk/prizes/lms-prize-regulations for
details on the prize.
See https://www.lms.ac.uk/sites/lms.ac.uk/files/files/Tisseur_Frohlich_citation.pdf for the full award ci-
tation for Françoise; see https://www.lms.ac.uk/news-entry/26062020-1657/lms-prize-winners-2020 for the full
list of 2020 LMS prize winners.

Pietro Paparella appointed Assistant Manager of ILAS-NET and
the ILAS Information Center (IIC)

Contributed announcement from Daniel Szyld, ILAS President

Pietro Paparella (University of Washington Bothell) has been appointed as the new Assistant Manager for ILAS-NET
and the ILAS Information Center (IIC).
Pietro will be working with Sarah Carnochan Naqvi to complement her work which serves the ILAS community taking
care of this very important and valuable resource.

ILAS to Partner with the American Mathematical Society for the Annual
Joint Mathematics Meetings

Contributed announcement from Daniel Szyld, ILAS President

A new partnership between ILAS and the American Mathematical Society (AMS) will see ILAS become a partner with
the AMS for the annual Joint Mathematics Meetings (JMM), starting in January 2022. The meeting will feature an
ILAS Lecture, and at least four ILAS Special Sessions.
ILAS Secretary/Treasurer Leslie Hogben realized we had this opportunity, and made the initial contact with the AMS
last January.
For the first JMM that will take place under this agreement, in Seattle, Washington, USA, 5–8 January 2022, both the
speaker for the “ILAS Lecture at the JMM” as well as the Special Sessions will be selected by the ILAS Board. For
future meetings, the Board will develop appropriate mechanisms for selection.
If you have suggestions for the first speaker in this series, please write directly to the ILAS President, Daniel Szyld, at
szyld@temple.edu.
If you would want to organize a Special Session, please send a short proposal with the title of the session (and possible
speakers) to our Vice President for Conferences, Raf Vandebril, as soon as you can, but no later than December 15, 2020.

Nominations for Upcoming ILAS Elections

Contributed announcement from Daniel Szyld, ILAS President

The Nominating Committee for the 2021 ILAS elections has prepared a slate of candidates as follows.
Nominated for the two open three-year terms, beginning March 1, 2021, as at-large members of the ILAS Board of
Directors are: Geir Dahl, Melina Freitag, Apoorva Khare, and Fernando de Terán.
Nominated for a three-year term, also beginning March 1, 2021, as ILAS Secretary/Treasurer is Minerva Catral.
The Nominating Committee consisted of Michael Overton (chair), Raphi Loewy, Jennifer Pestana, Rachel Quinlan, and
Alison Ramage.

https://www.lms.ac.uk/prizes/lms-prize-regulations
https://www.lms.ac.uk/sites/lms.ac.uk/files/files/Tisseur_Frohlich_citation.pdf
https://www.lms.ac.uk/news-entry/26062020-1657/lms-prize-winners-2020
mailto:szyld@temple.edu
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ILAS Social Media Presence

Contributed announcement from David Watkins, chair,
ILAS Outreach and Membership Committee

ILAS now has a social media presence. Please follow us on Twitter (@ILAS_news) and like and follow us on Facebook
(@International.Linear.Algebra.Society). We’re just getting started, but we plan to provide timely and useful
information to the linear algebra community. Please join us – and tell your friends!

ILAS Members Advise Winners of Householder Prize XXI

The prestigious Alston S. Householder Prize is awarded every three years to the best thesis in numerical linear algebra over
the previous three-year period. Most recently, the Householder Prize XXI (2020) recognized the best such dissertation
submitted between January 1, 2017 and December 31, 2019. The two winners were both advised by ILAS members.
Estelle Massart, while a student at Université catholique de Louvain, was co-advised by ILAS member Pierre-Antoine
Absil, together with Julien Hendrickx, on her thesis “Exploiting rank structures in the numerical solution of Markov
chains and matrix functions,” submitted in 2019.
Stefano Massei also received the prize, for his thesis on “Exploiting rank structures in the numerical solution of Markov
chains and matrix functions,” completed in 2017 at the Scuola Normale Superiore di Pisa, under the supervision of ILAS
member Dario Bini.
In addition, an Honorable Mention was received by Pawan Goyal for his thesis, “System-theoretic model order reduction
for bilinear and quadratic-bilinear systems,” which was co-advised by ILAS member Peter Benner, together with Serkan
Gugercin, at the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany, and submitted
in 2018.
For more details, see https://users.ba.cnr.it/iac/irmanm21/HHXXI/hhprize.html.

Send News for IMAGE Issue 66

IMAGE seeks to publish all news of interest to the linear algebra community. Issue 66 of IMAGE is due to appear online
on June 1, 2021. Send your news for this issue to the appropriate editor by April 15, 2021. Photos are always welcome,
as well as suggestions for improving the newsletter. Please send contributions directly to the appropriate editor:

• feature articles to Sebastian Cioabă (cioaba@udel.edu)
• book reviews to Colin Garnett (Colin.Garnett@bhsu.edu)
• problems and solutions to Rajesh Pereira (pereirar@uoguelph.ca)
• advertisements to Amy Wehe (awehe@fitchburgstate.edu)
• announcements and reports of conferences/workshops/etc. to Jephian C.-H. Lin (jephianlin@gmail.com)
• interviews and linear algebra education news to the editor-in-chief, Louis Deaett (louis.deaett@quinnipiac.edu)

Send all other correspondence to the editor-in-chief, Louis Deaett (louis.deaett@quinnipiac.edu).
For past issues of IMAGE, please visit http://www.ilasic.org/IMAGE.

https://users.ba.cnr.it/iac/irmanm21/HHXXI/hhprize.html
mailto:cioaba@udel.edu
mailto:Colin.Garnett@bhsu.edu
mailto:pereirar@uoguelph.ca
mailto:awehe@fitchburgstate.edu
mailto:jephianlin@gmail.com
mailto:louis.deaett@quinnipiac.edu
mailto:louis.deaett@quinnipiac.edu
http://www.ilasic.org/IMAGE
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UPCOMING CONFERENCES AND WORKSHOPS

International Conference on Applied Linear Algebra, Probability and
Statistics (ALAPS 2020)

(to be held online) December 17–18, 2020

The virtual conference ALAPS 2020 will be organized by the Center for Advanced Research in Applied Mathematics
and Statistics (CARAMS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India, in honor of the
great Indian statistician Professor C. R. Rao (Calyampudi Radhakrishna Rao) in celebration of the completion of his
100th year.

The themes of the conference are focused on, but not limited to: theory and applications of linear algebra and ma-
trix theory; mathematical statistics such as probability theory, multivariate analysis and statistical inference; applied
statistics such as econometrics, biometrics, bioinformatics, biostatistics, mathematical genetics, etc.; network theory and
applications.

The conference consists of invited talks from several mathematicians and statisticians associated with Professor C. R.
Rao and working in the areas to which Rao contributed. The organizers welcome contributed talks (10+2 min each)
from participants, with topics from the theme areas.

Speakers and participants may join through the web link appearing on the individual page (the “My Page”) of CARAMS
that becomes available after registration for the event. Alternatively, a limited number of delegates may join the event
from any of the following locations, with due consent from the organizers:

• Indian Statistical Institute, Delhi
• Department of Mathematics, SMIT, Sikkim
• Department of Data Science, PSPH, MAHE, Manipal
• Department of Mathematics, MIT, MAHE, Manipal

Participants seeking a certificate of participation/contribution are requested to register for the event with due payment
of the registration fee. Please visit https://carams.in/events/alaps2020/ for more details and registration.

Special session on The Inverse Eigenvalue Problem for Graphs, Zero Forcing, and
Related Topics at the 2021 Joint Mathematics Meetings

(to be held online) January 7, 2021

A special session on “The Inverse Eigenvalue Problem for Graphs, Zero Forcing, and Related Topics” will be held
(virtually) from 8–11:45AM and 1–3:50PM US Mountain Standard Time (UTC-07:00) on January 7, 2021. The session
is organized by Leslie Hogben (Iowa State University and the American Institute of Mathematics) and Bryan Shader
(University of Wyoming). The speakers are:

• Carolyn Reinhart (Iowa State University)
• Boris Brimkov (Slippery Rock University)
• Sean English (University of Illinois at Urbana-Champaign)
• Juergen Kritschgau (Iowa State University)
• Joseph Alameda (Iowa State University)
• Mary K. Flagg (University of St. Thomas)
• Daniela Ferrero (Texas State University)
• Hein van der Holst (Georgia State University)
• H. Tracy Hall (Hall Labs, LLC)
• Jephian C.-H. Lin (National Sun Yat-sen University)
• Shaun M. Fallat (University of Regina) and
• Bryan A. Curtis (Sungkyunkwon University).

The web page at https://jointmathematicsmeetings.org/meetings/national/jmm2021/2247_program_ss37.html
includes titles, coauthors, and abstracts.

https://carams.in/events/alaps2020/
https://jointmathematicsmeetings.org/meetings/national/jmm2021/2247_program_ss37.html
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SIAM Conference on Applied Linear Algebra (LA21) with the embedded
23rd Conference of the International Linear Algebra Society

New Orleans, USA (and online), May 17–21, 2021

The SIAM Conference on Applied Linear Algebra is the meeting of the SIAM Activity Group on Linear Algebra. These
conferences, organized by SIAM every three years, are the premier international conferences on applied linear algebra,
bringing together diverse researchers and practitioners from academia, research laboratories, and industries all over the
world to present and discuss their latest work and results on applied linear algebra.

In 2021, the 23rd Conference of the International Linear Algebra Society (ILAS 2021) will be embedded in LA21.

Invited speakers: (* indicates a speaker supported in cooperation with ILAS)

• Allison Baker (National Center for Atmospheric Research, USA)
• David Bindel (Cornell University, USA)
• *Paola Boito (Università di Pisa, Italy)
• Julianne Chung (Virginia Tech, USA)
• Inderjit Dhillon (University of Texas at Austin, USA)
• Yuji Nakatsukasa (Oxford University, United Kingdom)
• Deanna Needell (University of California, Los Angeles, USA)
• Catherine Powell (University of Manchester, United Kingdom)
• *Bryan Shader (University of Wyoming, USA)
• Umesh Vazirani (University of California, Berkeley, USA)

Prizes and Special Lectures:

• ILAS Hans Schneider Prize Lecture
Lek-Heng Lim (University of Chicago, USA)

• ILAS Olga Tausky-Todd Lecture
Raf Vandebril (Katholieke Universiteit Leuven, Belgium)

• SIAM Activity Group on Linear Algebra Early Career Prize
Recipient to be announced

• SIAM Activity Group on Linear Algebra Best Paper Prize
Recipient to be announced

SIAM intends to hold LA21 as either a hybrid or a 100% virtual conference. Visit the FAQ on COVID-19 contin-
gency plans for LA21 at https://sinews.siam.org/Details-Page/faq-on-covid-19-contingency-plans-for-la21
for details and up-to-date information.

For more information on LA21, visit https://www.siam.org/conferences/cm/conference/la21, or contact the co-
chairs of the organizing Organizing Committee, Misha Kilmer (misha.kilmer@tufts.edu) and Andreas Stathopoulos
(andreas@cs.wm.edu).

Western Canada Linear Algebra Meeting (WCLAM 2021)
Brandon, Canada, May 29–30, 2021

The Western Canada Linear Algebra Meeting (WCLAM) provides an opportunity for mathematicians in western Canada
and the USA working in linear algebra and related fields to meet, present accounts of their recent research, and to have
informal discussions. While the meeting has a regional base, it also attracts people from outside the geographical area.
Anyone working in linear algebra or a related field, including combinatorics, graph theory, matrix analysis, and applied
mathematics, is encouraged to submit an abstract for a contributed talk or poster.

The participation fee of CAD$30 will be waived for participating students and postdoctoral fellows. Subject to funding,
students and postdoctoral fellows will receive free accommodation in residence and potentially additional travel support.
WCLAM 2021 will have three distinguished invited speakers: Ada Chan (York University), Doug Farenick (University
of Regina), and Judi McDonald (Washington State University).

https://sinews.siam.org/Details-Page/faq-on-covid-19-contingency-plans-for-la21
https://www.siam.org/conferences/cm/conference/la21
mailto:misha.kilmer@tufts.edu
mailto:andreas@cs.wm.edu
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The organisers of WCLAM 2021 are: Shaun Fallat (University of Regina), Hadi Kharaghani (University of Lethbridge),
Steve Kirkland (University of Manitoba), Sarah Plosker (Brandon University), Michael Tsatsomeros (Washington State
University), and Pauline van den Driessche (University of Victoria). The local organisers are: Steve Kirkland (University
of Manitoba) and Sarah Plosker (Brandon University) (ploskers@brandonu.ca). Further information is available at
https://www.brandonu.ca/wclam.

The organisers hope that the meeting will take place in person, however, depending on the evolving COVID-19 situation,
the meeting may need to take place virtually. Please check the meeting website for the latest information.

6th Workshop on Algebraic Designs, Hadamard Matrices & Quanta
Kraków, Poland, June 28 – July 2, 2021

The 6th Workshop on Algebraic Designs, Hadamard Matrices & Quanta will be held at Jagiellonian University, as well
as at the Institute of Mathematics, in Kraków, Poland.

The list of confirmed invited speakers includes:

• Ingemar Bengtsson (Stockholm, Sweden)
• Robert Craigen (Winnipeg, Canada)
• Dane Flannery (Galway, Ireland)
• Shmuel Friedland (Chicago, USA)
• Dardo Goyeneche (Antofagasta, Chile)
• Markus Grassl (Gdańsk, Poland)
• Hadi Kharaghani (Lethbridge, Canada)
• Ilias Kotsireas (Waterloo, Canada)
• Máté Matolcsi (Budapest, Hungary)

• Koji Momihara (Kumamoto, Japan)
• Akihiro Munemasa (Tōhoku, Japan)
• Ion Nechita (Toulouse, France)
• Padraig Ó Catháin (Worcester, USA)
• Eric Swartz (William & Mary, USA)
• Behruz Tayfeh-Rezaie (Tehran, Iran)
• Mihály Weiner (Budapest, Hungary)
• Qing Xiang (Newark, USA)
• Danylo Yakymenko (Kyiv, Ukraine)

Early conference registration is due by March 1, 2021. Further information will be available at the conference web site,
https://chaos.if.uj.edu.pl/hadamard2020.

International Workshop on Operator Theory and its Applications (IWOTA 2021)
Lancaster, UK, August 16–20, 2021

The International Workshop on Operator Theory and its Applications will be hosted at Lancaster University in the UK,
on 16–20th August 2021. The meeting will present several plenary and semiplenary lectures by leading international
researchers in operator theory and related areas of analysis. In conjunction with the International Linear Algebra Society,
the meeting will feature the inaugural Israel Gohberg Lecture, by Vern Paulsen (University of Waterloo). The lecture is
named in honour of the scientific contributions of Israel Gohberg, who was a visionary and driving force of IWOTA. There
will be several special sessions, covering many aspects of operator theory and its applications. Early career researchers are
welcome to attend IWOTA, and are eligible to apply to the organizers for financial support, which has been generously
provided by the Engineering and Physical Sciences Research Council (EPSRC) and the US National Science Foundation.
The IWOTA meeting will be preceded by the Young Functional Analysts’ Workshop at Lancaster, 12–14th August 2021,
and followed by MTNS at Cambridge, 23–27th August 2021.

For more details on the meeting, see https://www.lancaster.ac.uk/maths/iwotauk2021.

28th International Workshop on Matrices and Statistics (IWMS 2021)
Manipal, India, December 13–15, 2021

The 28th International Workshop on Matrices and Statistics (IWMS 2021) will be held December 13–15, 2021 at the
Center for Advanced Research in Applied Mathematics and Statistics (CARAMS), Manipal Academy of Higher Education
(MAHE), Manipal, Karnataka, India.

The purpose of the Workshop is to stimulate research and, in an informal setting, to foster the interaction of researchers
in the interface between statistics and matrix theory. The Workshop will provide a forum through which statisticians

mailto:ploskers@brandonu.ca
https://www.brandonu.ca/wclam
https://chaos.if.uj.edu.pl/hadamard2020
https://www.lancaster.ac.uk/maths/iwotauk2021
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may be better informed of the latest developments and newest techniques in linear algebra and matrix theory and may
exchange ideas with researchers from a wide variety of countries. In addition to featuring a range of plenary speakers,
the meeting will strengthen the interactions between participants through a range of mini-symposia in various areas of
specialization.

Themes of the workshop will include: matrix analysis, projectors in linear models & multivariate analysis, growth curve
models, linear regression models, linear statistical inference, modelling covariance structures, multivariate and mixed
linear models, and statistics in big data analysis.

The Scientific Committee consists of Ravindra B. Bapat, Manjunatha Prasad Karantha, Steve Kirkland, and Simo
Puntanen. The Organizing Committee consists of Narayana Sabhahit (Chairman, Registrar, MAHE) and Manjunatha
Prasad Karantha (Organizing Secretary, Coordinator, CARAMS, MAHE).

CRR Day on December 15th, 2021: IWMS 2021 will be held alongside ICLAA 2021 (December 15–17, 2021) and CRR
Day will be held on December 15th, the day common to these events, to celebrate 100 years of C. R. Rao, who is among
the greatest statisticians and matrix theorists India has ever produced.

Please visit https://carams.in/events/international-workshop-on-matrices-and-statistics for more details
and registration.

International Conference on Linear Algebra and its Applications (ICLAA 2021)
Manipal, India, December 15–17, 2021

The next meeting of the International Conference on Linear Algebra and its Applications (ICLAA) conference series,
previously scheduled for December 17–19, 2020, has been moved to December 2021 due to the COVID-19 pandemic.
ICLAA 2021 will be held at the Center for Advanced Research in Applied Mathematics and Statistics (CARAMS),
Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.

The themes of the conference shall focus on classical matrix theory, nonnegative matrices and special matrices, matrices
and graphs, combinatorial matrix theory, matrix and graph methods in statistics and biological science, and matrices in
error analysis and its applications.

The Scientific Committee consists of Ravindra B. Bapat, Manjunatha Prasad Karantha, Steve Kirkland, and Simo
Puntanen. The Organizing Committee consists of Narayana Sabhahit (Chairman, Registrar, MAHE) and Manjunatha
Prasad Karantha (Organizing Secretary, Coordinator, CARAMS, MAHE).

ICLAA 2021 has been endorsed by ILAS, which will support Steve Kirkland to deliver the Hans-Schneider Lecture at the
meeting. In addition, the Electronic Journal of Linear Algebra (ELA) will publish a special issue dedicated to ICLAA
2021, in honor of Professor C. R. Rao.

CRR Day on December 15th, 2021: ICLAA 2021 will be held alongside IWMS 2021 (December 13–15, 2021) and CRR
Day will be held on December 15th, the day common to these events, to celebrate 100 years of C. R. Rao, who is among
the greatest statisticians and matrix theorists India has ever produced.

Please visit https://carams.in/events/iclaa2021 for more details and registration.

ILAS 2022: Classical Connections
Galway, Ireland, June 20–25, 2022

The 24th meeting of the International Linear Algebra Society, ILAS 2022: Classical
Connections, will be hosted by the School of Mathematics at the National University
of Ireland, Galway, June 20–25, 2022. The venue will be the beautiful riverside campus
of the National University of Ireland, Galway.

This meeting, initially scheduled for 2020, was cancelled due to the COVID-19 pan-
demic. The scientific programme will be refreshed from the one planned for 2020, and
contributions on all aspects of linear algebra and its applications are welcome. The
conference theme is “Classical Connections.” This will be reflected in the plenary programme and mini-symposia, and
all participants will be encouraged to think about relating their themes to their historical roots.

Ongoing updates and more information about the conference will be posted at http://ilas2020.ie.

https://carams.in/events/international-workshop-on-matrices-and-statistics
https://carams.in/events/iclaa2021
http://ilas2020.ie
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IMAGE PROBLEM CORNER: OLD PROBLEMS WITH SOLUTIONS
We present solutions to Problems 64-1, 64-3, 64-4 and 64-5. We also explain the flaw in Problem 64-2. Solutions are
invited to Problems 60-2, 61-3, 63-1, 63-3 and for all of the problems of issue 65.

Problem 64-1: A Matrix Limit
Proposed by Dennis S. Bernstein, University of Michigan, Ann Arbor, MI, USA, dsbaero@umich.edu
and Ankit Goel, University of Michigan, Ann Arbor, MI, USA, ankgoel@umich.edu
and Syed Aseem Ul Islam, University of Michigan, Ann Arbor, MI, USA, aseemisl@umich.edu
and Tam Nguyen, University of Michigan, Ann Arbor, MI, USA, Tam.Nguyen@ieee.org

Suppose P is a real n× n (symmetric) positive semidefinite matrix and M is a real n×m matrix with the range of M
being equal to the range of P . Find a closed-form expression for limλ→0+

1
λ [P − PM(λIm +MTPM)−1MTP ].

Solution 64-1.1 by Roger A. Horn, University of Utah, Salt Lake City, Utah, USA, rhorn@math.utah.edu

We pose and solve a generalization of the stated problem. The Moore-Penrose inverse of a complex matrix A is A†; the
conjugate transpose of A is A∗; A is an EP-matrix if A and A∗ have the same range.

Problem 64-1′: Let P be an n× n complex EP-matrix, and let M be an n×m complex matrix. If M and P have the
same range, then

lim
λ→0

(
P − PM(λI +M∗PM)−1M∗P

)
= (MM∗)†.

Let r = rankP = rankM, and let

M = V

[
S 0
0 0

]
W ∗

be a singular value decomposition, in which V and W are unitary and S is r× r real, positive diagonal, and nonsingular.
Partition V as V = [V1 V2], in which V1 has r columns. Then M = V1[S 0]W ∗, so the range of M is the range of V1.

Let P = U(B ⊕ 0)U∗, in which U is unitary and B is r × r and nonsingular [1, 2.6.P28a, p. 158]. Partition U = [U1 U2]
conformally to V. Then P = U1[B 0]U∗, so the range of P is the range of U1. The hypothesis ensures that U1 and V1
have the same range. Thus, there is an r × r unitary matrix Z such that U1 = V1Z [1, 2.1.P22, p. 93]. Then

P = V1Z[B 0][V1Z U2]∗ = V1[ZBZ∗ 0][V1 U2]∗

= [V1 V2]
[
ZBZ∗ 0

0 0

]
[V1 V2]∗ = V

[
Q 0
0 0

]
V ∗,

in which Q = ZBZ∗ is r × r and nonsingular. We have

MM∗ = V

[
S2 0
0 0

]
V ∗ and (MM∗)† = V

[
S−2 0

0 0

]
V ∗,

as well as
PM = V

[
QS 0
0 0

]
W ∗ and M∗PM = W

[
SQS 0

0 0

]
W ∗.

Let |λ| be nonzero and less than the smallest singular value of SQS. Then λI + SQS is nonsingular and a calculation
reveals that

P − PM(λI +M∗PM)−1M∗P = V

[
λ−1 (Q−QS(λI + SQS)−1SQ

)
0

0 0

]
V ∗.

The computation

λ−1 (Q−QS(λI + SQS)−1SQ
)

= λ−1 (Q−QS(I + λ(SQS)−1)−1(SQS)−1SQ
)

= λ−1 (Q−QS(I + λ(SQS)−1)−1S−1)

mailto:dsbaero@umich.edu
mailto:ankgoel@umich.edu
mailto:aseemisl@umich.edu
mailto:Tam.Nguyen@ieee.org
mailto:rhorn@math.utah.edu
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= λ−1 (Q−QS(I − λ(SQS)−1 +O(λ2))S−1)
= S−2 +O(λ)
→ S−2 as λ→ 0

verifies the asserted value of the limit.

Reference

[1] R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, 2013.

Solution 64-1.2 by Eugene A. Herman, Grinnell College, Grinnell, Iowa, USA, eaherman@gmail.com

Assume at first that P is nonsingular. Since MTPM is positive semidefinite, there is an orthogonal matrix U and a
diagonal matrix D = diag(d1, . . . , dm) such that UTMTPMU = D and di ≥ 0 for i = 1, . . . ,m. Then

(
UT

(
λI +MTPM

)
U
)−1 = (λI +D)−1 = diag

(
1

λ+ d1
, . . . ,

1
λ+ dm

)

and so
(
λI +MTPM

)−1 = Udiag
(

1
λ+d1

, . . . , 1
λ+dm

)
UT . Let Q be the positive definite square root of P and N = QMU .

Hence,

E := P − PM(λI +MTPM)−1MTP = Q2 −QNdiag
(

1
λ+ d1

, . . . ,
1

λ+ dm

)
NTQ,

and so, since NTN = UTMTPMU = diag(d1, . . . , dm),

NTQ−1EQ−1N = NTN −NTNdiag
(

1
λ+ d1

, . . . ,
1

λ+ dm

)
NTN

= diag
(
d1 −

d2
1

λ+ d1
, . . . , dm −

d2
m

λ+ dm

)
= diag

(
λd1

λ+ d1
, . . . ,

λdm
λ+ dm

)
.

Therefore,

lim
λ→0+

NTQ−1 1
λ
EQ−1N = I and so lim

λ→0+
Q−1NNTQ−1 1

λ
EQ−1NNTQ−1 = Q−1NNTQ−1.

Note that Q−1NNTQ−1 = MUUTMT = MMT , which is nonsingular for the following reason. Since MMT is n×n, we
need only show that its range is Rn. We use the orthogonal direct sum decomposition Rn = R(M)⊕K(MT ) (the range
of M plus the kernel of MT ). Since R(M) = R(P ) = Rn, we have K(MT ) = {0}. However, if some nonzero vector v is
orthogonal to R(MMT ), then 0 = 〈v,MMT v〉 = ‖MT v‖2, which is a contradiction. In the last limit above, multiply on
the left and right by

(
MMT

)−1 to obtain

lim
λ→0+

1
λ

[
P − PM(λI +MTPM)−1MTP

]
=
(
MMT

)−1
.

Now assume P is singular. Let P ′ be the restriction of P to R(P ) and M ′ be the restriction of M to R(MT ). Let E
again denote the given expression in square brackets. We use the orthogonal direct sum decompositions

K(P )⊕R(P ) = Rn and K(M)⊕R(MT ) = Rm.

The second of these implies thatM ′ maps R(MT ) onto R(P ′), since R(M) = R(P ). Consider the action of E on each of
the complementary subspaces K(P ) and R(P ). In particular, E maps K(P ) to {0}. On R(P ), the product MTP maps
R(P ) to R(MT ). The matrix λIm + MTPM maps R(MT ) to itself, and so its inverse does that as well. Finally, PM
maps R(MT ) to R(P ), and so we may write

E = P ′ − P ′M ′(λIr + (M ′)TP ′M ′)−1(M ′)TP ′

mailto:eaherman@gmail.com
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on R(P ), where r is the dimension of R(MT ). Therefore, on R(P ),

lim
λ→0+

1
λ
E =

(
M ′(M ′)T

)−1
.

Note: The same proof works for complex matrices. Simply replace the transpose by the transpose-conjugate, real n-space
by complex n-space, and “orthogonal” by “unitary”.

Problem 64-2: Simple Neo-Pythagorean Means
Proposed by Richard William Farebrother, Bayston Hill, Shrewsbury, England, R.W.Farebrother@hotmail.com

This question explores when a perfect square is the arithmetic or harmonic mean of two distinct perfect squares.

(a) Suppose that x, y, z ∈ N with x < y < z. Show that y2 is the arithmetic mean of x2 and z2 if and only if there
exists a right-angle triangle whose hypotenuse has length y and whose other two sides have lengths z−x

2 and z+x
2 .

(b) Suppose that x, y, z ∈ N with x < y < z. Show that y2 can never be the harmonic mean of x2 and z2 (i.e.,
2/y2 = 1/x2 + 1/z2 has no integer solutions except when x = y = z).

Editor’s note: Eugene Herman has pointed out that (x, y, z) = (5, 7, 35) is a solution to the equation in Problem 64-2b.
In fact he notes that if we substitute z = xy into 2/y2 = 1/x2 + 1/z2, we get the Pell’s equation 2x2 − y2 = 1. This
means that there is an infinite sequence of solutions with (5, 7, 35) and (29, 41, 1189) being the first two solutions in the
set obtained from the Pell’s equation. We withdraw this problem and replace it with Problem 65-2 whose part b has the
added hypothesis that x and z be relatively prime. We regret the error.

Problem 64-3: 2× 2 Matrix Diagonalization
Proposed by Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, Florida, USA, zhang@nova.edu

Let F be a field and let Mn(F ) be the set of all n × n matrices with entries in F . A matrix M ∈ Mn(F ) is said to
be diagonalizable over F if there exist D a diagonal matrix in Mn(F ) and S an invertible matrix in Mn(F ) such that
M = SDS−1. Let A = (aij) be a 2× 2 symmetric matrix over F whose off-diagonal entries are nonzero. It is well-known
that if F = R, then the real symmetric matrix A will always be diagonalizable. Now let ΘA = a11−a22

a12
.

(a) Show that if F = C, then A is diagonalizable over C if and only if ΘA 6= ±2i.

(b) Show that if F = Q, then A is diagonalizable over Q if and only if there exist m,n ∈ N such that ΘA = m2−n2

mn .

Solution 64-3 by Eugene A. Herman, Grinnell College, Grinnell, Iowa, USA, eaherman@gmail.com

The eigenvalues of A are

λ+, λ− = 1
2

(
a11 + a22 ±

√
(a11 − a22)2 + 4a2

12

)
= 1

2

(
a11 + a22 ±

1
a12

√
Θ2
A + 4

)
.

(a) If ΘA 6= ±2i, then Θ2
A + 4 6= 0. The eigenvalues of A are therefore distinct, and so A is diagonalizable over C. If A is

diagonalizable over C and ΘA = ±2i, then the eigenvalues of A are equal and so A is similar to a multiple of the identity
matrix. But then A is the same multiple of the identity matrix, which contradicts the hypothesis that a12 6= 0.

(b) Since Θ2
A + 4 > 0, the eigenvalues of A are distinct. Hence, A is diagonalizable over Q if and only if the eigenvalues

are rational; and that is true if and only if Θ2
A + 4 is the square of a rational number. If ΘA = m2−n2

mn for some m,n ∈ N,
then

Θ2
A + 4 = (m2 − n2)2 + 4m2n2

m2n2 =
(
m2 + n2

mn

)2

and so A is diagonalizable over Q. Now suppose Θ2
A + 4 is the square of a rational number. We may assume ΘA 6= 0,

since otherwise we can choose m = n = 1. Write |ΘA| = p/q, where p and q are relatively prime positive integers. Then

mailto:R.W.Farebrother@hotmail.com
mailto:zhang@nova.edu
mailto:eaherman@gmail.com
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Θ2
A + 4 = (p2 + 4q2)/q2 and so p2 + 4q2 = r2 for some r ∈ N. That is, (p, 2q, r) is a Pythagorean triple. If p is odd, this

triple is primitive, and so there existm,n ∈ N such that p = m2−n2, 2q = 2mn, and r = m2 +n2. Hence, ΘA = ±m2−n2

mn .
If p is even, then r is also even, and so p = 2p1, r = 2r1, where p1, r1 ∈ N. Hence, p2

1 + q2 = r2
1 and (p1, q, r1) is primitive.

Therefore, for some m,n ∈ N, p1 = m2 − n2, q = 2mn, and r1 = m2 + n2, and so ΘA = ±2p1/q = ±m2−n2

mn .

Part a also solved by Jeffrey Stuart.

Problem 64-4: A Matrix Equation
Proposed by Rajesh Pereira, University of Guelph, Guelph, Canada, pereirar@uoguelph.ca

Let A be an n× n complex matrix with Tr(A) = 0 and with all nonzero eigenvalues having multiplicity one. Show that
there exist invertible matrices P and Q such that PAP−1 +QAQ−1 = A.

Solution 64-4 by Eugene A. Herman, Grinnell College, Grinnell, Iowa, USA, eaherman@gmail.com

We prove the equivalent statement that there exist matrices B and C similar to A such that A = B + C. Since A is
similar to its Jordan form, we may assume that A is in that form. We write A, therefore, as a block-diagonal matrix with
blocks J1(0), . . . , Jk(0), D in which the first k blocks are Jordan blocks with zeros on the diagonal and D is a diagonal
trace-zero matrix whose diagonal entries are distinct and nonzero. It suffices to prove the result whenever A has one of
these forms. If A = O, then A = A + A. If A has ones along its superdiagonal and zeros elsewhere, then A = A

2 + A
2 .

The matrix A
2 is similar to A since PAP−1 = A

2 with P = diag(1, 2, 22, . . . , 2n).

Finally, assume A = D = diag(d1, . . . , dn) where d1, . . . , dn are distinct, nonzero and sum to zero. We claim that there
exists a matrix Z such that D

2 ± Z are both similar to D. Since D is the sum of these two matrices, it remains only to
prove our claim. Since Tr(D) = 0, n ≥ 2. Define Z = [zij ] as the matrix whose first column and row have entries zi1 = 1
for i = 2, . . . , n,

z1j = aj :=
∏n
i=1(dj/2− di)∏

i6=1,j(dj/2− di/2) , for j = 2, . . . , n,

and zij = 0 otherwise.

To prove our claim, it suffices to prove that D and D
2 ± Z all have the same characteristic polynomial, since that

polynomial is a product of distinct linear factors. Define p(x) = det(xI −D) =
∏n
i=1(x− di) and

q(x) = det(xI − (D/2− Z)) =
n∏
i=1

(x− di/2)−
n∑
j=2

aj
∏
i6=1,j

(x− di/2).

Furthermore, q(x) is also the characteristic polynomial of D
2 + Z, since D

2 + Z is similar to D
2 − Z. (In fact, D2 + Z =

S(D2 − Z)S−1 where S = diag(−1, 1, 1, . . . 1, 1)).

For j ≥ 2, compute the difference

p(dj/2)− q(dj/2) =
n∏
i=1

(dj/2− di)−
n∑
j=2

aj
∏
i6=1,j

(dj/2− di/2) = 0.

Since Tr(D) = 0 = Tr(D/2 − Z), the difference p(x) − q(x) has degree at most n − 2. Hence, since p(x) − q(x) = 0 at
n− 1 distinct points, we have shown that p(x) = q(x).

Problem 64-5: Symmetry of a Sum of Permutation Matrices
Proposed by Yue Liu, Fuzhou University, Fujian, China, liuyue@fzu.edu.cn
and Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, Florida, USA, zhang@nova.edu

Let P = (pij) be the basic circulant permutation matrix of order n; that is, pi,i+1 = 1 for i = 1, 2, . . . , n − 1, while
pn1 = 1, and all other entries are equal to 0. Let i and j be nonnegative integers. Show that P i + P j is a symmetric
matrix if and only if either (a) n divides i+ j, or (b) n is even and {i, j} = {0, n2 } (mod n).

mailto:pereirar@uoguelph.ca
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Solution 64-5.1 by Jeffrey Stuart, Pacific Lutheran University, Tacoma, Washington, USA, jeffrey.stuart@plu.edu

Since P kn = In for all nonnegative positive integers k, we can assume that 0 ≤ i < n and 0 ≤ j < n. Without loss of
generality, assume that i ≤ j.

For 0 < i < n, P i has n − i ones on the ith band above the diagonal (hence it is an all-ones band), and i ones on the
(n− i)th band below the diagonal (hence it is an all-ones band), with all other entries of P i equal to zero. In particular,
when n is even and i = n

2 , P i is itself symmetric; the only other case in which P i is symmetric is when i = 0.

When n is even, P 0 + Pn/2 = In + Pn/2 is symmetric, and Pn/2 + Pn/2 = 2Pn/2 is also symmetric. For both even and
odd n, P 0 + P 0 is clearly symmetric.

Suppose that neither P i nor P j is symmetric. In order for P i + P j to be symmetric, it is necessary that the sum of the
entries above the diagonal in P i + P j must equal the sum of the entries below the diagonal:

(n− i) + (n− j) = i+ j.

That is, i + j = n. Note that when n is even, this would allow for i = j = n/2, except that we have required that P i
and P j not be symmetric. It suffices to show that for these values of i and j, P i + P j actually is symmetric. As noted
above, each of P i and P j has two all-ones bands, so the all-ones bands for P i +P j are the ith and jth = (n− i)th above
the diagonal, and the (n− i)th and (n− j)th = (n− (n− i))th = ith below the diagonal. Thus, P i + P j is symmetric.

Finally, lifting the restriction that i and j satisfy i ≤ j < n, suppose that i = k1n+ î and j = k2n+ ĵ where k1 and k2
are nonnegative integers and where 0 ≤ î ≤ ĵ < n. When n is even, {i, j} =

{
0, n2

}
(modn) is equivalent to î = 0 and

ĵ = n
2 , and hence when {i, j} =

{
0, n2

}
(modn), P i + P j is symmetric. Since

i+ j =
(
k1n+ î

)
+
(
k2n+ ĵ

)
=
(
î+ ĵ

)
+ (k1 + k2)n,

the condition that n divides i+j is equivalent to the statement that î+ĵ = 0 or î+ĵ = n. In the former case, P i = P j = In,
so P i + P j is clearly symmetric. In the latter case, we have proven that this is equivalent to P i + P j = P î + P ĵ being
symmetric with neither summand equal to the identity matrix.

Solution 64-5.2 by Eugene A. Herman, Grinnell College, Grinnell, Iowa, USA, eaherman@gmail.com

If P is any permutation matrix, there exists a permutation σ of (1, 2, . . . , n) such that Pej = eσ(j) for j = 1, . . . , n,
where ej is the jth standard unit basis vector of Rn. We will allow P to be any permutation matrix whose corresponding
permutation σ is an n-cycle. Such a permutation has the property (to be called the identity-cycle property) that if
σk(i) = i for some i, then σk is the identity map and so n|k. Therefore, if σk(j) = i and σl(i) = j for some pair (i, j),
then σk+l(i) = i, which by the identity-cycle property implies that σk+l is the identity permutation and hence n|(k+ l).
Let pij(k) denote the (i, j)-entry of P k. Then

pij(k) =
{

1 if σk(j) = i, and
0 otherwise.

Consider first the case where at least one of the two matrices P k and P l is symmetric. In this case P k +P l is symmetric
if and only if both P k and P l are symmetric. From the above formula for the entries of P k, P k is symmetric if and
only if σk(j) = i implies σk(i) = j, and that is true if and only if σ2k(i) = σk(j) = i. So P k is symmetric if and only
if n divides 2k. Similarly, P l is symmetric if and only if n divides 2l. Hence, in the case where at least one of the two
matrices P k and P l is symmetric, the matrix P k +P l is symmetric if and only if n divides both 2k and 2l, which occurs
if and only if k, l ∈ {0, n2 } (mod n) when n is even and k = l = 0 (mod n) when n is odd.

Finally, consider the case where neither P k nor P l is symmetric. Then if P k + P l is symmetric, there must be a pair
i, j such that the (i, j)-entry of P k is one and the (j, i)-entry of P l is one. This implies that σk(j) = i and σl(i) = j,
which by the above implies that n divides k+ l. To show the converse, if n divides k+ l, then since PT = P−1, we have
P k = (P−k)T = (P l)T , which implies that P k + P l is symmetric.

mailto:jeffrey.stuart@plu.edu
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IMAGE PROBLEM CORNER: NEW PROBLEMS
Problems: We introduce five new problems in this issue and invite readers to submit solutions for publication in IMAGE.
Submissions: Please submit proposed problems and solutions in macro-free LATEX along with the PDF file by e-mail to IMAGE Problem
Corner editor Rajesh Pereira (pereirar@uoguelph.ca).

New Problems:

Problem 65-1: A Multivariable Recursion
Proposed by Sneha Sanjeevini, University of Michigan, Ann Arbor, MI, USA, snehasnj@umich.edu
and Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria, omran_kouba@hiast.edu.sy
and Dennis S. Bernstein, University of Michigan, Ann Arbor, MI, USA, dsbaero@umich.edu

Let D0, . . . , Dn be real p × p matrices such that Dn 6= 0 and det(znDn + · · · + zD1 + D0) is not the zero polynomial.
Furthermore, let {yj}∞j=0 be an infinite sequence of vectors in Rp satisfying

Dnyk+n + · · ·+D1yk+1 +D0yk = 0

for all k ≥ 0. Show that, if y0 = y1 = · · · = yn−1 = 0, then, for all k ≥ n, yk = 0.

Problem 65-2: Simple Neo-Pythagorean Means (Corrected)
Proposed by Richard William Farebrother, Bayston Hill, Shrewsbury, England, R.W.Farebrother@hotmail.com

This question explores when a perfect square is the arithmetic or harmonic mean of two distinct perfect squares.

(a) Suppose that x, y, z ∈ N with x < y < z. Show that y2 is the arithmetic mean of x2 and z2 if and only if there
exists a right-angle triangle whose hypotenuse has length y and whose other two sides have lengths z−x

2 and z+x
2 .

(b) Suppose that x, y, z ∈ N with x < y < z. Show that y2 can never be the harmonic mean of x2 and z2 if x and z
are relatively prime (i.e., 2/y2 = 1/x2 + 1/z2 has no positive integer solutions with x < y < z and gcd(x, z) = 1).

Editor’s note: This is a corrected version of Problem 64-2. See the solutions section under Problem 64-2 for more details.

Problem 65-3: Number of Solutions of a Matricial System
Proposed by Gérald Bourgeois, Université de la Polynésie française, FAA’A, Tahiti, Polynésie française, bourgeois.
gerald@gmail.com

Let Z/6Z denote the finite ring of integers modulo six. Find the number of ordered pairs (A,B) of 3 × 3 matrices over
Z/6Z which simultaneously satisfy the two matrix equations A2 +B2 = I3 and AB = 0.

Problem 65-4: An nth Derivative Inequality
Proposed by Rajesh Pereira, University of Guelph, Guelph, Canada, pereirar@uoguelph.ca

Let ‖ · ‖ denote the usual operator norm on the space of n × n complex matrices. For any n × n complex matrix A,
define φA to be the linear operator on the space of n × n matrices which maps any such matrix B to the commutator
AB − BA. Let pA(z) be the monic characteristic polynomial of φA. Find the smallest positive number Cn such that
|p(n)
A (0)| ≤ Cn‖A‖n(n−1) for all n× n complex matrices A.

Solutions to Problems 64-1, 64-3, 64-4, and 64-5 are on pages 35–39.
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